Computational challenges in the future of Molecular Biology and Personalised Medicine

3B4HPC 2022

José Carbonell and Arnau Montagud Computational Biology group

Astrophysics

Luciano Rezzolla

Energy

Frank Jenko, Marina Bécoulet

Weather prediction

UPSCALE Project

Materials design

Mathieu Salanne, EPFL.

COVID19

https://doi.org/10.1101/2020.06.27.175430

Al in biomedicine

Luciano Rezzolla

Predicting the structure of SARS-CoV-2 S protein

Turon ová, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020)

Molecular dynamics guiding drug discovery

Cell-level simulations as a virtual microscope

From cells to tissues and organs

From Chabiniok R et al. Interface Focus. 2016

Towards a big data landscape

More and more data

Navarro FCP et al. Genome Biol. 2019

Integration of multiple omics

Howard H.F. Tang, et al.European Respiratory Journal 2020

Navarro, F.C.P., Mohsen, H., Yan, C. et al. Genomics and data science: an application within an umbrella. Genome Biol 20, 109 (2019)

From Bulk to Single-cell sequencing

Adapted from Lisa Maria Steinheuer et al. Bioarxiv 2021

From Bulk to Single-cell sequencing

HUMAN CELL ATLAS

From Bulk to Single-cell sequencing

Designing appropriate user interfaces

Towards an ecosystem of tools adapted to HPC environments

Solving real-life use cases

Building block and workflows

Leveraging HPC resources while improving reproducibility

Artificial intelligence in Life Sciences

Artificial intelligence in Life Sciences

Using Deep Learning to simulate scRNA-seq

Personalised Medicine and Digital Twins

Towards patient-specific treatments

Databases where to find information

To infer mechanisms from omics data we need networks and models

Data leads to Structure ... and Structure leads to Modelling

Modern Biology means Big Data

Ratio of model predictability

Slide from Ewan Birney,

EBI

Agent-based modelling

Agent-based models are composed of:

- numerous agents;
- decision-making heuristics;
- an interaction topology; and
- a description of the environment.
- Examples:
 - Ecology
 - Environmental Science
 - Artificial Intelligence
 - Tissue Biology

Osborne et al, *PLOS Comp Bio*, 2017 Metzcar et al, *JCO Clinical Cancer Informatics*, 2019

Agent-based is a flexible, multiscale modelling framework

Multiscale because we consider different time scales

Simulation's main loop

```
while t_current < tend
   update_difussion()
   if \Delta t % \Delta tmech == 0
      update_cell_mechanics()
   if \Delta t % \Delta tcell == 0
      update_cell_processes()
   \Delta t = 0
   \Delta t = t_step
   t_current += t_step</pre>
```

Time scales

- $\Delta t_{
 m diff}$: (diffusion/transport): 0.01 min
- $\Delta t_{
 m mech}$: (cell movement): 0.1 min
- $\Delta t_{\rm cell}$: (cell processes): 6 min
- $\Delta t_{
 m signalling}$: (Boolean simulation): 10 min

Environment can be dynamic and reactive

Diffusion equation

$$\frac{\partial \boldsymbol{\rho}}{\partial t} = \mathbf{D} \nabla^2 \boldsymbol{\rho} - \mathbf{\lambda} \boldsymbol{\rho} + \mathbf{S} (\boldsymbol{\rho}^* - \boldsymbol{\rho}) - \mathbf{U} \boldsymbol{\rho}$$
sources and uptake by cells
$$+ \sum_{\text{cells } k} \delta(\mathbf{x} - \mathbf{x}_k) W_k [\mathbf{S}_k (\boldsymbol{\rho}_k^* - \boldsymbol{\rho}) - \mathbf{U}_k \boldsymbol{\rho}] \text{ in } \Omega$$

System of PDEs for each molecule:

- Diffusion term
- Decay
- Uptake/Production

Mechanical equation

$$\mathbf{v}_{i} = \sum_{j \in \mathcal{N}(i)} \left(- \sqrt{c_{\text{cca}}^{i} c_{\text{cca}}^{j}} \nabla \phi_{1,R_{i,A}+R_{j,A}}(\mathbf{x}_{i} - \mathbf{x}_{j}) - \sqrt{c_{\text{ccr}}^{i} c_{\text{ccr}}^{j}} \nabla \psi_{1,R_{i}+R_{j}}(\mathbf{x}_{i} - \mathbf{x}_{j}) \right).$$

$$cell-BM \text{ adhesion}$$

$$- c_{\text{cba}}^{i} \nabla \phi_{1,R_{i,A}}(-d(\mathbf{x}_{i})\mathbf{n}(\mathbf{x}_{j})) - c_{\text{cbr}}^{i} \nabla \psi_{1,R_{j}}(-d(\mathbf{x}_{i})\mathbf{n}(\mathbf{x}_{j})) + \mathbf{v}_{i,\text{mot}}$$

Surrounding physical environment

Surrogate for extra-cellular matrix

- Field with densities that can be produced & consumed
- Inert agents that can be moved

Cells have different phenotypes depending on their genes' activation

Time scales

- $\Delta t_{\text{diff}} / \Delta t_{\text{mech}} / \Delta t_{\text{cell}}$
- $\Delta t_{\text{signalling}}$

PhysiBoSS allows for finding optimal drug regimes

~48 h simulation time, 30 min wall time ~2500 cells

Figure from Miguel Ponce-de-Leon, BSC

Ponce-de-Leon et al. (2022) bioRxiv, 2022.01.06.468363 Ponce-de-Leon et al. (2022) Frontiers in Molecular Biosciences, 9

Proliferation Apoptosis Necrosis

Time (min)

Letort et al. (2018), Bioinformatics, bty766

30

Time (min)

PhysiBoSS allows for personalised drug studies

Personalisation of intracellular models

BIOLOGICAL KNOWLEDGE **OMICS DATA** MODEL PERSONALIZATION Node activity status Distribution of Phenotypes scores across GDSC prostate cohort using mutation as discrete data, RNA as continuous data and random initial conditions Cell lines DU-145 Béal et al. (2019) Frontiers in Physiology, 9:1965

Different combinations of drugs

PhysiCell scalability analysis stagnates at ~8 cores

Optimisation in MN4: Improving PhysiCell's scalability -memory allocation problem

PhysiCell vanilla malloc library

Benchmarking in MN4: Changing the library improves PhysiCell's scalability

100

- 80

- 60

- 20

PhysiCell vanilla *malloc* library

PhysiCell using *jemalloc* library

Strong scaling speedup with 2 processes as baseline

6x faster!

Slide from Marc Clascà, Marta Garcia-Gasulla, **BSC**

Benchmarking in MN4 vs Kupeng

PhysiCell using *jemalloc* library in **MN4**

PhysiCell using *jemalloc* library in **Kupeng**

Strong scaling speedup with 4 processes as baseline

100

80

Work from José Estragués, BSC

PhysiCell-X: extending PhysiCell with MPI

- Re-factored the diffusion solver
 - Lower scale of multiscale
- Allows to simulate bigger setups
 - Needed to reach huge, complex simulations
- Still efficient vs serial in smaller setups

(e) Thomas solver

Towards a flexible exascale multiscale framework using PhysiCell-X

Barcelona

Limitations:

- MPI domain decomposition is 1D
- Diffusion solver in BioFVM-X is serial on the X-axis
- Working on a Parallel Modified (hybrid) Thomas solver

MPI MPI unpack

Testing the performance of PhysiCell-X

Overhead of MPI messaging

Further work: study how to migrate to hybrid architectures

Combine CPU / GPU

Barcelona

Supercomputing

- Lower loops in GPU
- Tools already published:

Simulation's main loop while t_current < tend update_difussion() if Δt % Δtmech == 0 update_cell_mechanics() if Δt % Δtcell == 0 update_cell_processes() Δt = 0 Δt += t_step t_current += t_step</pre>

Machine	CPU	NVIDIA GPU
NVIDIA DGX-2	Intel Xeon Platinum 8168 (24 cores)	Volta V100 (32GB HBM2)
NVIDIA DGX A100	AMD EPYC Rome 7742 (64 cores)	Ampere A100 (40GB HBM2)

Table 1: Specifications of the nodes in the two systems

Sim Dataset	60 Sim mins	180 Sim mins	360 Sim mins
OMP CPU 1 Core	8 min. 44.6083s	25 min. 11.1268s	51 min. 47.043s
OMP CPU 64 Cores	1 min. 6.0669s	3 min. 21.9457s	6 min. 44.9028s
ACC CPU 64 Cores	57.993s	2 min. 47.4116s	5 min. 30.3994s
Manual GPU V100	1 min. 34.2378s	2 min. 39.4965s	4 min. 17.9657s
Manual GPU A100	2 min. 20.6413s	3 min. 36.9927s	5 min. 25.707s
Managed GPU V100	23.903s	57.4191s	1 min. 47.7914s
Managed GPU A100	21.3251s	45.9034s	1 min. 22.7607s

Table 2: Results Table

Further work: prepare set-up to many patients and many replicates

- We would like to scale-up simulations
 - Currently running jobs of 10⁴ cells
 - Looking forward to 10⁹ cells
- Obstacles and potential solutions:
 - Memory-limited multiscale tools
 - MPI implementation

- We would like to simulate many more patients at once
 - Big datasets for each patient:
 - Storage & security problems
- Obstacles and potential solutions:
 - Different tools and codes
 - Use of pipelines and orchestrators
 - Homogeneous 3Dal set-up
 - Use of clinical images as initial set-ups
 - Parameter fitting evaluation
 - Model exploration techniques

Further work: prepare infrastructure that fills the community needs

- PerMedCoE's initiatives open to the Computational Biology community:
 - Scaling-up success cases
 - Observatory of tools
 - Benchmark of similar tools
 - Repository of building blocks and workflows
- Obstacles and potential solutions:
 - Long-term maintenance costs
 - National funds? EU?

- Further outreach to the community:
 - Extensive use of pipelines and orchestrators
 - Offer alternatives to cloud computing
 - Offer training of Life scientists in HPC
 - Simulation tools
 - HPC performance tools
 - Offer testbeds for users' tools

Arnau Montagud Jose Carbonell Miguel Ponce de León Gaurav Saxena **Alfonso Valencia**

Collaborators

Paul Macklin (Indiana U) Laurence Calzone (Institut Curie) Rosa Maria Badia (BSC) Julio Sáez-Rodríguez (Heidelberg U) Tommi Nyrönen (CSC)

HPC/Exascale Centre of Excellence in Personalised Medicine

www.permedcoe.eu

www.linkedin.com/company/permedcoe @permedcoe

The PerMedCoE project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement N°951773