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Improving theWCET estimation

Context 2/22

Find a safe, tight timing bound
Infeasible paths are the main source of overstimation in
WCET computation

Identifying infeasible paths refines the WCET estimation
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Working directly on binaries is harder

but is more adapted:

low expressivity of
machine instructions
larger size of program
loosely typed registers
obscure structure of data
in memory
...

not mapping properties
from source to binaries
independent of compiler
available source libraries
are not required
easy injection in WCET
computation
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Architecture dependent?

No!
ARMmachine instructions
ADD r3, r3, #1

STMDB sp!, {r4, lr}

OTAWA semantic instructions
seti t1, 1
add r3, r3, t1

seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
add t1, t1, t2
set r13, t3
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Maintain an abstract program state for each path
Top-to-bottom analysis
Inline calls
Program states are represented by a conjunction of
predicates

γ(
∧

φi) = {x ∈ S |
∧

φi(s)}
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ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
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store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 = r1

(initial state)

SP0 is the initial value of the
stack pointer

t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14
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Example of infeasible path
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Accounting for all 4 paths,
WCET = 23 cycles + ...

But:
¬(x < 10) ∧ (x < 0) |= ⊥

Without the infeasible
path, WCET = 21 cycles + ...
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r0 = r1
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Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1
r1 = 0

This program state is unsatisfiable!
(“UNSAT”)

⇒ The current path is infeasible
Example:
0 � 1 � 3 � 4 � 5 � 6 � 8 � 9
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Label predicates by the basic block(s) that generated them:

r0 > 8(1,5)

[0x8008] = 0(3)

r13 = SP0 − 24(4)

r0 = [SP0 − 16](9)

[SP0 − 16] = 0(9)

Full infeasible path:
0 � 1 � 3 � 4 � 5 � 6 � 8 � 9

Minimized infeasible path:
1 � 5 � 9
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SatisfiabilityModulo Theories solver:
a SAT solver enhanced with multiple theories:

Rational/Integer/Booleans
Arrays
BitVectors
...

⇒We use Quantifier-Free Linear Integer Arithmetic

receives a list of assertions then seeks a model
(satisfiability check)
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Some SMT solvers feature UNSAT cores:

Triggered when a system is proven
unsatisfiable
Gives a minimal set of assertions that
preserves unsatisfiability

Example:
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Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration
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previous state
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Do SMT checks
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A very roughmerging algorithm: predicate set intersection

r13 = SP − 4

r0 = [SP − 8]

r1 = 0

r2 = 0

[0x8008] = 16

r13 = SP − 4

r0 = [SP − 8]

r1 = 1

r2 > 0
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r13 = SP − 4

r0 = [SP − 8]
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Benchmark BB (#) Time (s) IPs found with minimization without minimization
SMALL BENCHMARKS (NO MERGING REQUIRED)

ndes 57 0.267 0 0
expint 70 0.748 14 34
edn 75 0.537 2 2
prime 118 4.368 22 43

compress 122 1.801 10 19
select 136 45.598 4 8

qsortexam 155 28.201 9 12
adpcm 323 0.074 3 3

LARGE BENCHMARKS (MERGING REQUIRED)
ud 153 17.477 6 23

minver 449 188.339 4 16
statemate 453 193.849 16 22
ludcmp 632 143.088 11 510
nsichneu 754 250.385 4586 8620

qurt 2777 773.805 3 3
lms 3098 915.434 259 2376
fft1 6123 2223.125 25 815
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+ Working directly on the binaries

+ Outputting short infeasible paths
Reduces complexity of analyses that exploit infeasible
paths

− Brutal state merging
− Time calculation explosion
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Inf. paths found with minimization w/o minimization
Benchmark BB (#) Time (s) 1 edge Minimized Non-minimized Non-minimized

SMALL BENCHMARKS (NO MERGING REQUIRED)
ndes 57 0.267 0 0 0 0
expint 70 0.748 4 5 5 34
edn 75 0.537 2 0 0 2
prime 118 4.368 2 8 12 43

compress 122 1.801 2 8 0 19
select 136 45.598 0 4 0 8

qsortexam 155 28.201 2 4 2 12
adpcm 323 0.074 3 0 0 3

LARGE BENCHMARKS (MERGING REQUIRED)
ud 153 17.477 3 3 0 23

minver 449 188.339 4 0 0 16
statemate 453 193.849 0 16 0 22
ludcmp 632 143.088 5 6 0 510
nsichneu 754 250.385 0 1352 3234 8620

qurt 2777 773.805 3 0 0 3
lms 3098 915.434 26 22 211 2376
fft1 6123 2223.125 0 25 0 815
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