
UsingSMTSolving for the
Lookupof InfeasiblePaths in
BinaryPrograms
University of Toulouse Workshop WCET, Lünd, 2015

by

Jordy Ruiz and Hugues Cassé

July 7, 2015



Contents

1. Context
Introducting thoughts

2. Analysing the semantics of a binary program
The foundations of our work

3. Finding infeasible paths
Explaining the mechanics of this analysis

4. Conclusion
Some closing thoughts and talk about future works



Context 1/22

Context



Improving theWCET estimation

Context 2/22

Find a safe, tight timing bound
Infeasible paths are the main source of overstimation in
WCET computation

Identifying infeasible paths refines the WCET estimation



Working on binary programs

Context 3/22

 

Working directly on binaries is harder

but is more adapted:

low expressivity of
machine instructions
larger size of program
loosely typed registers
obscure structure of data
in memory
...

not mapping properties
from source to binaries
independent of compiler
available source libraries
are not required
easy injection in WCET
computation



Working on binary programs

Context 3/22

 

Working directly on binaries is harder but is more adapted:

low expressivity of
machine instructions
larger size of program
loosely typed registers
obscure structure of data
in memory
...

not mapping properties
from source to binaries
independent of compiler
available source libraries
are not required
easy injection in WCET
computation



Working on binary programs

Context 3/22

 

Working directly on binaries is harder but is more adapted:

low expressivity of
machine instructions
larger size of program
loosely typed registers
obscure structure of data
in memory
...

short-circuit condition
evaluation
if (x && a)

/* ... */
if (x && b)

/* ... */



Working on binary programs

Context 3/22

 

Working directly on binaries is harder but is more adapted:

low expressivity of
machine instructions
larger size of program
loosely typed registers
obscure structure of data
in memory
...

short-circuit condition
evaluation
if (x)

if (a)
/* ... */

if (x)
if (b)

/* ... */



Analysing the semantics of a binary program 4/22

Analysing the semantics
of abinaryprogram



Semantic instructions

Analysing the semantics of a binary program 5/22

Architecture dependent?

No!
ARMmachine instructions
ADD r3, r3, #1

STMDB sp!, {r4, lr}

OTAWA semantic instructions
seti t1, 1
add r3, r3, t1

seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
add t1, t1, t2
set r13, t3



Semantic instructions

Analysing the semantics of a binary program 5/22

Architecture dependent? No!
ARMmachine instructions
ADD r3, r3, #1

STMDB sp!, {r4, lr}

OTAWA semantic instructions
seti t1, 1
add r3, r3, t1

seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
add t1, t1, t2
set r13, t3



Semantic instructions

Analysing the semantics of a binary program 5/22

Architecture dependent? No!
ARMmachine instructions
ADD r3, r3, #1

STMDB sp!, {r4, lr}

OTAWA semantic instructions
seti t1, 1
add r3, r3, t1

seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
add t1, t1, t2
set r13, t3



Abstract interpretation

Analysing the semantics of a binary program 6/22

Maintain an abstract program state for each path
Top-to-bottom analysis
Inline calls
Program states are represented by a conjunction of
predicates

γ(
∧

φi) = {x ∈ S |
∧

φi(s)}



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 = r1

(initial state)

SP0 is the initial value of the
stack pointer

t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1

seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 = r1

t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1

add r3, r3, t1
STMDB sp!, {r4, lr}

seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 = r1
t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − t1 = r1
t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − 1 = r1
t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}

seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − 1 = r1
����t1 = 1

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8

sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − 1 = r1
t2 = 4

t1 = 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1

set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − 1 = r1
t2 = 4

t1 = SP0 − 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1

store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − 1 = r1
t2 = 4

t1 = SP0 − 8

t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64

add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 + 0

r3 − 1 = r1
t2 = 4

t1 = SP0 − 8

t3 = SP0 − 8

[SP0 − 8] = r4

[SP0 − 4] = r14



Updating the abstract program state

Analysing the semantics of a binary program 7/22

ADD r3, r3, #1
seti t1, 1
add r3, r3, t1

STMDB sp!, {r4, lr}
seti t2, 4
seti t1, 8
sub t1, r13, t1
set t3, t1
store r4, t1, int64
add t1, t1, t2
store r14, t1, int64
set r13, t3

r13 = SP0 − 8

r3 − 1 = r1
����t2 = 4

(((((((t1 = SP0 − 4

(((((((t3 = SP0 − 8

[SP0 − 8] = r4
[SP0 − 4] = r14



Finding infeasible paths 8/22

Finding infeasiblepaths



Example of infeasible path

Finding infeasible paths 9/22

Accounting for all 4 paths,
WCET = 23 cycles + ...

But:
¬(x < 10) ∧ (x < 0) |= ⊥

Without the infeasible
path, WCET = 21 cycles + ...



Predicates

Finding infeasible paths 10/22

Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1
r1 = 0



Predicates

Finding infeasible paths 10/22

Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1
r1 = 0



Predicates

Finding infeasible paths 10/22

Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1
r1 = 0

SP0 remains constant
throughout the program



Predicates

Finding infeasible paths 10/22

Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1

r1 = 0

SP0 remains constant
throughout the program



Predicates

Finding infeasible paths 10/22

Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1
r1 = 0

SP0 remains constant
throughout the program



Predicates

Finding infeasible paths 10/22

Example of a simple abstract program state:

r0 > 8

[0x8008] = 0

r13 = SP0 − 24

r0 = r1
r1 = 0

This program state is unsatisfiable!
(“UNSAT”)

⇒ The current path is infeasible
Example:
0 � 1 � 3 � 4 � 5 � 6 � 8 � 9



Labelled predicates

Finding infeasible paths 11/22

Label predicates by the basic block(s) that generated them:

r0 > 8(1,5)

[0x8008] = 0(3)

r13 = SP0 − 24(4)

r0 = [SP0 − 16](9)

[SP0 − 16] = 0(9)

Full infeasible path:
0 � 1 � 3 � 4 � 5 � 6 � 8 � 9

Minimized infeasible path:
1 � 5 � 9



Labelled predicates

Finding infeasible paths 11/22

Label predicates by the basic block(s) that generated them:

r0 > 8(1,5)

[0x8008] = 0(3)

r13 = SP0 − 24(4)

r0 = [SP0 − 16](9)

[SP0 − 16] = 0(9)

Full infeasible path:
0 � 1 � 3 � 4 � 5 � 6 � 8 � 9

Minimized infeasible path:
1 � 5 � 9



SMT solving

Finding infeasible paths 12/22

SatisfiabilityModulo Theories solver:
a SAT solver enhanced with multiple theories:

Rational/Integer/Booleans
Arrays
BitVectors
...

⇒We use Quantifier-Free Linear Integer Arithmetic

receives a list of assertions then seeks a model
(satisfiability check)



SMT solving

Finding infeasible paths 12/22

SatisfiabilityModulo Theories solver:
a SAT solver enhanced with multiple theories:

Rational/Integer/Booleans
Arrays
BitVectors
...

⇒We use Quantifier-Free Linear Integer Arithmetic
receives a list of assertions then seeks a model
(satisfiability check)



UNSAT cores

Finding infeasible paths 13/22

Some SMT solvers feature UNSAT cores:

Triggered when a system is proven
unsatisfiable
Gives a minimal set of assertions that
preserves unsatisfiability

Example:
r0 > 8
[0x8008] = 0
r13 = SP0 − 24
r0 = [SP0 − 16]
[SP0 − 16] = 0



UNSAT cores

Finding infeasible paths 13/22

Some SMT solvers feature UNSAT cores:

Triggered when a system is proven
unsatisfiable
Gives a minimal set of assertions that
preserves unsatisfiability
Example:

r0 > 8
[0x8008] = 0
r13 = SP0 − 24
r0 = [SP0 − 16]
[SP0 − 16] = 0



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”

Loops:
Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Macro analysis

Finding infeasible paths 14/22

Working List algorithm: “only process a Basic Block if all
paths leading to it have been processed”
Loops:

Iterate andmerge with previous state until fixpoint is
reached
When a fixpoint is reached, enable SMT checks to find
infeasible paths valid at every iteration



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states

Parse the loop body
normally
Thenmerge with the
previous state
Reapeat until fixpoint is
reached
Do SMT checks
Exit the loop



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states
Parse the loop body
normally

Thenmerge with the
previous state
Reapeat until fixpoint is
reached
Do SMT checks
Exit the loop



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states
Parse the loop body
normally
Thenmerge with the
previous state

Reapeat until fixpoint is
reached
Do SMT checks
Exit the loop



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states
Parse the loop body
normally
Thenmerge with the
previous state
Reapeat until fixpoint is
reached

Do SMT checks
Exit the loop



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states
Parse the loop body
normally
Thenmerge with the
previous state
Reapeat until fixpoint is
reached

Do SMT checks
Exit the loop



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states
Parse the loop body
normally
Thenmerge with the
previous state
Reapeat until fixpoint is
reached
Do SMT checks

Exit the loop



Processing loops

Finding infeasible paths 15/22

To start things off, merge
all incoming states
Parse the loop body
normally
Thenmerge with the
previous state
Reapeat until fixpoint is
reached
Do SMT checks
Exit the loop



Merging

Finding infeasible paths 16/22

A very roughmerging algorithm: predicate set intersection

r13 = SP − 4

r0 = [SP − 8]

r1 = 0

r2 = 0

[0x8008] = 16

r13 = SP − 4

r0 = [SP − 8]

r1 = 1

r2 > 0

becomes:

r13 = SP − 4

r0 = [SP − 8]



Merging

Finding infeasible paths 16/22

A very roughmerging algorithm: predicate set intersection

r13 = SP − 4

r0 = [SP − 8]

r1 = 0

r2 = 0

[0x8008] = 16

r13 = SP − 4

r0 = [SP − 8]

r1 = 1

r2 > 0

becomes:
r13 = SP − 4

r0 = [SP − 8]



Mälardalen benchmarks

Finding infeasible paths 17/22

Benchmark BB (#) Time (s) IPs found with minimization without minimization
SMALL BENCHMARKS (NO MERGING REQUIRED)

ndes 57 0.267 0 0
expint 70 0.748 14 34
edn 75 0.537 2 2
prime 118 4.368 22 43

compress 122 1.801 10 19
select 136 45.598 4 8

qsortexam 155 28.201 9 12
adpcm 323 0.074 3 3

LARGE BENCHMARKS (MERGING REQUIRED)
ud 153 17.477 6 23

minver 449 188.339 4 16
statemate 453 193.849 16 22
ludcmp 632 143.088 11 510
nsichneu 754 250.385 4586 8620

qurt 2777 773.805 3 3
lms 3098 915.434 259 2376
fft1 6123 2223.125 25 815



Conclusion 18/22

Conclusion



Closing Thoughts

Conclusion 19/22

+ Working directly on the binaries

+ Outputting short infeasible paths
Reduces complexity of analyses that exploit infeasible
paths

− Brutal state merging
− Time calculation explosion



Closing Thoughts

Conclusion 19/22

+ Working directly on the binaries
+ Outputting short infeasible paths

Reduces complexity of analyses that exploit infeasible
paths

− Brutal state merging
− Time calculation explosion



Closing Thoughts

Conclusion 19/22

+ Working directly on the binaries
+ Outputting short infeasible paths

Reduces complexity of analyses that exploit infeasible
paths

− Brutal state merging

− Time calculation explosion



Closing Thoughts

Conclusion 19/22

+ Working directly on the binaries
+ Outputting short infeasible paths

Reduces complexity of analyses that exploit infeasible
paths

− Brutal state merging
− Time calculation explosion



Futureworks

Conclusion 20/22

Program slicing

Looking for loop invariants
Experiment with other SMT theories than QF-LIA
Experimentations to estimate the impact on the WCET



Futureworks

Conclusion 20/22

Program slicing
Looking for loop invariants

Experiment with other SMT theories than QF-LIA
Experimentations to estimate the impact on the WCET



Futureworks

Conclusion 20/22

Program slicing
Looking for loop invariants
Experiment with other SMT theories than QF-LIA

Experimentations to estimate the impact on the WCET



Futureworks

Conclusion 20/22

Program slicing
Looking for loop invariants
Experiment with other SMT theories than QF-LIA
Experimentations to estimate the impact on the WCET



Questions? 21/22

Questions?



Mälardalen benchmarks

Questions? 22/22

Inf. paths found with minimization w/o minimization
Benchmark BB (#) Time (s) 1 edge Minimized Non-minimized Non-minimized

SMALL BENCHMARKS (NO MERGING REQUIRED)
ndes 57 0.267 0 0 0 0
expint 70 0.748 4 5 5 34
edn 75 0.537 2 0 0 2
prime 118 4.368 2 8 12 43

compress 122 1.801 2 8 0 19
select 136 45.598 0 4 0 8

qsortexam 155 28.201 2 4 2 12
adpcm 323 0.074 3 0 0 3

LARGE BENCHMARKS (MERGING REQUIRED)
ud 153 17.477 3 3 0 23

minver 449 188.339 4 0 0 16
statemate 453 193.849 0 16 0 22
ludcmp 632 143.088 5 6 0 510
nsichneu 754 250.385 0 1352 3234 8620

qurt 2777 773.805 3 0 0 3
lms 3098 915.434 26 22 211 2376
fft1 6123 2223.125 0 25 0 815


	Context
	Analysing the semantics of a binary program
	Finding infeasible paths
	Conclusion
	Questions?

