RWTHAACHEN
UNIVERSITY

Bare-Metal Execution of Hard Real-Time Tasks
Within a General-Purpose Operating System

Georg Wassen and Stefan Lankes

Operating Systems Research Group
7 July 2015

RWTH
Research Group Background

Foundations (Teaching)
m OS, Interrupts

m Memory Management
m Assembler (low-level)

Real-Time Parallel Systems
m Linux, RTOS m Synchronization
m Verification m Communication
m API: POSIX m Threads

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
2 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Agenda Rwillll!llll\li\éggl%\l
Motivation

Concept

Implementation

Evaluation

Conclusion

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
3 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
UNIVERSITY

Motivation

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
4 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

Application Area
Closed-Loop Control

m Given: Physical system
m Control Model

m Real-Time: Programmable
Logic Controller

metallic

Ball physical system (plant)

b

optical distance sensor

Hardware-in-the-Loop Simulation

PLC

Controller

m Validation of PLC
implementation (uC)

m When physical system not
available

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
5 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Control Application Example UNIVERSITY

Operator

1

1

Simulink Valve |!
:

1

Pressure |1

1

1

1

Temp |

B normal task |

B soft real-time | - --————- |
B hard real-time

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015 =] 5 -

RWTH
Control Application Example

Goal /Demands

m Hard real-time /O with latency below 10 us
m Soft real-time tasks requiring high compute power
m Threaded Application utilizing multiple CPUs

m Versatility: build on existing code and use available libraries

System

m Multi-processor x86 (Non-Uniform Memory Architecture)
m PCl-Express |/O adapter(s)
m Linux (C/C++, POSIX, Qt, etc.)

(Concept generally transferable to other architectures)

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
7 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
UNIVERSITY

Concept

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Hard Real-Time by Isolation UNIVERSITY

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

Load-Balancer |

| Interrupts

| CPU, || CPU; || CPU, || CPUs |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Hard Real-Time by Isolation UNIVERSITY

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

Load-Balancer |

m IRQ Affinity (to bind Interrupts)

| CPU, || CPU; || CPU, || CPUs |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Hard Real-Time by Isolation UNIVERSITY

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

Load-Balancer i

m IRQ Affinity (to bind Interrupts)
m CPU-Set (to partition CPUs)

| CPU, || CPU; || CPU, || CPUs |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Hard Real-Time by Isolation UNIVERSITY

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

[Po] [oa] [Pa] [P [P TG
Load-Balancer j

m IRQ Affinity (to bind Interrupts)
m CPU-Set (to partition CPUs)
m Isolated Task on dedicated CPU

| CPU, || CPU; || CPU, || CPUs |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Hard Real-Time by Isolation UNIVERSITY

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

m IRQ Affinity (to bind Interrupts)

m CPU-Set (to partition CPUs) - - - - -
m Isolated Task on dedicated CPU —— |

m No Syscalls, Timer deactivated I

| CPU, || CPU; || CPU, || CPUs |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Hard Real-Time by Isolation UNIVERSITY

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)

u

m CPU-Set (to partition CPUs) - - - - -
m Isolated Task on dedicated CPU
m No Syscalls, Timer deactivated
u

Direct Hardware Access (1/0) | CPUo | [cPus || cPU. || cPUs |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

m IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (1/0)

Communication via shared memory

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
UNIVERSITY

Implementation

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
10 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Preliminary Analysis UNIVERSITY

m No Modification of Linux Kernel, portable C Library
m Flexible Configuration

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
11 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Preliminary Analysis

m No Modification of Linux Kernel, portable C Library
m Flexible Configuration
m Results on Intel Corei7 (Nehalem)
- Heavy Load on Remaining Cores
(CPU, Memory, Interrupts, Fork-Bomb, etc.)
> 1h Benchmark
- Hourglass-Algorithm: RDTSC-Loop, Detecting Gaps in the Execution

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
11 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Preliminary Analysis

m No Modification of Linux Kernel, portable C Library

m Flexible Configuration
m Results on Intel Corei7 (Nehalem)
- Heavy Load on Remaining Cores
(CPU, Memory, Interrupts, Fork-Bomb, etc.)
> 1h Benchmark
- Hourglass-Algorithm: RDTSC-Loop, Detecting Gaps in the Execution
> max. Jitter: < 0,5pus (Without Load: Close to 0)

1010 [=]

10° - B

1001 - DHUDDHUHHHHHHHHQDDDDDDDDUDHDDDDDDDDQDDDDD,,

T
10 100 200 300 400 500
Latency (ns)

Events

> Impact from Shared L3 Cache, not the OS

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
11 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Bare-Metal Task in User-Mode

m Complete Isolation (no Interrupts, no Syscalls)
-> Temporal Behavior of Kernel code unpredictable
m Only Known Code
- Formal Verification Possible

m Now: Reconstruct Usability

- Synchronization, Communication
> 1/0O Access, Drivers

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

2 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

RWTHAACHEN
Trade-Off and Work-Around UNIVERSITY

m Initialization

m Inter-Process Communication

m Interrupts

m Further Operating System Services

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
13 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

Trade-Off and Work-Around

m Initialization (e.g. malloc()):

> Before (Start-up Phase)
> No Dynamic Data Structures Possible (use Ring-Buffer)

m Inter-Process Communication

m Interrupts

m Further Operating System Services

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
13 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Trade-Off and Work-Around

m Initialization (e.g. malloc()):
> Before (Start-up Phase)
> No Dynamic Data Structures Possible (use Ring-Buffer)
m Inter-Process Communication: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)

> Flag, Mutex, Barrier (Synchronization)
> Lock- and Wait-free data structures

m Interrupts

m Further Operating System Services

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
13 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Trade-Off and Work-Around

m Initialization (e.g. malloc()):
> Before (Start-up Phase)
> No Dynamic Data Structures Possible (use Ring-Buffer)
m Inter-Process Communication: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)

> Flag, Mutex, Barrier (Synchronization)
> Lock- and Wait-free data structures

m Interrupts

> Handling in User-Mode possible (Forwarding)
-> Preemptive Scheduling in Isolated Process

m Further Operating System Services

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
13 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Trade-Off and Work-Around

m Initialization (e.g. malloc()):
> Before (Start-up Phase)
> No Dynamic Data Structures Possible (use Ring-Buffer)
m Inter-Process Communication: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)

> Flag, Mutex, Barrier (Synchronization)
> Lock- and Wait-free data structures

m Interrupts

> Handling in User-Mode possible (Forwarding)
-> Preemptive Scheduling in Isolated Process

m Further Operating System Services

- Helper Process
> Error Handling (Endless Loop, Exceptions)

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
13 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Programming

For the best Performance

m Parallel Systems:

m Especially for Isolated Tasks:

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
14 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHE

N
UNIVERSITY

RWTH

Programming

For the best Performance

m Parallel Systems:

- Regard Synchronization
- Avoid False-Sharing
(C++: Where is the Data?)

m Especially for Isolated Tasks:

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
14 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

Programming

For the best Performance

m Parallel Systems:

- Regard Synchronization
- Avoid False-Sharing
(C++: Where is the Data?)

m Especially for Isolated Tasks:

- no SysCalls
(“does memcpy() contain a SysCall?")
> avoid Faults (Page, FPU, ...)

» Warm-up: Pre-Fault all Pages

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Stabilizing the System UNIVERSITY

Observation

m So far: idle System or static Load

m Under dynamic Load: System CPUs block after few Minutes

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
15 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Stabilizing the System

Observation

m So far: idle System or static Load

m Under dynamic Load: System CPUs block after few Minutes

Causes

m System Blocks: Kernel does not tolerate CPUs not responding
m Memory Consumption: Kernel Buffers not freed

-> Changes to the Kernel unavoidable

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
15 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

R\WNTH
Linux Kernel Modification

m Imitate CPU Hotplugging
- Notify subsystems, but leave one process executing
- Fixes Read-Copy-Update and Slab Kernel memory
- Fixes problems with the wall clock system

m Mask Inter-Processor Interrupts
- ldentify architectural implementation
= Asynchronous: just don’t send them
-> Waiting: skip masked CPUs

m Deactivate Timer Interrupt

- Interrupt flag must not be cleared
> Allows to recover from stuck real-time code

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
16 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

R\WNTH
Linux Kernel Modification

m Imitate CPU Hotplugging
- Notify subsystems, but leave one process executing
- Fixes Read-Copy-Update and Slab Kernel memory
- Fixes problems with the wall clock system

m Mask Inter-Processor Interrupts
- ldentify architectural implementation
= Asynchronous: just don’t send them
-> Waiting: skip masked CPUs

m Deactivate Timer Interrupt

- Interrupt flag must not be cleared
> Allows to recover from stuck real-time code

Kernel Modification
4 Files Changed.
System is stable (72h) and used in a Production Environment.

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
UNIVERSITY

Evaluation

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
17 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

L1y Cache
(CPUp)

AACHEN
UNIVERSITY
L1; Cache

(CPUy)

(B |

HBREEA
Intel: Inclusive Cache

m All Elements of L1$ also in L2$

shared
L2 Cache

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

8 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

[m]

Cache Victims

AACHEN

UNIVERSITY

L1y Cache
(CPUp)

shared

L1; Cache
L2 Cache

(CPUy)
(B | HER
Intel: Inclusive Cache

m All Elements of L1$ also in L2$

m Cache Miss: Associativity restricts Selection of L2.

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

8 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

[m]

Cache Victims

AACHEN

UNIVERSITY

L1y Cache
(CPUp)

shared

L1; Cache
L2 Cache

(CPUy)
‘ﬁ-;_
(B | EERE
Intel: Inclusive Cache

m All Elements of L1$ also in L2$

m Cache Miss: Associativity restricts Selection of L2.

m Inclusivity: Eviction from L1 of other Cores possible.

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

8 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

[m]

Cache Victims

RWNTH
L1y Cache
(CPUp)

AACHEN
UNIVERSITY
shared

L1; Cache
L2 Cache

(CPUy)
‘ﬁ-;_
(B | EERE
Intel: Inclusive Cache

m All Elements of L1$ also in L2$

m Cache Miss: Associativity restricts Selection of L2.

m Inclusivity: Eviction from L1 of other Cores possible.
m Measurable Effect (short Loop in Isolation):

- Other CPU uses small Buffer: 44 — 64 Cycles

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

8 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

[m]

Cache Victims

RWNTH
L1y Cache
(CPUp)

AACHEN
UNIVERSITY
shared

L1; Cache
L2 Cache

(CPUy)
‘ﬁ-;_
(B | EERE
Intel: Inclusive Cache

m All Elements of L1$ also in L2$

m Cache Miss: Associativity restricts Selection of L2.

m Inclusivity: Eviction from L1 of other Cores possible.
m Measurable Effect (short Loop in Isolation):

- Other CPU uses small Buffer: 44 — 64 Cycles
- Other CPU uses large Buffer: 44 — 1340 Cycles

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

8 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

[m]

Cache Victims

RWTHAACHEN
UNIVERSITY
L1y Cache L1; Cache
(CPUp) (CPUy)
‘ﬁ-'—
shared
L2 Cache . .

P

Intel: Inclusive Cache
m All Elements of L1$ also in L2$
m Cache Miss: Associativity restricts Selection of L2.

m Inclusivity: Eviction from L1 of other Cores possible.
m Measurable Effect (short Loop in Isolation):

> Other CPU uses small Buffer: 44 — 64 Cycles (@: 47 Cycles)
> Other CPU uses large Buffer: 44 — 1340 Cycles (@: 47 Cycles)

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System

8 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

[m]

Inclusive vs. Exclusive Cache

Shared L3-Cache

m Difference Inclusive/Exclusive Caching

ol I I I I I I
512B 4kiB 32kiB 256 kiB 2MiB 16MiB 128 MiB

Load

RWTH

£ ool | —— Intel Westmere
3 B 12MB L3

é oer i Inclusive Caches
Li 1000 - —=— AMD K10

: B 6MB L3

Exclusive Caches

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
19 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Uniform Memory Access UNIVERSITY

Architecture

m Intel Core, 2 x 2 x 2 CPUs
m Separate L3-Caches

m Still Influenced by Cache-Coherence Protocol

-10*
T
4 B Load Isol.

CPUg | [cPuy | [cPu, | [cPus|||[cPus]| [cPus | [cPug | [cPu;,

128kiB

4 MiB

max. Latenz in Isol
~
T
1

| I I L
4kiB 32kiB 512kiB 8 MiB

Isolation

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
20 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Non-Uniform Memory Access

Architecture

Socket 0 Socket 1

Mem ﬁ ! 4 Mem
| |

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
21 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

Non-Uniform Memory Access

Architecture

Socket 0 : Socket 1

H e et
‘LoadBu.f.@_:"’;’ .

System Partition : Real-Time Partition

m Partitioning the System by Sockets/NUMA-Nodes

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
21 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Non-Uniform Memory Access

S| lolation
10° &
ol

max. Latency (CPU Cycles)

512 MiB 32 KiB 256 kiB

Load buffer size
Isolation buffer size

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Non-Uniform 1/0 RWTHAACHEN
Full Application Example UNIVERSITY

Socket 0 E Socket 1
OS Buffers & QP| g
Mem. —— Mem.
Load Buf. E
QPI :
100
\ /0
PCle 1O |l 1/0 N—PCle
QPI* /0
ES| System 5. Hard Real-Time
Soft Real-Time ."~.,.
PCl | - uss
eg. I/
VGA = =1 NIC

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
23 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
I/O Latency
108 — T

’*P(‘ZI via Iegaq} /O ‘ |

100
104 |

- M |
10° =L

108 —

Events

. ’— PCle real-time partition ‘
10° | |

10* | :

Events

107 |- 2

100 L \ \ \ i .

Loop time (us)
Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
24 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
UNIVERSITY

Conclusion

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
25 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

Conclusion

Full Control of dedicated CPUs
Other CPUs available for remaining System

m WCET estimation of isolated CPUs (single processor like)
But still interaction through shared-memory
m Infrastructure of isolated Processes:

-> System Services replaced with Shared-Memory IPC
> HW Access via User-Mode Drivers (IN/OUT and mmap'd-1/0)
- Interrupts and Preemptive Scheduling possible

Arbitrary, flexible Partitioning
Some Modifications to the Linux Kernel Required
Transferable to Other Architectures

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
26 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Thank you for your kind attention!

Georg Wassen and Stefan Lankes — georg.wassen@rwth-aachen.de

RWTH Aachen University
Templergraben 55
52056 Aachen

www.lfbs.rwth-aachen.de

RWTHAACHEN
UNIVERSITY

www.lfbs.rwth-aachen.de

RWTHAACHEN
UNIVERSITY

Backup Figures

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
28 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Application Architecture UNIVERSITY

System Application Isolated
partition partition partitions 0—-2

Compute-intensive and

GUI

soft real-time threads

| System libraries |
|

E § Operating System _g @

o O

"m; g | | | | | | Tlu 5

v T Cy Cy Co Cs Cy Cs Ce G Cs || ™©
| ' " Shared cache ' | “Shared cache \
Memory Node Mg Memory M,

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
29 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

Mainboard

| PCle

3 =

! PCle

ICH

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
30 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
Jitter on NUMA node UNIVERSITY

10° |- | —— Load 16 KiB —=— 8 MiB —e— 512 MiB

——min. ——avg. —— max.

RA

L3%
104 [

Latency (cycles)

102 [

| |
1KiB 16 KiB 256 KiB 12 MiB 512 MiB
Isolation buffer size

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
31 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTHAACHEN
User-Mode Interrupts (UMI) UNIVERSITY

Requested Interrupts can be handled in User-Mode

Process

User-Mode

Kernel-Mode

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
User-Mode Interrupts (UMI)

Requested Interrupts can be handled in User-Mode

Process

User-Mode

Kernel-Mode

Int. Handler

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

User-Mode Interrupts (UMI)

Requested Interrupts can be handled in User-Mode

Process

User-Mode

Kernel-Mode

Int. Handler
Kernel Code

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
User-Mode Interrupts (UMI)

Requested Interrupts can be handled in User-Mode

Process

User-Mode

Kernel-Mode

Int. Handler
Kernel Code

m Own Interrupt Handler: Avoids Unknown Kernel Code

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

User-Mode Interrupts (UMI)

Requested Interrupts can be handled in User-Mode

Process

UMI Manager
User-Mode
Kernel-Mode
Int. Handler
Kernel Code

m Own Interrupt Handler: Avoids Unknown Kernel Code

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

User-Mode Interrupts (UMI)

Requested Interrupts can be handled in User-Mode

Process
Handler

UMI Manager

User-Mode

Kernel-Mode

Int. Handler
Kernel Code

to tity t3 tg ts ts t7 tg tg

const. const.

m Own Interrupt Handler: Avoids Unknown Kernel Code
m Overhead (ts — ty + t9 — tg): ca. 0.5 us (const!)

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH

User-Mode Interrupts (UMI)

Requested Interrupts can be handled in User-Mode

Process
Handler

UMI Manager

User-Mode

Kernel-Mode

Int. Handler
Kernel Code

to tity t3 tg ts ts t7 tg tg

const. const.

m Own Interrupt Handler: Avoids Unknown Kernel Code
m Overhead (ts — ty + t9 — tg): ca. 0.5 us (const!)
m Realized as Kernel Module

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
32 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
User-Mode Int. Code Example

void handler(void) {
char ¢ = IN(0x378); /x read from |/O Port x/
printf("%c\n", c); /+x process x/

}

void main (void) {
usi_register (0x71, handler);
sleep(10);
usi_restore (0x71);

}

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
33 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
Porting an Embedded RTOS

One lIsolated Process per CPU

Current Paradigm: Time-Triggered

Goal: Preemptive User-Mode Threads

- Scheduling of Multiple Tasks
> Within a UNIX Process
> Without Help/Interaction of the Operating System

Trigger: Timer Interrupt handled in User-Mode

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
34 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

RWTH
UMI Scheduler Code Example

void taskl(void) {
int i:
for (i=0; i<1000; i++) {
} //

scheduler_stop ();

}

void task2(void); /x similar x/

void main (void) {
create_task(taskl);
create_task(task2);
scheduler_start ();
/x returns after a task calls scheduler_stop() %/

}

Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
35 Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Thank you for your kind attention!

Georg Wassen and Stefan Lankes — georg.wassen@rwth-aachen.de

RWTH Aachen University
Templergraben 55
52056 Aachen

www.lfbs.rwth-aachen.de

RWTHAACHEN
UNIVERSITY

www.lfbs.rwth-aachen.de

	Title page
	Research Group Background

	Motivation
	Application Area
	Control Application Example

	Concept
	Hard Real-Time by Isolation

	Implementation
	Preliminary Analysis
	Bare-Metal Task in User-Mode
	Trade-Off and Work-Around
	Programming
	Stabilizing the System
	Linux Kernel Modification

	Evaluation
	Cache Victims
	Inclusive vs. Exclusive Cache
	Uniform Memory Access
	Non-Uniform Memory Access
	Non-Uniform I/O
	I/O Latency

	Conclusion
	Conclusion

	Appendix
	Backup Figures
	Application Architecture
	Mainboard
	Jitter on NUMA node
	User-Mode Interrupts (UMI)
	User-Mode Int. Code Example
	Porting an Embedded RTOS
	UMI Scheduler Code Example

