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Application Area
Closed-Loop Control

Given: Physical system
Control Model
Real-Time: Programmable
Logic Controller

D/AA/D

Controller+
input PLC

physical system (plant)

el. Magnet

metallic
Ball

optical distance sensor

Hardware-in-the-Loop Simulation

Validation of PLC
implementation (µC)
When physical system not
available

Controller
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+
input
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Mag.BallSensor

PLC

HiL simulator
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Control Application Example

Manager
Task

GUI

DB

Simulink

.c .so

Operator Calc.
Tasks

PLC

PLC

PLC

Valve

Pressure

Temp.
normal task
soft real-time
hard real-time
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Control Application Example

Goal/Demands

Hard real-time I/O with latency below 10µs
Soft real-time tasks requiring high compute power
Threaded Application utilizing multiple CPUs
Versatility: build on existing code and use available libraries

System

Multi-processor x86 (Non-Uniform Memory Architecture)
PCI-Express I/O adapter(s)
Linux (C/C++, POSIX, Qt, etc.)

(Concept generally transferable to other architectures)
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Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Interrupts

P0 P4P2P1 P3

Load-Balancer

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)

CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)

Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU

No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated

Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)

Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Motivation

Concept

Implementation

Evaluation

Conclusion

10 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Preliminary Analysis
No Modification of Linux Kernel, portable C Library
Flexible Configuration

Results on Intel Core i7 (Nehalem)
: Heavy Load on Remaining Cores

(CPU, Memory, Interrupts, Fork-Bomb, etc.)
: 1 h Benchmark
: Hourglass-Algorithm: rdtsc-Loop, Detecting Gaps in the Execution
: max. Jitter: < 0,5µs (Without Load: Close to 0)

10 100 200 300 400 500
100

105

1010

Latency (ns)

Ev
en
ts

: Impact from Shared L3 Cache, not the OS
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Bare-Metal Task in User-Mode

Complete Isolation (no Interrupts, no Syscalls)
: Temporal Behavior of Kernel code unpredictable

Only Known Code
: Formal Verification Possible

Now: Reconstruct Usability
: Synchronization, Communication
: I/O Access, Drivers
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Trade-Off and Work-Around

Initialization

(e. g. malloc()):
: Before (Start-up Phase)
: No Dynamic Data Structures Possible (use Ring-Buffer)

Inter-Process Communication

: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)
: Flag, Mutex, Barrier (Synchronization)
: Lock- and Wait-free data structures

Interrupts

: Handling in User-Mode possible (Forwarding)
: Preemptive Scheduling in Isolated Process

Further Operating System Services

: Helper Process
: Error Handling (Endless Loop, Exceptions)
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Programming

For the best Performance
Parallel Systems:

: Regard Synchronization
: Avoid False-Sharing

(C++: Where is the Data?)

Especially for Isolated Tasks:

: no SysCalls
(“does memcpy() contain a SysCall?”)

: avoid Faults (Page, FPU, . . . )
» Warm-up: Pre-Fault all Pages
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Stabilizing the System

Observation
So far: idle System or static Load
Under dynamic Load: System CPUs block after few Minutes

Causes
System Blocks: Kernel does not tolerate CPUs not responding
Memory Consumption: Kernel Buffers not freed

: Changes to the Kernel unavoidable
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Linux Kernel Modification
Imitate CPU Hotplugging
: Notify subsystems, but leave one process executing
: Fixes Read-Copy-Update and Slab Kernel memory
: Fixes problems with the wall clock system

Mask Inter-Processor Interrupts
: Identify architectural implementation
: Asynchronous: just don’t send them
: Waiting: skip masked CPUs

Deactivate Timer Interrupt
: Interrupt flag must not be cleared
: Allows to recover from stuck real-time code

Kernel Modification
4 Files Changed.
System is stable (72h) and used in a Production Environment.
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Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya z

yab z

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$

Cache Miss: Associativity restricts Selection of L2.
Inclusivity: Eviction from L1 of other Cores possible.

Measurable Effect (short Loop in Isolation):

: Other CPU uses small Buffer: 44 – 64 Cycles
: Other CPU uses large Buffer: 44 – 1340 Cycles
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Inclusive vs. Exclusive Cache

Shared L3-Cache
Difference Inclusive/Exclusive Caching

512B 4 kiB 32 kiB 256 kiB 2MiB 16MiB 128MiB
0

1 000

2 000

3 000

Load
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ax
.
La

te
nc
y
in

Iso
la
tio

n Intel Westmere
12MB L3
Inclusive Caches
AMD K10
6MB L3
Exclusive Caches
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Uniform Memory Access

Architecture
Intel Core, 2 × 2 × 2 CPUs
Separate L3-Caches
Still Influenced by Cache-Coherence Protocol

4 kiB 32 kiB 512 kiB 8MiB

0

2

4

·104

Isolation

m
ax
.
La

te
nz

in
Is
ol
.

shared Cache shared Cache shared Cache shared Cache

Memory

Cache
CPU0

Cache
CPU1

Cache
CPU2

Cache
CPU3

Cache
CPU4

Cache
CPU5

Cache
CPU6

Cache
CPU7

128 kiB

4MiB

Isol.Load
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Non-Uniform Memory Access

Architecture

C0 C2C1

C3 C5C4

Socket 0

C6 C8C7

C9 C10C11

Socket 1

QPI
Mem. Mem.

Partitioning the System by Sockets/NUMA-Nodes
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Non-Uniform Memory Access

32 kiB
256 kiB
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Non-Uniform I/O
Full Application Example

C0 C2C1

C3 C5C4

Socket 0

C6 C8C7

C9 C10C11

Socket 1

I/O

IO 0

I/O

IO 1

QPI

QPI

QPI

QPI

leg. I/O

ESI

Mem. Mem.

PCIe PCIe

PCI

VGA

USB

NIC

System
Soft Real-Time

Hard Real-Time

Load Buf.
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ad
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OS Buffers
OS

USB

NICVGA

GU
I

Isol. Buf.

I/O

I/O
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I/O Latency
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Conclusion

Full Control of dedicated CPUs
Other CPUs available for remaining System
WCET estimation of isolated CPUs (single processor like)
But still interaction through shared-memory
Infrastructure of isolated Processes:
: System Services replaced with Shared-Memory IPC
: HW Access via User-Mode Drivers (in/out and mmap’d-I/O)
: Interrupts and Preemptive Scheduling possible

Arbitrary, flexible Partitioning
Some Modifications to the Linux Kernel Required
Transferable to Other Architectures
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Application Architecture
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Mainboard
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Jitter on NUMA node
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User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

const.

Process

Own Interrupt Handler: Avoids Unknown Kernel Code
Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module
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User-Mode Int. Code Example

void hand l e r ( void ) {
char c = IN (0 x378 ) ; /∗ r ead from I /O Port ∗/
p r i n t f ( "%c\n" , c ) ; /∗ p r o c e s s ∗/

}

void main ( void ) {
u s i _ r e g i s t e r (0 x71 , h and l e r ) ;
s l e e p ( 1 0 ) ;
u s i _ r e s t o r e (0 x71 ) ;

}
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Porting an Embedded RTOS

One Isolated Process per CPU
Current Paradigm: Time-Triggered
Goal: Preemptive User-Mode Threads
: Scheduling of Multiple Tasks
: Within a UNIX Process
: Without Help/Interaction of the Operating System

Trigger: Timer Interrupt handled in User-Mode
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UMI Scheduler Code Example
void t a sk1 ( void ) {

i n t i ;
f o r ( i =0; i <1000; i++) {

// . . .
}
s ch edu l e r_ s t op ( ) ;

}
void t a sk2 ( void ) ; /∗ s i m i l a r ∗/

void main ( void ) {
c r e a t e_ t a s k ( t a sk1 ) ;
c r e a t e_ t a s k ( t a sk2 ) ;
s c h e d u l e r _ s t a r t ( ) ;
/∗ r e t u r n s a f t e r a t a s k c a l l s s c h e d u l e r _ s t o p ( ) ∗/

}

35 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015



Thank you for your kind attention!

Georg Wassen and Stefan Lankes – georg.wassen@rwth-aachen.de

RWTH Aachen University
Templergraben 55
52056 Aachen

www.lfbs.rwth-aachen.de

www.lfbs.rwth-aachen.de

	Title page
	Research Group Background

	Motivation
	Application Area
	Control Application Example

	Concept
	Hard Real-Time by Isolation

	Implementation
	Preliminary Analysis
	Bare-Metal Task in User-Mode
	Trade-Off and Work-Around
	Programming
	Stabilizing the System
	Linux Kernel Modification

	Evaluation
	Cache Victims
	Inclusive vs. Exclusive Cache
	Uniform Memory Access
	Non-Uniform Memory Access
	Non-Uniform I/O
	I/O Latency

	Conclusion
	Conclusion

	Appendix
	Backup Figures
	Application Architecture
	Mainboard
	Jitter on NUMA node
	User-Mode Interrupts (UMI)
	User-Mode Int. Code Example
	Porting an Embedded RTOS
	UMI Scheduler Code Example



