
Bare-Metal Execution of Hard Real-Time Tasks
Within a General-Purpose Operating System

Georg Wassen and Stefan Lankes

Operating Systems Research Group
7 July 2015

Research Group Background
Foundations (Teaching)

OS, Interrupts
Memory Management
Assembler (low-level)

Real-Time
Linux, RTOS
Verification
API: POSIX

Parallel Systems
Synchronization
Communication
Threads

x86

2 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Agenda

Motivation

Concept

Implementation

Evaluation

Conclusion

3 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Motivation

Concept

Implementation

Evaluation

Conclusion

4 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Application Area
Closed-Loop Control

Given: Physical system
Control Model
Real-Time: Programmable
Logic Controller

D/AA/D

Controller+
input PLC

physical system (plant)

el. Magnet

metallic
Ball

optical distance sensor

Hardware-in-the-Loop Simulation

Validation of PLC
implementation (µC)
When physical system not
available

Controller

D/AA/D

+
input

A/DD/A

Mag.BallSensor

PLC

HiL simulator

5 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Control Application Example

Manager
Task

GUI

DB

Simulink

.c .so

Operator Calc.
Tasks

PLC

PLC

PLC

Valve

Pressure

Temp.
normal task
soft real-time
hard real-time

6 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Control Application Example

Goal/Demands

Hard real-time I/O with latency below 10µs
Soft real-time tasks requiring high compute power
Threaded Application utilizing multiple CPUs
Versatility: build on existing code and use available libraries

System

Multi-processor x86 (Non-Uniform Memory Architecture)
PCI-Express I/O adapter(s)
Linux (C/C++, POSIX, Qt, etc.)

(Concept generally transferable to other architectures)

7 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Motivation

Concept

Implementation

Evaluation

Conclusion

8 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Interrupts

P0 P4P2P1 P3

Load-Balancer

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)

CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)

Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU

No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated

Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)

Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Hard Real-Time by Isolation

Concept of Bare-Metal Tasks
Multi-Processor System with Standard Operating System (GPOS)

IRQ Affinity (to bind Interrupts)
CPU-Set (to partition CPUs)
Isolated Task on dedicated CPU
No Syscalls, Timer deactivated
Direct Hardware Access (I/O)
Communication via shared memory

CPU0 CPU1 CPU2 CPU3

GPOS
Int.

P0 P4P2P1 P3

Load-Balancer

isol. T

Verification of Real-Time (Scheduling)
Analogy: Bare-Metal Execution on Single-Processor System

9 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Motivation

Concept

Implementation

Evaluation

Conclusion

10 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Preliminary Analysis
No Modification of Linux Kernel, portable C Library
Flexible Configuration

Results on Intel Core i7 (Nehalem)
: Heavy Load on Remaining Cores

(CPU, Memory, Interrupts, Fork-Bomb, etc.)
: 1 h Benchmark
: Hourglass-Algorithm: rdtsc-Loop, Detecting Gaps in the Execution
: max. Jitter: < 0,5µs (Without Load: Close to 0)

10 100 200 300 400 500
100

105

1010

Latency (ns)

Ev
en
ts

: Impact from Shared L3 Cache, not the OS

11 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Preliminary Analysis
No Modification of Linux Kernel, portable C Library
Flexible Configuration
Results on Intel Core i7 (Nehalem)
: Heavy Load on Remaining Cores

(CPU, Memory, Interrupts, Fork-Bomb, etc.)
: 1 h Benchmark
: Hourglass-Algorithm: rdtsc-Loop, Detecting Gaps in the Execution

: max. Jitter: < 0,5µs (Without Load: Close to 0)

10 100 200 300 400 500
100

105

1010

Latency (ns)

Ev
en
ts

: Impact from Shared L3 Cache, not the OS

11 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Preliminary Analysis
No Modification of Linux Kernel, portable C Library
Flexible Configuration
Results on Intel Core i7 (Nehalem)
: Heavy Load on Remaining Cores

(CPU, Memory, Interrupts, Fork-Bomb, etc.)
: 1 h Benchmark
: Hourglass-Algorithm: rdtsc-Loop, Detecting Gaps in the Execution
: max. Jitter: < 0,5µs (Without Load: Close to 0)

10 100 200 300 400 500
100

105

1010

Latency (ns)

Ev
en
ts

: Impact from Shared L3 Cache, not the OS

11 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Bare-Metal Task in User-Mode

Complete Isolation (no Interrupts, no Syscalls)
: Temporal Behavior of Kernel code unpredictable

Only Known Code
: Formal Verification Possible

Now: Reconstruct Usability
: Synchronization, Communication
: I/O Access, Drivers

12 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Trade-Off and Work-Around

Initialization

(e. g. malloc()):
: Before (Start-up Phase)
: No Dynamic Data Structures Possible (use Ring-Buffer)

Inter-Process Communication

: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)
: Flag, Mutex, Barrier (Synchronization)
: Lock- and Wait-free data structures

Interrupts

: Handling in User-Mode possible (Forwarding)
: Preemptive Scheduling in Isolated Process

Further Operating System Services

: Helper Process
: Error Handling (Endless Loop, Exceptions)

13 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Trade-Off and Work-Around

Initialization (e. g. malloc()):
: Before (Start-up Phase)
: No Dynamic Data Structures Possible (use Ring-Buffer)

Inter-Process Communication

: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)
: Flag, Mutex, Barrier (Synchronization)
: Lock- and Wait-free data structures

Interrupts

: Handling in User-Mode possible (Forwarding)
: Preemptive Scheduling in Isolated Process

Further Operating System Services

: Helper Process
: Error Handling (Endless Loop, Exceptions)

13 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Trade-Off and Work-Around

Initialization (e. g. malloc()):
: Before (Start-up Phase)
: No Dynamic Data Structures Possible (use Ring-Buffer)

Inter-Process Communication: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)
: Flag, Mutex, Barrier (Synchronization)
: Lock- and Wait-free data structures

Interrupts

: Handling in User-Mode possible (Forwarding)
: Preemptive Scheduling in Isolated Process

Further Operating System Services

: Helper Process
: Error Handling (Endless Loop, Exceptions)

13 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Trade-Off and Work-Around

Initialization (e. g. malloc()):
: Before (Start-up Phase)
: No Dynamic Data Structures Possible (use Ring-Buffer)

Inter-Process Communication: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)
: Flag, Mutex, Barrier (Synchronization)
: Lock- and Wait-free data structures

Interrupts
: Handling in User-Mode possible (Forwarding)
: Preemptive Scheduling in Isolated Process

Further Operating System Services

: Helper Process
: Error Handling (Endless Loop, Exceptions)

13 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Trade-Off and Work-Around

Initialization (e. g. malloc()):
: Before (Start-up Phase)
: No Dynamic Data Structures Possible (use Ring-Buffer)

Inter-Process Communication: based on Shared-Memory
(User-Mode: Atomic Operations and Active Waiting)
: Flag, Mutex, Barrier (Synchronization)
: Lock- and Wait-free data structures

Interrupts
: Handling in User-Mode possible (Forwarding)
: Preemptive Scheduling in Isolated Process

Further Operating System Services
: Helper Process
: Error Handling (Endless Loop, Exceptions)

13 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Programming

For the best Performance
Parallel Systems:

: Regard Synchronization
: Avoid False-Sharing

(C++: Where is the Data?)

Especially for Isolated Tasks:

: no SysCalls
(“does memcpy() contain a SysCall?”)

: avoid Faults (Page, FPU, . . .)
» Warm-up: Pre-Fault all Pages

14 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Programming

For the best Performance
Parallel Systems:
: Regard Synchronization
: Avoid False-Sharing

(C++: Where is the Data?)
Especially for Isolated Tasks:

: no SysCalls
(“does memcpy() contain a SysCall?”)

: avoid Faults (Page, FPU, . . .)
» Warm-up: Pre-Fault all Pages

14 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Programming

For the best Performance
Parallel Systems:
: Regard Synchronization
: Avoid False-Sharing

(C++: Where is the Data?)
Especially for Isolated Tasks:
: no SysCalls

(“does memcpy() contain a SysCall?”)
: avoid Faults (Page, FPU, . . .)

» Warm-up: Pre-Fault all Pages

14 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Stabilizing the System

Observation
So far: idle System or static Load
Under dynamic Load: System CPUs block after few Minutes

Causes
System Blocks: Kernel does not tolerate CPUs not responding
Memory Consumption: Kernel Buffers not freed

: Changes to the Kernel unavoidable

15 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Stabilizing the System

Observation
So far: idle System or static Load
Under dynamic Load: System CPUs block after few Minutes

Causes
System Blocks: Kernel does not tolerate CPUs not responding
Memory Consumption: Kernel Buffers not freed

: Changes to the Kernel unavoidable

15 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Linux Kernel Modification
Imitate CPU Hotplugging
: Notify subsystems, but leave one process executing
: Fixes Read-Copy-Update and Slab Kernel memory
: Fixes problems with the wall clock system

Mask Inter-Processor Interrupts
: Identify architectural implementation
: Asynchronous: just don’t send them
: Waiting: skip masked CPUs

Deactivate Timer Interrupt
: Interrupt flag must not be cleared
: Allows to recover from stuck real-time code

Kernel Modification
4 Files Changed.
System is stable (72h) and used in a Production Environment.

16 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Linux Kernel Modification
Imitate CPU Hotplugging
: Notify subsystems, but leave one process executing
: Fixes Read-Copy-Update and Slab Kernel memory
: Fixes problems with the wall clock system

Mask Inter-Processor Interrupts
: Identify architectural implementation
: Asynchronous: just don’t send them
: Waiting: skip masked CPUs

Deactivate Timer Interrupt
: Interrupt flag must not be cleared
: Allows to recover from stuck real-time code

Kernel Modification
4 Files Changed.
System is stable (72h) and used in a Production Environment.

16 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Motivation

Concept

Implementation

Evaluation

Conclusion

17 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya z

yab z

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$

Cache Miss: Associativity restricts Selection of L2.
Inclusivity: Eviction from L1 of other Cores possible.

Measurable Effect (short Loop in Isolation):

: Other CPU uses small Buffer: 44 – 64 Cycles
: Other CPU uses large Buffer: 44 – 1340 Cycles

18 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya z

yab z

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$
Cache Miss: Associativity restricts Selection of L2.

Inclusivity: Eviction from L1 of other Cores possible.
Measurable Effect (short Loop in Isolation):

: Other CPU uses small Buffer: 44 – 64 Cycles
: Other CPU uses large Buffer: 44 – 1340 Cycles

18 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya

yab

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$
Cache Miss: Associativity restricts Selection of L2.
Inclusivity: Eviction from L1 of other Cores possible.

Measurable Effect (short Loop in Isolation):

: Other CPU uses small Buffer: 44 – 64 Cycles
: Other CPU uses large Buffer: 44 – 1340 Cycles

18 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya

yab

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$
Cache Miss: Associativity restricts Selection of L2.
Inclusivity: Eviction from L1 of other Cores possible.
Measurable Effect (short Loop in Isolation):
: Other CPU uses small Buffer: 44 – 64 Cycles

: Other CPU uses large Buffer: 44 – 1340 Cycles

18 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya

yab

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$
Cache Miss: Associativity restricts Selection of L2.
Inclusivity: Eviction from L1 of other Cores possible.
Measurable Effect (short Loop in Isolation):
: Other CPU uses small Buffer: 44 – 64 Cycles
: Other CPU uses large Buffer: 44 – 1340 Cycles

18 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Cache Victims

shared
L2 Cache

L10 Cache
(CPU0)

L11 Cache
(CPU1)ba ya

yab

L10.0 L10.1 L10.2 L11.0 L11.1 L11.2

L2.0 L2.1 L2.2 L2.3 L2.4 L2.5 L2.6 L2.7 L2.8

Intel: Inclusive Cache
All Elements of L1$ also in L2$
Cache Miss: Associativity restricts Selection of L2.
Inclusivity: Eviction from L1 of other Cores possible.
Measurable Effect (short Loop in Isolation):
: Other CPU uses small Buffer: 44 – 64 Cycles (Ø: 47 Cycles)
: Other CPU uses large Buffer: 44 – 1340 Cycles (Ø: 47 Cycles)

18 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Inclusive vs. Exclusive Cache

Shared L3-Cache
Difference Inclusive/Exclusive Caching

512B 4 kiB 32 kiB 256 kiB 2MiB 16MiB 128MiB
0

1 000

2 000

3 000

Load

m
ax
.
La

te
nc
y
in

Iso
la
tio

n Intel Westmere
12MB L3
Inclusive Caches
AMD K10
6MB L3
Exclusive Caches

19 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Uniform Memory Access

Architecture
Intel Core, 2 × 2 × 2 CPUs
Separate L3-Caches
Still Influenced by Cache-Coherence Protocol

4 kiB 32 kiB 512 kiB 8MiB

0

2

4

·104

Isolation

m
ax
.
La

te
nz

in
Is
ol
.

shared Cache shared Cache shared Cache shared Cache

Memory

Cache
CPU0

Cache
CPU1

Cache
CPU2

Cache
CPU3

Cache
CPU4

Cache
CPU5

Cache
CPU6

Cache
CPU7

128 kiB

4MiB

Isol.Load

20 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Non-Uniform Memory Access

Architecture

C0 C2C1

C3 C5C4

Socket 0

C6 C8C7

C9 C10C11

Socket 1

QPI
Mem. Mem.

Partitioning the System by Sockets/NUMA-Nodes

21 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Non-Uniform Memory Access

Architecture

C0 C2C1

C3 C5C4

Socket 0

C6 C8C7

C9 C10C11

Socket 1

QPI
Mem. Mem.

OS
OS Buf.

Lo
ad

Load Buf.

Iso
l. Isol. Buf.

System Partition Real-Time Partition

Partitioning the System by Sockets/NUMA-Nodes

21 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Non-Uniform Memory Access

32 kiB
256 kiB

12MiB
512MiB 32 kiB 256 kiB

12MiB
512MiB

102

103

104

105

106

Load buffer size
Isolation buffer size

m
ax
.
La

te
nc
y
(C

PU
Cy

cle
s)

Isolation writes

Isolation reads

22 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Non-Uniform I/O
Full Application Example

C0 C2C1

C3 C5C4

Socket 0

C6 C8C7

C9 C10C11

Socket 1

I/O

IO 0

I/O

IO 1

QPI

QPI

QPI

QPI

leg. I/O

ESI

Mem. Mem.

PCIe PCIe

PCI

VGA

USB

NIC

System
Soft Real-Time

Hard Real-Time

Load Buf.

Lo
ad

Lo
ad

Lo
ad

Lo
ad

OS Buffers
OS

USB

NICVGA

GU
I

Isol. Buf.

I/O

I/O

Iso
l.

Iso
l.

Iso
l.

23 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

I/O Latency

100
102
104
106
108

Ev
en
ts

PCI via legacy I/O

1 2 3 4 5 6
100
102
104
106
108

Loop time (µs)

Ev
en
ts

PCIe real-time partition

24 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Motivation

Concept

Implementation

Evaluation

Conclusion

25 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Conclusion

Full Control of dedicated CPUs
Other CPUs available for remaining System
WCET estimation of isolated CPUs (single processor like)
But still interaction through shared-memory
Infrastructure of isolated Processes:
: System Services replaced with Shared-Memory IPC
: HW Access via User-Mode Drivers (in/out and mmap’d-I/O)
: Interrupts and Preemptive Scheduling possible

Arbitrary, flexible Partitioning
Some Modifications to the Linux Kernel Required
Transferable to Other Architectures

26 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Thank you for your kind attention!

Georg Wassen and Stefan Lankes – georg.wassen@rwth-aachen.de

RWTH Aachen University
Templergraben 55
52056 Aachen

www.lfbs.rwth-aachen.de

www.lfbs.rwth-aachen.de

Backup Figures

28 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Application Architecture

C0 C1 C2 C3 C4 C5 C6 C7 C8

Operating System

System libraries

O
S

se
rv
ice

s

GU
I Compute-intensive and

soft real-time threads

PL
C 0

PL
C 1

PL
C 2

Sy
st
em

de
vi
ce
s

Re
al
-t
im

e
de
vi
ce
s

Shared cache Shared cache

Memory Node M0 Memory M1IPC

System
partition

Application
partition

Isolated
partitions 0–2

29 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Mainboard

ICH

C0 C5

MC ICC0

L3$

C6 C11

ICC1 MC

L3$

PCIe
ICC3 ICC2

PCIe

M0 M1

PCIe

PCIe

PCIe

PCIe

PCI

VGA

USB

NIC

IOH IOH

30 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Jitter on NUMA node

1KiB 16KiB 256KiB 12MiB 512MiB

102

104

106

L3$ RAM

Isolation buffer size

La
te
nc
y
(c
yc
les

) Load 16KiB 8MiB 512MiB
min. avg. max.

31 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

const.

Process

Own Interrupt Handler: Avoids Unknown Kernel Code
Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

const.

Process

Int. Handler

Own Interrupt Handler: Avoids Unknown Kernel Code
Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

const.

Process

Int. Handler
Kernel Code

Own Interrupt Handler: Avoids Unknown Kernel Code
Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

const.

Process

Int. Handler
Kernel Code

Own Interrupt Handler: Avoids Unknown Kernel Code

Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

const.

Process

UMI Manager

Int. Handler
Kernel Code

Own Interrupt Handler: Avoids Unknown Kernel Code

Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
const. const.

Process
Handler

UMI Manager

Int. Handler
Kernel Code

Own Interrupt Handler: Avoids Unknown Kernel Code
Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)

Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Interrupts (UMI)
Requested Interrupts can be handled in User-Mode

t

Kernel-Mode

User-Mode

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
const. const.

Process
Handler

UMI Manager

Int. Handler
Kernel Code

Own Interrupt Handler: Avoids Unknown Kernel Code
Overhead (t5 − t0 + t9 − t6): ca. 0.5µs (const!)
Realized as Kernel Module

32 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

User-Mode Int. Code Example

void hand l e r (void) {
char c = IN (0 x378) ; /∗ r ead from I /O Port ∗/
p r i n t f ("%c\n" , c) ; /∗ p r o c e s s ∗/

}

void main (void) {
u s i _ r e g i s t e r (0 x71 , h and l e r) ;
s l e e p (1 0) ;
u s i _ r e s t o r e (0 x71) ;

}

33 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Porting an Embedded RTOS

One Isolated Process per CPU
Current Paradigm: Time-Triggered
Goal: Preemptive User-Mode Threads
: Scheduling of Multiple Tasks
: Within a UNIX Process
: Without Help/Interaction of the Operating System

Trigger: Timer Interrupt handled in User-Mode

34 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

UMI Scheduler Code Example
void t a sk1 (void) {

i n t i ;
f o r (i =0; i <1000; i++) {

// . . .
}
s ch edu l e r_ s t op () ;

}
void t a sk2 (void) ; /∗ s i m i l a r ∗/

void main (void) {
c r e a t e_ t a s k (t a sk1) ;
c r e a t e_ t a s k (t a sk2) ;
s c h e d u l e r _ s t a r t () ;
/∗ r e t u r n s a f t e r a t a s k c a l l s s c h e d u l e r _ s t o p () ∗/

}

35 Bare-Metal Execution of Hard Real-Time Tasks Within a General-Purpose Operating System
Georg Wassen and Stefan Lankes | Operating Systems Research Group | 7 July 2015

Thank you for your kind attention!

Georg Wassen and Stefan Lankes – georg.wassen@rwth-aachen.de

RWTH Aachen University
Templergraben 55
52056 Aachen

www.lfbs.rwth-aachen.de

www.lfbs.rwth-aachen.de

	Title page
	Research Group Background

	Motivation
	Application Area
	Control Application Example

	Concept
	Hard Real-Time by Isolation

	Implementation
	Preliminary Analysis
	Bare-Metal Task in User-Mode
	Trade-Off and Work-Around
	Programming
	Stabilizing the System
	Linux Kernel Modification

	Evaluation
	Cache Victims
	Inclusive vs. Exclusive Cache
	Uniform Memory Access
	Non-Uniform Memory Access
	Non-Uniform I/O
	I/O Latency

	Conclusion
	Conclusion

	Appendix
	Backup Figures
	Application Architecture
	Mainboard
	Jitter on NUMA node
	User-Mode Interrupts (UMI)
	User-Mode Int. Code Example
	Porting an Embedded RTOS
	UMI Scheduler Code Example

