
WCET 2015, Lund, 2015-07-07 page 1

WCET'2015

Analysing Switch-Case Code

with Abstract Execution

Niklas Holsti Jan Gustafsson, Linus Källberg, Björn Lisper

Tidorum Ltd

Finland

School of Innovation Design and Engineering
Mälardalen University

Västerås, Sweden

Tid
rum

APARTS

WCET 2015, Lund, 2015-07-07 page 2

Context and contribution

● Recovering the Control Flow Graph from machine code

● Applications:
– WCET analysis in the traditional way
– other analyses starting from machine code

● Particular problem: Dynamic Transfer of Control (DTC)
– call or jump to dynamically computed code address
– in particular from switch-case statements

● switch-case DTC is amenable to local analysis
● but hard to handle by annotations

● Contributions:
– apply Abstract Execution analysis to DTC
– evaluate Circular Linear Progression (CLP) domain
– combine two analysis tools: Bound-T and SWEET
– compare DTC analysis methods: patterns vs value analysis

WCET 2015, Lund, 2015-07-07 page 3

From binary file to control-flow graph

Binary
memory
image

Start
address

Control-
flow

graph

WCET
analysis

Problem: dynamic transfer of control, DTC
for example jump via register

? ?

WCET 2015, Lund, 2015-07-07 page 4

The "trivial" problem

● DTC makes it hard:
– to get the control flow graph (CFG) from machine code
– or even to find all the code to be analysed

● Switch-case code often compiles into DTC

– trivial: the compiler usually knows the DTC targets

– non-trivial: the compiler seldom tells us what it knows

– complex: wide variety of machine-code forms

● Many library functions use switch-case DTC
– sometimes hand-written, tricky assembler

⇒ Switch-case DTC must be solved by analysis

WCET 2015, Lund, 2015-07-07 page 5

Overview

● Switch-case analysis methods, their good and their bad
– code-pattern matching
– value analysis

● Our study questions and methods

● Our analysis tools
– Bound-T
– SWEET
– and their combination

● Our example programs = test cases

● Discussion: what worked, what didn't, and why

● Conclusions

WCET 2015, Lund, 2015-07-07 page 6

Pattern-matching vs. value-analysis

● Pattern-matching approach:
– compiled switch-case DTC code uses small set of code idioms

● directly indexed address table (dense case numbering)
● look-up table, value ⇒ address (sparse numbering)

– tool detects target- & compiler-specific code patterns
● pattern-specific rules or analysis finds DTC targets

● Value-analysis approach:
– get DTC target addresses from a general value analysis
– set of values usually small, but irregular; often from a table
– need highly accurate value analysis

● small over-estimation ⇒ big change in CFG

– circular problem ⇒ iterative analysis
● value analysis depends on CFG
● CFG depends on the analysis of DTC

WCET 2015, Lund, 2015-07-07 page 7

Example: "dense address table" as pattern

switch (i) {
case 0 : foo(i+2);
case 1 : ...
... // cases 2 .. 12
case 13 : ...
default : log_err(x);
}

 Source (C)

Code (pseudo)

1. Aha, a DTC!

134 r1 := <computed>

135 cmp r1,13 (unsigned)

136 if r1>13 jump 204

137 r2 := mem[347+r1]

138 jump via r2
2. Aha, target address

table starts at 347!

3. Aha, there are 14
target addresses!

4. (Aha, default case
is at address 204!)

Results of pattern match:

- this is DTC from switch-case

- dense numbering of cases 0 .. 13

- case-code addresses in 14-entry
table at data address 347

- (default case at code address 204)

WCET 2015, Lund, 2015-07-07 page 8

Example: "dense address table" value-analysis

switch (i) {
case 0 : foo(i+2);
case 1 : ...
... // cases 2 .. 12
case 13 : ...
default : log_err(x);
}

 Source (C)

Code (pseudo)

DTC targets = values of r2

134 r1 := <computed>

135 cmp r1,13 (unsigned)

136 if r1>13 jump 204

137 r2 := mem[347+r1]

138 jump via r2

Mem address in 347 .. 360
At 138, r2 in (mem content values)

At 137, (unsigned) r1 in 0 .. 13

Results of value analysis:

- DTC target addresses = values in
memory locations 347 .. 360

- possibly further restricted by value
constraints on the <computed>
value of r1 at code address 134

- possibly distorted by over-
estimations in value analysis

WCET 2015, Lund, 2015-07-07 page 9

Value-analysis complications...

Code (pseudo)
134 r1 := <computed>

135 cmp r1,13 (unsigned)

136 if r1>13 jump 204

137 r1 := 2 * r1

138 r2 := mem[347+r1]

139 jump via r2

● Code address usually 16 or 32 bits

● Memory addressing unit is usually 8 bits
– therefore, case-index is multiplied by 2 or 4 in table access

Assume code address is 16 bits,
memory unit is 8 bits

WCET 2015, Lund, 2015-07-07 page 10

Value-analysis complications...

Code (pseudo)

DTC targets = values of r2

134 r1 := <computed>

135 cmp r1,13 (unsigned)

136 if r1>13 jump 204

137 r1 := 2 * r1

138 r2 := mem[347+r1]

139 jump via r2

Mem address in 347 .. 373
At 139, r2 in (mem content values)

At 137, (unsigned) r1 in 0 .. 13

At 138, (unsigned) r1 in 0 .. 26

● Code address usually 16 or 32 bits

● Memory addressing unit is usually 8 bits
– therefore, case-index is multiplied by 2 or 4 in table access

WCET 2015, Lund, 2015-07-07 page 11

Value-analysis complications : strides

Address Table (assume little-endian, Ai = address of case i)

347 A0 low octet = 147

348 A0 high octet = 0

349 A1 low octet = 202

350 A1 high octet = 0

...

372 A12 high octet = 1

373 A13 low octet = 158

374 A13 high octet = 1

 147= A0

● The interval 0 .. 26 overestimates the product 2*r1
– if congruence (stride) is not included in abstract domain

● Precise value set for 2*r1 is "0 .. 26 with stride 2"; a CLP

202 = A1

414 = A13

Even table offset
= valid address

Odd table offset
= spurious address

Spurious address:
- low octet = 0
- high octet = 202
value = 51712

WCET 2015, Lund, 2015-07-07 page 12

Iterative CFG construction - 1

CFG vs 1

?

WCET 2015, Lund, 2015-07-07 page 13

Iterative CFG construction - 2

CFG vs 1

?

CFG vs 2

Analyse DTC

WCET 2015, Lund, 2015-07-07 page 14

Iterative CFG construction - 3

CFG vs 1

?

CFG vs 2

Analyse DTC

WCET 2015, Lund, 2015-07-07 page 15

Iterative CFG construction - 4

CFG vs 1

?

CFG vs 2

?

Analyse DTC

WCET 2015, Lund, 2015-07-07 page 16

Iterative CFG construction - 5

CFG vs 1

?

CFG vs 2

?

Analyse DTC

WCET 2015, Lund, 2015-07-07 page 17

Iterative CFG construction - 6

CFG vs 1

?

CFG vs 2

?

Analyse DTC

CFG vs 3 (final)

Analyse DTC

WCET 2015, Lund, 2015-07-07 page 18

Study questions and methods

● Questions: given a very accurate value-analysis,
– here: SWEET Abstract Execution with CLP and no merge,
– can it handle tricky switch-case DTC code?
– can it work as well as the pattern-based method?
– or, are the two methods complementary?

● Study methods:
– apply both analyses to set of examples/benchmarks
– compare success/failure rate
– understand success/failure reasons in detail

● Modular combination of two analysis tools
– machine code ⇒ Bound-T ⇒ (ALF code) SWEET

– SWEET results ⇒ Bound-T ⇒ (more ALF) SWEET ...

● Target: Atmel AVR, 8/16-bit microcontroller

WCET 2015, Lund, 2015-07-07 page 19

Our tools: Bound-T and SWEET

● Bound-T: a traditional static WCET tool from Tidorum Ltd
– input machine code, construct CFG, compute WCET bound

● Bound-T DTC analysis: code patterns guide other analyses
– dense table indices: Presburger Arithmetic value analysis
– sparse look-up tables: partial evaluation [7]

● SWEET: multi-purpose tool from Mälardalen University
– input program in ALF language
– value analysis with Abstract Interpretation (AI)
– value and control-flow analysis with Abstract Execution (AE)
– some kinds of WCET analysis (not used in this work)

● SWEET value-analysis domains:
– Intervals with Wrap-Around, finite-width integers (IWA)
– Circular Linear Progressions (CLP)
– polyhedra (not used here)

WCET 2015, Lund, 2015-07-07 page 20

Abstract Execution in SWEET

● Abstract Execution (J. Gustafsson et al.) is a form of AI, but
– does not use widening to force convergence

● thus risks non-termination of analysis

– records control flow, including loop iterations
● produces loop bounds, feasible/infeasible paths, ...

– allows control of value merging at control-flow join points
– "no merge" converts domain to powerset of domain

● interval ⇒ set of intervals
● CLP ⇒ set of CLPs

● "no merge" is feasible for local analyses
– switch-case DTC-analysis is local
– general function-pointer analysis is global

● AE can use any domain supported by SWEET
– here: either IWA or CLP

WCET 2015, Lund, 2015-07-07 page 21

Tool combination and iteration

ALF code

Machine
code

Bound-T

User's
assertions

Assertion
set

Output-
annotation

specs

Annotations

Output
annotations SWEET

Internal
program
model

Other
analyses

New
DTC

targets

Instruction
decoding

Further
analyses

Value analysis by
Abstract Execution;

IWA or CLP

WCET 2015, Lund, 2015-07-07 page 22

Examples/benchmarks

● Selected from Bound-T test suite
– most forms of switch-case DTC Tidorum has seen
– focus on machine-code form, not source-code form
– small, because analysis is local

● P1: dense cases: indexed jump into table of jumps

● P2: dense cases: get address from table, jump to it

● P3: sparse cases: look-up table from ref. [7]

● P4: sparse cases: look-up table from IAR compiler

● P5: dense cases: look-up table from IAR compiler

● P6: two-index switch-case, 4 x 4, 16-entry address table

● P7: variant of P6 with different code

WCET 2015, Lund, 2015-07-07 page 23

Result summary

Program Bound-T SWEET IWA SWEET CLP

P1 Exact result, but
needs annotation Exact result Exact result

P2 Fail Fail Fail

P3 Fail Exact result Exact result

P4 Exact result Exact CFG,
WCET overest.

Exact CFG,
WCET overest.

P5 Exact result Fail Fail

P6 Fail Fail Exact result

P7 Exact result Exact result Exact result

WCET 2015, Lund, 2015-07-07 page 24

Statistics

● Bound-T (patterns): 4 successes, 3 failures

● SWEET (value-analysis): 5 successes, 2 failures

● Combined: 6 successes, 1 failure (P2)

⇒ Value-analysis with AE and CLP works quite well

⇒ Some complementarity with pattern-based analysis

● CLP wins over IWA in only one case (P6) - why?

WCET 2015, Lund, 2015-07-07 page 25

Reasons for failures

● Code pattern not known (Bound-T):
– P2, P3

● Imprecise instruction modelling (carry-out):
– Bound-T on P6

● Lack of congruence in domain (SWEET IWA):
– P2, P6

● Loss of congruence information (SWEET CLP):
– P5

● Merging of values from array (SWEET CLP):
– P2

● Non-relational domain (SWEET IWA and CLP):
– P5

WCET 2015, Lund, 2015-07-07 page 26

Loss of congruence - when is x+x = 2x?

● Multiplication by 2 is often compiled into addition

Instead of ...
137 r1 := 2 * r1

... we get this code:

137 r1 := r1 + r1

Domain x+x = 2x ?

Concrete values yes

Intervals (IWA) yes

Circular Linear Progressions (CLP) NO

Polyhedra yes

Presburger Arithmetic yes

● Bound-T's ALF generator was modified to emit x+x as 2x
– but (so far) only locally, per instruction
– still problems for e.g. y := x; y := y+x; using two instructions

WCET 2015, Lund, 2015-07-07 page 27

Problems from non-relational domain

● The "x+x ≠ 2x" problem can be seen as one example

● Other example: failure of SWEET CLP on P5:

103 r2 := 347 + r1

104 cmp r1,13 (unsigned)

105 if r1>13 jump 204

106 r2 := r2 + r1

107 r3 := mem[r2]

108 jump via r3

The computation of
347 + 2*r1
is split

WCET 2015, Lund, 2015-07-07 page 28

Non-relational domain problems

103 r2 := 347 + r1

104 cmp r1,13 (unsigned)

105 if r1>13 jump 204

106 r2 := r2 + r1

107 r3 := mem[r2]

108 jump via r3

No or weak constraints

Good constraints

Constraints from later
instructions do not
constrain earlier uses
of the same variable!

In relational domains,
constraints from later instructions
can be applied to relations derived
from earlier instructions

● The "x+x ≠ 2x" problem can be seen as one example

● Other example: failure of SWEET CLP on P5:

WCET 2015, Lund, 2015-07-07 page 29

Conclusions

● Value-analysis (AE+CLP) is promising for switch-case DTC
– to some extent complementary with pattern methods
– also produces flow facts, as a bonus (not used here)

● Circular Linear Progressions is a "fragile" domain
– more powerful than intervals and IWA
– but only if "well fed" with program in good form

● e.g. with 2x instead of x+x
– and still non-relational

● fragile with respect to instruction ordering

● Tentative solution = possible future work
– restructure computation before submitting to AE+CLP:

● collect instruction sequences into affine expressions
● propagate constraints to all subject variable uses

WCET 2015, Lund, 2015-07-07 page 30

Atmel AVR8

● 8/16 bit microcontroller, a little RISCy (load-store)
– few true 16-bit operations, not orthogonal
– hard case for analysing indexing and address arithmetic

● Separate code and data memories (Harvard arch)

● Switch-case tables are usually in code space (flash)
– special instruction LPM: Load from Program Memory
– LPM reads 8 bits: need two LPMs to read 16-bit address

● increment table address/index in between
● combine two octets to 16-bit DTC address

– DTC usually with IJMP: Indirect Jump
– switch-case DTC code is rather long...

● Compilers used: gcc, IAR, assembler
– compiler chosen to get desired form of machine code

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

