
BSC, see IPR notice Spring / Summer 2012

PRACE Training @ BSC 1

PATC training, Barcelona, May 2012 ‹#›

INTELLECTUAL PROPERTY RIGHTS
NOTICE:

• The User may only download, make and retain a copy of
the materials for his/her use for non‐commercial and
research purposes.

• The User may not commercially use the material, unless
has been granted prior written consent by the Licensor
to do so; and cannot remove, obscure or modify
copyright notices, text acknowledging or other means of
identification or disclaimers as they appear.

• For further details, please contact BSC‐CNS patc@bsc.es

PATC training, Barcelona, May 2012 ‹#›

PRACE TRAINING COURSE
under

PRACE Advance Training Centre
at BSC

BSC‐CNS http://www.bsc.es/

PRACE project http://www.prace‐ri.eu/

PRACE Training Portal http://www.training.prace‐ri.eu/

PATC @ BSC Training Program

http://www.bsc.es/marenostrum‐support‐services/hpc‐
trainings/prace‐trainings

Introduction to CUDA Programming 5 - 8/6/2012

PRACE Training Course: Introduction to CUDA Programming

Area: Core HPC Curriculum

Level: BEGINNERS: for trainees from different background and very little knowledge

Prerequisites:
Basic knowledge of C/C++ programming
Attendees will need to bring their own laptops with a SSH client

Convener: Isaac Gelado

Objectives:
The aim of this course is to provide students with knowledge and hands-on experience
in developing applications software for processors with massively parallel computing
resources. In general, we refer to a processor as massively parallel if it has the ability to
complete more than 64 arithmetic operations per clock cycle. Many commercial
offerings from NVIDIA, AMD, and Intel already offer such levels of concurrency.
Effectively programming these processors will require in-depth knowledge about parallel
programming principles, as well as the parallelism models, communication models, and
resource limitations of these processors. The target audiences of the course are
students who want to develop exciting applications for these processors, as well as
those who want to develop programming tools and future implementations for these
processors.

Learning Outcomes:
The students who finish this course will learn how to program massively parallel
processors and achieve high performance, functionality, maintainability, and scalability
across future generations.
The students who finish this course will acquire technical knowledge required to achieve
the above goals by learning principles and patterns of parallel algorithms, processor
architecture features and constraints, and programming API, tools and techniques.

Introduction to CUDA Programming 5 - 8/6/2012

Timetable

Day 1 / Session 1 / 9am - 1 pm: (3h lectures with 5 min breaks on the hour)

1. Introduction to CUDA
2. CUDA Threading Model (I)
3. CUDA Threading Model (II)

Session 2 / 2 pm- 6 pm: 3h practical session – lab exercises

Day 2 / Session 3 / 9am- 1 pm: (3h practical session)

1. CUDA Memory Model
2. Matrix Multiplication – Shared Memory
3. 2D Convolution – Constant Memory

Session 4 / 2 pm- 6 pm: 3h practical session – lab exercises

Day 3 / Session 5 / 9am- 1 pm: (3h practical session)

1. CUDA Memory Model
2. Matrix Multiplication – Shared Memory
3. 2D Convolution – Constant Memory

Session 6 / 2 pm- 6 pm: 3h practical session – lab exercises

Day 4 / Session 7 / 9am- 1 pm: (3h practical session)

1. Parallel Reductions
2. Memory Bandwidth Considerations
3. Prefix Scan

Session 8 / 2 pm- 6 pm: 3h practical session – lab exercises

END of COURSE

www.bsc.es

Introduction to CUDA Programming

Lecture 1: Introduction

Disclaimer

All the material of this Seminar is based on the ECE408
course imparted at the University of Illinois

All the credit for this material goes to:
– Prof. Wen-mei W. Hwu

• Full Professor at the ECE and CS Departments in
the University of Illinois

• Director of the Blue-Waters Supercomputer

– David Kirk
• NVIDIA Fellow

• Professor of ECE

Course Goals

Learn how to program massively parallel processors and
achieve
– high performance
– functionality and maintainability
– scalability across future generations

Acquire technical knowledge required to achieve the above
goals
– principles and patterns of parallel algorithms
– processor architecture features and constraints
– programming API, tools and techniques

Text/Notes

1. D. Kirk and W. Hwu, “Programming Massively
Parallel Processors – A Hands-on Approach,”
Morgan Kaufman Publisher, 2010, ISBN 978-
0123814722

2. NVIDIA, NVidia CUDA C Programming Guide,
version 4.0, NVidia, 2011 (reference book)

3. Lecture notes and recordings will be posted at the
class web site

THE ADVENT OF GPUS

5

Performance Advantage of GPUs

An enlarging peak performance advantage:
– Calculation: 1 TFLOPS vs. 100 GFLOPS
– Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

Courtesy: John Owens

GPU computing is catching on

280 submissions to GPU Computing Gems
– 110 articles included in two volumes

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital
Audio

Processing

Computer
Vision

Digital
Video

Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray
Tracing

Rendering

Interactive
Physics

Numerical
Methods

CPUs vs. GPUs

CPUs and GPUs have fundamentally different design
philosophies

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

CPUs: Latency Oriented Design

Large caches
– Convert long latency memory accesses to short latency cache

accesses

Sophisticated control
– Branch prediction for reduced

branch latency

– Data forwarding for reduced data
latency

Powerful ALU
– Reduced operation latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design

Small caches
– To boost memory throughput

Simple control
– No branch prediction

– No data forwarding

Energy efficient ALUs
– Many, long latency but heavily pipelined for high throughput

Require massive number of threads to tolerate latencies

DRAM

GPU

Traditional applications

Current architecture
coverage

New applications

Domain-specific
architecture coverage

Obstacles

Stretching Traditional Architectures

Traditional parallel
architectures cover some
super-applications
– DSP, GPU, network apps,

Scientific

The game is to grow
mainstream architectures
“out” or domain-specific
architectures “in”
– CUDA is latter

CPUs for sequential
parts where latency
matters
– CPUs can be 10+X faster

than GPUs for sequential
code

GPUs for parallel
parts where
throughput wins
– GPUs can be 10+X faster

than CPUs for parallel code

Winning Applications Use Both CPU and GPU

A Common GPU Usage Pattern

A desirable approach considered impractical
– Due to excessive computational requirement

– But demonstrated to achieve domain benefit

– Convolution filtering (e.g. bilateral Gaussian filters), De Novo gene
assembly, etc.

Use GPUs to accelerate the most time-consuming aspects of
the approach
– Kernels in CUDA

– Refactor host code to better support kernels

Rethink the domain problem

Integrated host+device app C program
– Serial or modestly parallel parts in host C code

– Highly parallel parts in device SPMD kernel C code

CUDA /OpenCL – Execution Model

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

THE GPU MODEL

15

From Natural Language to Electrons

Natural Language (e.g, English)

Algorithm

High-Level Language (C/C++…)

Instruction Set Architecture

Microarchitecture

Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler

The ISA

An Instruction Set Architecture (ISA) is a contract
between the hardware and the software.

As the name suggests, it is a set of instructions that
the architecture (hardware) can execute.

A program at the ISA level

A program is a set of instructions stored in memory
that can be read, interpreted, and executed by the
hardware.

Program instructions operate on data stored in
memory or provided by Input/Output (I/O) device.

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

20

i = blockIdx.x * blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…
0 1 2 254 255

…

A CUDA kernel is executed by a grid (array) of threads
– All threads in a grid run the same kernel code (SPMD)

– Each thread has an index that it uses to compute memory
addresses and make control decisions

Arrays of Parallel Threads

Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization

– Threads in different blocks cannot cooperate

Thread Blocks: Scalable Cooperation

…
i = blockIdx.x *
blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…
0 1 2

25
4

25
5

Thread Block 1

…

i = blockIdx.x *
blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…
0 1 2

25
4

25
5

Thread Block 0

…

i = blockIdx.x *
blockDim.x +
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…
0 1 2

25
4

25
5

Thread Block N-1

…

• Each thread uses indices to
decide what data to work
on
– blockIdx: 1D, 2D, or 3D

(CUDA 4.0)
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

blockIdx and threadIdx

A[0] vector A

vector B

vector C

A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3]

…

B[4] … B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1] …

+ + + + + +

Vector Addition – Conceptual View

Vector Addition – Traditional C Code

// Compute vector sum C = A+B
void vecAdd(float* A, float* B, float* C, int n)
{
 for (i = 0, i < n, i++)
 C[i] = A[i] + B[i];
}

int main()
{
 // Memory allocation for A_h, B_h, and C_h
 // I/O to read A_h and B_h, N elements
 …
 vecAdd(A_h, B_h, C_h, N);
}

Heterogeneous Computing vecAdd Host Code

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n* sizeof(float);
 float* A_d, B_d, C_d;
 …
1. // Allocate device memory for A, B, and C
 // copy A and B to device memory

2. // Kernel launch code – to have the device
 // to perform the actual vector addition

3. // copy C from the device memory
 // Free device vectors
}

CPU

Host Memory

GPU
Part 2

Device Memory

Part 1

Part 3

Device code can:

– R/W per-thread registers

– R/W per-grid global memory

Host code can

– Transfer data to/from per
grid global memory

Partial Overview of CUDA Memories

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

We will cover more later.

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

cudaMalloc()
– Allocates object in the device

global memory

– Two parameters
• Address of a pointer to the

allocated object

• Size of of allocated object in
terms of bytes

cudaFree()
– Frees object from device

global memory
• Pointer to freed object

CUDA Device Memory Management API functions

cudaMemcpy()
– Memory data transfer

– Requires four parameters
• Pointer to destination

• Pointer to source

• Number of bytes copied

• Type of transfer

– Transfer to device is

asynchronous

Host-Device Data Transfer API functions

Grid

Global Memory

Block (0, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Heterogeneous Computing vecAdd Host Code

void vecAdd(float* A, float* B, float* C, int n)
{
 int size = n * sizeof(float);
 float* A_d, B_d, C_d;

1. // Transfer A and B to device memory

 cudaMalloc((void **) &A_d, size);
 cudaMemcpy(A_d, A, size);
 cudaMalloc((void **) &B_d, size);
 cudaMemcpy (B_d, B, size);

 // Allocate device memory for
 cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code – to be shown later
 …
3. // Transfer C from device to host
 cudaMemcpy (C, C_d, size);
 // Free device memory for A, B, C
 cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C_d[i] = A_d[i] + B_d[i];
}

int vectAdd(float* A, float* B, float* C, int n)
{
 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 vecAddKernel<<<ceil(n/256), 256>>>(A_d, B_d, C_d, n);
}

Device Code

Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddkernel(float* A_d, float* B_d, float* C_d, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C_d[i] = A_d[i] + B_d[i];
}

int vecAdd(float* A, float* B, float* C, int n)
{
 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 vecAddKernnel<<<ceil(n/256),256>>>(A_d, B_d, C_d, n);
}

Host Code

More on Kernel Launch

int vecAdd(float* A, float* B, float* C, int n)
{
 // A_d, B_d, C_d allocations and copies omitted
 // Run ceil(n/256) blocks of 256 threads each
 dim3 DimGrid(ceil(n/256), 1, 1);
 dim3 DimBlock(256, 1, 1);

 vecAddKernnel<<<DimGrid,DimBlock>>>(A_d, B_d, C_d, n);
}

Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

Host Code

• __global__ defines a kernel function
• Each “__” consists of two underscore characters
• A kernel function must return void

• __device__ and __host__ can be used together

More on CUDA Function Declarations

host host __host__ float HostFunc()

host device __global__ void KernelFunc()

device device __device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

__global__
void vecAddKernel(float *A_d,
 float *B_d, float *C_d, int n)
{
 int i = blockIdx.x * blockDim.x
 + threadIdx.x;

 if(i<n) C_d[i] = A_d[i]+B_d[i];
}

__host__
Void vecAdd()
{
 dim3 DimGrid = (ceil(n/256,1,1);
 dim3 DimBlock = (256,1,1);

vecAddKernel<<<DimGrid,DimBlock>>>
(A_d,B_d,C_d,n);
}

Kernel execution in a nutshell

Kernel Blk 0 Blk
N-1 • • •

GPU
M0

RAM

Mk
• • •

Schedule onto multiprocessors

Compiling A CUDA Program

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/
Linker

Host Code Device Code (PTX)

Device Just-in-Time
Compiler

Heterogeneous Computing Platform with
CPUs, GPUs

www.bsc.es

Introduction to CUDA Programming
Lecture 2: CUDA Parallel Execution Model

Each thread uses IDs to decide
what data to work on
– Block ID: 1D, 2D, or 3D

– Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

2

Block IDs and Thread IDs

3

A Simple Example: Matrix Multiplication

A simple illustration of the basic features of memory and
thread management in CUDA programs
– Thread index usage

– Memory layout

– Register usage

– Assume square matrix for simplicity

– Leave shared memory usage until later

4

Square Matrix-Matrix Multiplication
P = M * N of size WIDTH x WIDTH
– Each thread calculates one element of P

– Each row of M is loaded WIDTH times
from global memory

– Each column of N is loaded WIDTH times
from global memory

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

Memory Layout of a Matrix in C

5

M2,0

M1,1

M1,0 M0,0

M0,1

M3,0

M2,1 M3,1

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2

M1,2 M0,2 M2,2 M3,2

M1,3 M0,3 M2,3 M3,3

M1,3 M0,3 M2,3 M3,3

M

6

Square Matrix-Matrix Multiplication

void MatrixMul(float* M, float* N, float* P,
 int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * Width + k];
 double b = N[k * Width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
 }

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

i

k

k

j

Have each 2D thread block to compute a
(TILE_WIDTH)2 sub-matrix (tile) of the result matrix
– Each has (TILE_WIDTH)2 threads

Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks

Kernel Function - A Small Example

7

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

WIDTH = 4; TILE_WIDTH = 2
Each block has 2*2 = 4 threads

WIDTH/TILE_WIDTH = 2
Use 2* 2 = 4 blocks

A Slightly Bigger Example

8

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

P5,0 P4,0

P4,1

P6,0 P7,0

P5,1

P4,2 P6,2 P7,2 P5,2

P7,1 P6,1

44,3 P6,3 P7,3 P5,3

P1,4 P0,4

P0,5

P2,4 P3,4

P1,5

P0,6 P2,6 P3,6 P1,6

P3,5 P2,5

P0,7 P2,7 P3,7 P1,7

P5,4 P4,4

P4,5

P6,4 P7,4

P5,5

P4,6 P6,6 P7,6 P5,6

P7,5 P6,5

P4,7 P6,7 P7,7 P5,7

WIDTH = 8; TILE_WIDTH = 2
Each block has 2*2 = 4 threads

WIDTH/TILE_WIDTH = 4
Use 4* 4 = 16 blocks

Block(0,0) Block(1,0)

Block(0,1)

Block(0,2)

Block(2,0) Block(3,0)

A Slightly Bigger Example (cont.)

9

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

P5,0 P4,0

P4,1

P6,0 P7,0

P5,1

P4,2 P6,2 P7,2 P5,2

P7,1 P6,1

44,3 P6,3 P7,3 P5,3

P1,4 P0,4

P0,5

P2,4 P3,4

P1,5

P0,6 P2,6 P3,6 P1,6

P3,5 P2,5

P0,7 P2,7 P3,7 P1,7

P5,4 P4,4

P4,5

P6,4 P7,4

P5,5

P4,6 P6,6 P7,6 P5,6

P7,5 P6,5

P4,7 P6,7 P7,7 P5,7

WIDTH = 8; TILE_WIDTH = 4
Each block has 4*4 =16 threads

WIDTH/TILE_WIDTH = 2
Use 2* 2 = 4 blocks

Block(0,0) Block(1,0)

10

Kernel Invocation (Host-side Code)

/* Setup the execution configuration */
/* TILE_WIDTH is a #define constant */
dim3 dimGrid(Width/TILE_WIDTH Width/TILE_WIDTH, 1);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

/* Launch the device computation threads!*/
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

11

Kernel Function

/* Matrix multiplication kernel – per thread code */
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P,

int Width)
{
 /* Pvalue is used to store the element of the matrix
 that is computed by the thread */
 float Pvalue = 0;

Col = 0 * (TILE_WIDTH) + threadIdx.x
Row = 0 * (TILE_WIDTH) + threadIdx.y

C
ol =

 0
C

ol =
 1

Block (0,0) in a TILE_WIDTH = 2 Configuration

12

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

Row = 0

Row = 1

blockIdx.x blockIdx.y

Work for Block (1,0)

13

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Row = 0

Row = 1

C
ol =

 2

C
ol =

 3 Col = 1 * (TILE_WIDTH) + threadIdx.x
Row = 0 * (TILE_WIDTH) + threadIdx.y

blockIdx.x blockIdx.y

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

Work for Block (0,1)

14

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Row = 2

Row = 3

C
ol =

 0
C

ol =
 1 Col = 0 * (TILE_WIDTH) + threadIdx.x

Row = 1 * (TILE_WIDTH) + threadIdx.y

blockIdx.x blockIdx.y

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

Work for Block (1,1)

15

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Row = 2

Row = 3

C
ol =

 2

C
ol =

 3 Col = 1 * (TILE_WIDTH) + threadIdx.x
Row = 1 * (TILE_WIDTH) + threadIdx.y

blockIdx.x blockIdx.y

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

16

A Simple Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int
Width)

{

 /* Calculate the row index of the Pd element and M */

 int Row = blockIdx.y*blockDim.y + threadIdx.y;

 /* Calculate the column idenx of Pd and N */

 int Col = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0;

 /* Each thread computes one element of the block sub- matrix */

 for (int k = 0; k < Width; ++k)

 Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col];

 d_P[Row*Width+Col] = Pvalue;

}

17

CUDA Thread Block
All threads in a block execute the same kernel
program (SPMD)

Programmer declares block:

– Block size 1 to 1024 concurrent threads

– Block shape 1D, 2D, or 3D

– Block dimensions in threads

Threads have thread index numbers within block

– Kernel code uses thread index and block index to
select work and address shared data

Threads in the same block share data and
synchronize while doing their share of the work

Threads in different blocks cannot cooperate

– Each block can execute in any order relative to
other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

REVIEW OF PARALLEL EXECUTION

1st gen - Instructions are executed sequentially in
program order, one at a time.

Example:

Cycle 1 2 3 4 5 6
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode

History of parallelism

19

2nd gen - Instructions are executed sequentially, in
program order, in an assembly line fashion. (pipeline)

Example:

Cycle 1 2 3 4 5 6
Instruction1 Fetch Decode Execute Memory

Instruction2 Fetch Decode Execute Memory
Instruction3 Fetch Decode Execute Memory

History - Cont’d

20

21

History – Instruction Level Parallelism

3rd gen - Instructions are executed in parallel

Example code 1:

 c = b + a;

 d = c + e;

Example code 2:

 a = b + c;

 d = e + f;

Non-parallelizable

Parallelizable

Two forms of ILP:
– Superscalar: At runtime, fetch, decode, and execute multiple

instructions at a time. Execution may be out of order

– VLIW: At compile time, pack multiple, independent instructions
in one large instruction and process the large instructions as
the atomic units.

Cycle 1 2 3 4 5

Instruction1 Fetch Decode Execute Memory

Instruction2 Fetch Decode Execute Memory

Instruction3 Fetch Decode Execute Memory

Instruction4 Fetch Decode Execute Memory

Instruction Level Parallelism (Cont.)

22

23

History – Cont’d

4th gen – Multi-threading: multiple threads are executed in
an alternating or simultaneous manner on the same
processor/core. (will revisit)

5th gen - Multi-Core: Multiple threads are executed
simultaneously on multiple processors

24

Transparent Scalability
Hardware is free to assigns blocks to any
processor at any time
– A kernel scales across any number of parallel

processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks.

time

Threads are assigned to Streaming Multiprocessors in block
granularity

– Up to 8 blocks to each SM as resource allows

– Fermi SM can take up to 1536 threads (256 (threads/block) * 6 blocks or 512
(threads/block) * 3 blocks, etc.)

Threads run
concurrently
– SM maintains

thread/block id #s

– SM
manages/schedules
thread execution

25

Example: Executing Thread Blocks

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

The Von-Neumann Model

26

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

27

Example: Thread Scheduling

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…

Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…
Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

Each Block is executed as
32-thread Warps

An implementation decision,
not part of the CUDA
programming model

Warps are scheduling units
in SM

If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps
are there in an SM?

Each Block is divided into
256/32 = 8 Warps

There are 8 * 3 = 24 Warps

28

Going back to the program

Every instruction needs to be fetched from memory, decoded,
then executed.

Instructions come in three flavors: Operate, Data transfer, and
Program Control Flow.

An example instruction cycle is the following:

Fetch | Decode | Execute | Memory

INSTRUCTIONS AND PERFORMANCE

30

Operate Instructions

Example of an operate instruction:

 ADD R1, R2, R3

Instruction cycle for an operate instruction:

Fetch | Decode | Execute | Memory

31

Data Transfer Instructions

Examples of data transfer instruction:

 LDR R1, R2, #2

 STR R1, R2, #2

Instruction cycle for an operate instruction:

Fetch | Decode | Execute | Memory

32

Control Flow Operations

Example of control flow instruction:

 BRp #-4

 if the condition is positive, jump back four instructions

Instruction cycle for an arithmetic instruction:

Fetch | Decode | Execute | Memory

33

How thread blocks are partitioned

Thread blocks are partitioned into warps
– Thread IDs within a warp are consecutive and increasing

– Warp 0 starts with Thread ID 0

Partitioning is always the same
– Thus you can use this knowledge in control flow

– However, the exact size of warps may change from generation to
generation

– (Covered next)

However, DO NOT rely on any ordering between warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results (more later).

34

Control Flow Instructions

Main performance concern with branching is divergence

– Threads within a single warp take different paths

– Different execution paths are serialized in current GPUs

A common case: avoid divergence when branch condition is a function of
thread ID

– Example with divergence: if(threadIdx.x > 2) { }

• This creates two different control paths for threads in a block

• Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of
the threads in the first warp

– Example without divergence: if(threadIdx.x / WARP_SIZE > 2) { }

• Also creates two different control paths for threads in a block

• Branch granularity is a whole multiple of warp size; all threads in any given warp follow
the same path

SM implements zero-overhead warp scheduling
– At any time, 1 or 2 of the warps is executed by SM
– Warps whose next instruction has its operands ready for

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized scheduling

policy
– All threads in a warp execute the same instruction when selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Example: Thread Scheduling (Cont.)

35

36

Block Granularity Considerations

For Matrix Multiplication using multiple blocks, should I use 8X8,
16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM can take up to
1536 threads, there are 24 Blocks. However, each SM can only take up to
8 Blocks, only 512 threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM can take up to
1536 threads, it can take up to 6 Blocks and achieve full capacity unless
other resource considerations overrule.

– For 32X32, we would have 1024 threads per Block. Only one block can fit
into an SM for Fermi. Using only 2/3 of the thread capacity of an SM. Also,
this works for CUDA 3.0 and beyond but too large for some early CUDA
versions.

37

Application Programming Interface

The API is an extension to the C programming language

It consists of:
– Language extensions

• To target portions of the code for execution on the device

– A runtime library split into:
• A common component providing built-in vector types and a subset of the

C runtime library in both host and device codes

• A host component to control and access one or more devices from the
host

• A device component providing device-specific functions

38

Common Runtime Component: Mathematical Functions

pow, sqrt, cbrt, hypot
exp, exp2, expm1
log, log2, log10, log1p
sin, cos, tan, asin, acos, atan, atan2
sinh, cosh, tanh, asinh, acosh, atanh
ceil, floor, trunc, round
– When executed on the host, a given function uses the C runtime

implementation if available

– These functions are only supported for scalar types, not vector types

39

Device Runtime Component: Mathematical Functions

Some mathematical functions (e.g. sin(x)) have a less
accurate, but faster device-only version (e.g. __sin(x))
– __pow
– __log, __log2, __log10

– __exp

– __sin, __cos, __tan

www.bsc.es

Introduction to CUDA Programming
Lecture 7: Data Transfer and CUDA Streams

Objective

To understand the major factors that dictate
performance when using GPU as an compute
accelerator for the CPU
– The feeds and speeds of the traditional CPU world

– The feeds and speeds when employing a GPU

– To form a solid knowledge base for performance
programming in modern GPU’s

Knowing yesterday, today, and tomorrow
– The PC world is becoming flatter

– CPU and GPU are being Fused together

– Outsourcing of computation is becoming easier…

Allocate/Free Pinned Memory (a.k.a. Page Locked Memory)

cudaHostAlloc()
– Three parameters

– Address of pointer to the allocated memory

– Size of the allocated memory in bytes

– Option – use cudaHostAllocDefault for now

cudaFreeHost()
– One parameter

– Pointer to the memory to be freed

Using Pinned Memory

Use the allocated memory and its pointer the same way those
returned by malloc();

The only difference is that the allocated memory cannot be
paged by the OS

The cudaMemCpy function should be about 2X faster with
pinned memory

Serialized Data Transfer and GPU computation

So far, the way we use cudaMemCpy serializes data
transfer and GPU computation

Trans. A Trans. B Vector Add Tranfer
C time

Only use one direction,
GPU idle

PCIe Idle Only use one direction,
GPU idle

Device Overlap

Some CUDA devices support device overlap
– Simultaneously execute a kernel while performing a copy between

device and host memory

 int Device;
cudaDeviceProp prop;

cudaGetDevice(&Device);
cudaGetDeviceProperties(&prop, Device);

if (prop.deviceOverlap) …

Overlapped (Pieplined) Timing

Divide large vectors into segments

Overlap transfer and compute of adjacent segments

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

Using CUDA Streams and Asynchronous MemCpy

CUDA supports parallel execution of kernels and MemCpy
with “Streams”

Each stream is a queue of operations (kernels and MemCpys)

Operations in different streams can go in parallel
– “Task parallelism”

Conceptual View of Streams

MemCpy A.1

MemCpy B.1

Kernel 1

MemCpy C.1

MemCpy A.2

MemCpy B.2

Kernel 2

MemCpy C.2

Stream 0 Stream 1

Copy
Engine

PCI
UP

PCI
Down

Kernel
Engine

Operations (Kernels, MemCpys)

A Simple Multi-Stream Host Code

cudaStream_t stream0, stream1;
cudaStreamCreate(&stream0);
cudaStreamCreate(&stream1);
float *d_A0, *d_B0, *d_C0; // device memory for stream 0
float *d_A1, *d_B1, *d_C1; // device memory for stream 1

// cudaMalloc for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go here

for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0);

A Simple Multi-Stream Host Code (Cont.)
for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0);
 vecAdd<<<SegSize/256, 256, 0, stream0)(d_A0, d_B0, …);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0);

 cudaMemCpyAsync(d_A1, h_A+i+SegSize;
 SegSize*sizeof(float),.., stream1);
 cudaMemCpyAsync(d_B1, h_B+i+SegSize;
 SegSize*sizeof(float),.., stream1);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
 cudaMemCpyAsync(d_C1, h_C+i+SegSize;
 SegSize*sizeof(float),.., stream1);
}

A View Closer to Reality

MemCpy A.1

MemCpy B.1

MemCpy C.1

MemCpy A.2

MemCpy B.2

Kernel 1

Kernel 2

Stream 0 Stream 1

Copy
Engine

PCI
UP

PCI
Down

Kernel
Engine

Operations (Kernels, MemCpys)

MemCpy C.2

Not quite the overlap want

C.1 blocks A.2 and B.2 in the copy engine queue

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 +
B.2

A Better Multi-Stream Host Code (Cont.)
for (int i=0; i<n; i+=SegSize*2) {
 cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_A1, h_A+i+SegSize;
 SegSize*sizeof(float),.., stream1);
 cudaMemCpyAsync(d_B1, h_B+i+SegSize;
 SegSize*sizeof(float),.., stream1);

 vecAdd<<<SegSize/256, 256, 0, stream0)(d_A0, d_B0, …);
 vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …);
 cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0);
 cudaMemCpyAsync(d_C1, h_C+i+SegSize;
 SegSize*sizeof(float),.., stream1);
}

A View Closer to Reality

MemCpy A.1

MemCpy B.1

MemCpy A.2

MemCpy B.2

MemCpy C.1

Kernel 1

Kernel 2

Stream 0 Stream 1

Copy
Engine

PCI
UP

PCI
Down

Kernel
Engine

Operations (Kernels, MemCpys)

MemCpy C.2

Overlapped (Pipelined) Timing

Divide large vectors into segments

Overlap transfer and compute of adjacent segments

Trans
A.1

Trans
B.1

Trans
C.1

Trans
A.2

Comp
C.1 = A.1 + B.1

Trans
B.2

Comp
C.2 = A.2 + B.2

Trans
A.3

Trans
B.3

Trans
C.2

Comp
C.3 = A.3 + B.3

Trans
A.4

Trans
B.4

www.bsc.es

Introduction to CUDA Programming
Lecture 3: Tiled Matrix-Matrix Multiplication

Transparent Scalability

2

• Hardware is free to assigns blocks to any
processor at any time

• A kernel scales across any number of parallel
processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks.

time

Threads are assigned to Streaming Multiprocessors in block
granularity

– Up to 8 blocks to each SM as resource allows

– Fermi SM can take up to 1536 threads

• Could be 256 (threads/block) * 6 blocks

• Or 512 (threads/block) * 3 blocks, etc.

Threads run
concurrently
– SM maintains

thread/block id #s
– SM

manages/schedul
es thread
execution

3

Example: Executing Thread Blocks

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

The Von-Neumann Model

4

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

The Von-Neumann Model with SIMD units

5

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

6

Example: Thread Scheduling

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…

Block 1 Warps Block 2 Warps

…
t0 t1 t2 … t31

…
Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

Each Block is executed as
32-thread Warps

An implementation decision,
not part of the CUDA
programming model

Warps are scheduling units
in SM

If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps
are there in an SM?

Each Block is divided into
256/32 = 8 Warps

There are 8 * 3 = 24 Warps

7

How thread blocks are partitioned

Thread blocks are partitioned into warps
– Thread IDs within a warp are consecutive and increasing
– Warp 0 starts with Thread ID 0

Partitioning is always the same
– Thus you can use this knowledge in control flow
– However, the exact size of warps may change from generation to

generation
– (Covered next)

However, DO NOT rely on any ordering between warps
– If there are any dependencies between threads, you must

__syncthreads() to get correct results (more later).

Control Flow Operations

8

Example of control flow instruction:

 BRp #-4

 if the condition is positive, jump back four instructions

Instruction cycle for an arithmetic instruction:

Fetch | Decode | Execute | Memory

9

Control Flow Instructions

Main performance concern with branching is divergence
– Threads within a single warp take different paths
– Different execution paths are serialized in current GPUs

A common case: avoid divergence when branch condition is a function of
thread ID
– Example with divergence: If (threadIdx.x > 2) { }

• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0, 1 and 2 follow different path than the

rest of the threads in the first warp
– Example without divergence: If (threadIdx.x / WARP_SIZE > 2) { }

• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any given warp

follow the same path

SM implements zero-overhead warp scheduling
– At any time, 1 or 2 of the warps is executed by SM
– Warps whose next instruction has its operands ready for

consumption are eligible for execution
– Eligible Warps are selected for execution on a prioritized

scheduling policy
– All threads in a warp execute the same instruction when

selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Example: Thread Scheduling (Cont.)

10

11

Outline of Tiling Technique

Identify a block/tile of global memory content that are
accessed by multiple threads

Load the block/tile from global memory into on-chip memory

Have the multiple threads to access their data from the on-
chip memory

Move on to the next block/tile

Idea: Use Shared Memory to reuse global memory data

12

12

• Each input element is read by WIDTH
threads.

• Load each element into Shared Memory
and have several threads use the local
version to reduce the memory bandwidth

• Tiled algorithms M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

Work for Block (0,0)

13

C
ol =

 1

C
ol =

 0
Col = 0 * (blockDim.x) + threadIdx.x
Row = 0 * (blockDim.y) + threadIdx.y

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

Row = 0

Row = 1

Tiled Multiply

14

Break up the execution of the
kernel into phases so that the data
accesses in each phase is focused
on one subset (tile) of d_M and d_N

bx
0 1 2

by

2

1

0

tx
0 1 TILE_WIDTH-1 2

ty 2
1
0

TILE_WIDTH-1

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

T
IL

E
_

W
ID

T
H

T

IL
E

_
W

ID
T

H

T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W

ID
T

H

15

Loading a Tile

All threads in a block participate
– Each thread loads one Md element and one Nd element in based tiled

code

Assign the loaded element to each thread such that the
accesses within each warp is coalesced (more later).

Work for Block (0,0)

16

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

M1,0 M0,0

M0,1 M1,1

N1,0 N0,0

N0,1 N1,1

SM

SM

Work for Block (0,0)

17

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

M1,0 M0,0

M0,1 M1,1

N1,0 N0,0

N0,1 N1,1

SM

SM

Work for Block (0,0)

18

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

N0,2 N1,2

N0,3 N1,3

M2,0 M3,0

M3,1 M2,1

SM

SM

Work for Block (0,0)

19

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

M1,0 M0,0

M0,1

M2,0 M3,0

M1,1

M0,2 M2,2 M3,2 M1,2

M3,1 M2,1

M0,3 M2,3 M3,3 M1,3

N1,0 N0,0

N0,1

N2,0 N3,0

N1,1

N0,2 N2,2 N3,2 N1,2

N3,1 N2,1

N0,3 N2,3 N3,3 N1,3

N0,2 N1,2

N0,3 N1,3

M2,0 M3,0

M3,1 M2,1

SM

SM

20

Barrier Synchronization

An API function call in CUDA
– __synchthreads()

All threads in the same block must reach the
__synchtrheads() before any can move on

Best used to coordinate tiled algorithms
– To ensure that all elements of a tile are loaded

– To ensure that all elements of a tile are consumed

Upper left corner of the M tile at step m:
 by * TILE_WIDTH * WIDTH + m* TILE_WIDTH

Each thread uses ty and tx to load an element
 Upper left corner + ty * Width + tx

 = by * TILE_WIDTH * Width + m * TILE_WIDTH +
 ty * Width + tx

 = (by * TILE_WIDTH + ty) * Width +
 m * TILE_WIDTH + tx

 = Row * Width +
 m * TILE_WIDTH + tx

Loading an M Tile

21

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
0 1 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T

IL
E

_
W

ID
T

H

T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W

ID
T

H

m

k bx

by

k

m

Row = by * TILE_WIDTH +ty

22

Tiled Matrix Multiplication Kernel
1. __global__ void MatrixMul(float* d_M, float* d_N, float* d_P, int Width)
2. {
3. __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
4. __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

5. int bx = blockIdx.x; int by = blockIdx.y;
6. int tx = threadIdx.x; int ty = threadIdx.y;

7. // Identify the row and column of the Pd element to work on
8. int Row = by * TILE_WIDTH + ty;
9. int Col = bx * TILE_WIDTH + tx;
10. float Pvalue = 0;
11. // Loop over the Md and Nd tiles required to compute the Pd element
12. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
13. // Coolaborative loading of Md and Nd tiles into shared memory
14. ds_M[ty][tx] = d_M[Row*Width + m*TILE_WIDTH+tx];
15. ds_N[ty][tx] = d_N[Col+(m*TILE_WIDTH+ty)*Width];
16. __syncthreads();
17. for (int k = 0; k < TILE_WIDTH; ++k)
18. Pvalue += ds_M[ty][k] * ds_N[k][tx];
19. __synchthreads();
20. }
21. d_P[Row*Width+Col] = Pvalue;
22. }

Loading an N Tile

23

Upper left corner of N tile at step m:
 bx*TILE_WIDTH + m*TILE_WIDTH*Width

Each thread uses ty and tx to load an element
 Upper left corner + ty * Width + tx

 = bx*TILE_WIDTH + m*TILE_WIDTH*Width +
 ty * Width + tx

 = bx*TILE_WIDTH+tx + (m*TILE_WIDTH+ty)* Width

 = Col + (m*TILE_WIDTH+ty)* Width

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
0 1 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T

IL
E

_
W

ID
T

H

T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W

ID
T

H

m

k bx

by

k

m

24

First-order Size Considerations

Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

– TILE_WIDTH of 32 gives 32*32 = 1024 threads

For 16, each block performs 2*256 = 512 float loads from
global memory for 256 * (2*16) = 8,192 mul/add operations.

For 32, each block performs 2*1024 = 2048 float loads from
global memory for 1024 * (2*32) = 65,536 mul/add operations

25

Shared Memory and Threading

Each SM in Fermi has 16KB or 48KB shared memory*
– SM size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared
memory.

– Can potentially have up to 8 Thread Blocks actively executing
• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory
usage per thread block, allowing 2 or 6 thread blocks active at the same time

Using 16x16 tiling, we reduce the accesses to the global memory by a
factor of 16
– The 150 GB/s bandwidth can now support: (150/4)*16 = 600 GFLOPS!

*Configurable vs L1, total 64KB

Global variables declaration
– __host__
– __device__... __global__, __constant__, __texture__

Function prototypes
– __global__ void kernelOne(…)
– float handyFunction(…)

Main ()
– allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes)
– transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…)
– execution configuration setup
– kernel call – kernelOne<<<execution configuration>>>(args…);
– transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…)
– optional: compare against golden (host computed) solution

Kernel – void kernelOne(type args,…)
– variables declaration - auto, __shared__

• automatic variables transparently assigned to registers
– syncthreads()…

Other functions
– float handyFunction(int inVar…);

26

Summary- Typical Structure of a CUDA Program

repeat
as
needed

www.bsc.es

Introduction to CUDA Programming
Lecture 4: Convolution, Constant Memory

and Caching

2D Convolution – Inside Cells

2

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

3 8 15 12 7

4 9 16 15 12

3 8 15 16 15

4 9 20 18 14

0 2 3 6 1

235

M

N P

2D Convolution – Halo Cells

3

0 0 0 0 0
0 3 4 5 6
0 2 3 4 5
0 3 5 6 7
0 1 1 3 1

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

0 0 0 0 0

0 9 16 15 12

0 8 15 16 15

0 9 20 18 14

0 2 3 6 1

179

M

N P

4

Access Pattern for M

M is referred to as mask (a.k.a. kernel, filter, etc.)
– Elements of M are called mask (kernel, filter) coefficients

Calculation of all output P elements need M

M is not changed during kernel

Bonus - M elements are accessed in the same order when
calculating all P elements

M is a good candidate for Constant Memory

Each thread can:
– Read/write per-thread

registers (~1 cycle)

– Read/write per-block
shared memory (~5
cycles)

– Read/write per-grid global
memory (~500 cycles)

– Read/only per-grid
constant memory (~5
cycles with caching)

5

Programmer View of CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

6

Memory Hierarchies

If every time we needed a piece of data, we had to go to main
memory to get it, computers would take a lot longer to do
anything

On today’s processors, main memory accesses take
hundreds of cycles

One solution: Caches

In order to keep cache fast, it needs to be small, so we
cannot fit the entire data set in it

Cache - Cont’d

7

Processor

L1 Cache

L2 Cache

Main Memory

regs

The chip

8

Cache - Cont’d

Cache is unit of volatile memory storage

A cache is an “array” of cache lines

Cache line can usually hold data from several consecutive
memory addresses

When data is requested from memory, an entire cache line is
loaded into the cache, in an attempt to reduce main memory
requests

9

Caches - Cont’d

Some definitions:
– Spatial locality: is when the data elements stored in consecutive

memory locations are access consecutively

– Temporal locality: is when the same data element is access multiple
times in short period of time

Both spatial locality and temporal locality improve the
performance of caches

10

Scratchpad vs. Cache

Scratchpad (shared memory in CUDA) is another
type of temporary storage used to relieve main
memory contention.

In terms of distance from the processor, scratchpad
is similar to L1 cache.

Unlike cache, scratchpad does not necessarily hold a
copy of data that is in main memory

It requires explicit data transfer instructions, whereas
cache doesn’t

Cache Coherence Protocol

11

A mechanism for caches to propagate updates by their
local processor to other caches (processors)

Processor

L1 Cache

Main Memory

regs

The chip

Processor

L1 Cache

regs

Processor

L1 Cache

regs …

12

CPU and GPU have different caching philosophy

CPU L1 caches are usually coherent
– L1 is also replicated for each core

– Even data that will be changed can be cached in L1

– Updates to local cache copy invalidates (or less commonly updates)
copies in other caches

– Expensive in terms of hardware and disruption of services (cleaning
bathrooms at airports..)

GPU L1 caches are usually incoherent
– Avoid caching data that will be modified

13

How to Use Constant Memory

Host code allocates, initializes variables the same way as any
other variables that need o be copied to the device

Use cudaMemcpyToSymbol(dest, src, size) to copy the
variable into the device memory

This copy function tells the device that the variable will not be
modified by the kernel and can be safely cached.

Each SM has its own L1
cache
– Low latency, high bandwidth

access by all threads

However, there is no way
for threads in one SM to
update the L1 cache in
other SMs
– No L1 cache coherence

14

More on Constant Caching

Grid

Global Memory

Block (0, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory/L1 cache

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

This is not a problem if a variable is NOT modified
by a kernel.

15

Some Header File Stuff for M

#define KERNEL_SIZE 5

// Matrix Structure declaration
typedef struct {
 unsigned int width;
 unsigned int height;
 unsigned int pitch;
 float* elements;
} Matrix;

16

AllocateMatrix()

// Allocate a device matrix of dimensions height*width

// If init == 0, initialize to all zeroes.

// If init == 1, perform random initialization.

// If init == 2, initialize matrix parameters, but do
// not allocate memory

Matrix AllocateMatrix(int height, int width, int init)

{

 Matrix M;

 M.width = M.pitch = width;

 M.height = height;

 int size = M.width * M.height;

 M.elements = NULL;

17

AllocateMatrix() (Cont.)

// Don't allocate memory on option 2

 if(init == 2) return M;

 M.elements = (float*) malloc(size*sizeof(float));

 for(unsigned int i = 0; i < M.height * M.width; i++)

 {

 M.elements[i] = (init == 0) ? (0.0f) :

 (rand() / (float)RAND_MAX);

 if(rand() % 2) M.elements[i] = - M.elements[i]

 }

return M;

}

18

Host Code

// global variable, outside any function

 __constant__ float Mc[KERNEL_SIZE][KERNEL_SIZE];

…

 // allocate N, P, initialize N elements, copy N to Nd

 Matrix M;

 M = AllocateMatrix(KERNEL_SIZE, KERNEL_SIZE, 1);

 // initialize M elements

….

 cudaMemcpyToSymbol(Mc, M.elements,

 KERNEL_SIZE*KERNEL_SIZE*sizeof(float));

 ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd);

Use a thread block to calculate a tile of P
– Thread Block size determined by the TILE_SIZE

Tiling P

19

Each N element is used in calculating up to KERNEL_SIZE
* KERNEL_SIZE P elements (all elements in the tile)

Tiling N

20

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

Load a tile of N into shared memory (SM)
– All threads participate in loading

– A subset of threads then use each N element in SM

High-Level Tiling Strategy

21

TILE_SIZE
T

IL
E

_S
IZ

E

K
E

R
N

E
L_

S
IZ

E

KERNEL_SIZE

Input tiles need to be larger than output tiles.

22

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

3 4 5 6 7
2 3 4 5 6
1 2 3 4 5
2 3 5 6 7
0 1 1 3 1

Output Tile

Dealing with Mismatch

23

Use a thread block that matches input tile

Each thread loads one element of the input tile

Some threads do not participate in calculating output

There will be if statements and control divergence

Shifting from output coordinates to input coordinates

24

Shifting from output coordinates to input coordinate

25

int tx = threadIdx.x;
int ty = threadIdx.y;
int row_o = blockIdx.y * TILE_SIZE + ty;
int col_o = blockIdx.x * TILE_SIZE + tx;

int row_i = row_o - 2;
int col_i = col_o - 2;

Threads that loads halos outside N should return 0.0

26

Taking Care of Boundaries

27

float output = 0.0f;

 if((row_i >= 0) && (row_i < N.height) &&
 (col_i >= 0) && (col_i < N.width)) {
 Ns[ty][tx] = N.elements[row_i*N.width + col_i];
 }
 else{
 Ns[ty][tx] = 0.0f;
 }

Some threads do not participate in calculating output

28

 if(ty < TILE_SIZE && tx < TILE_SIZE){
 for(i = 0; i < 5; i++) {
 for(j = 0; j < 5; j++) {
 output += Mc[i][j] * Ns[i+ty][j+tx];
 }
 }

Some threads do not write output

29

 if(row_o < P.height && col_o < P.width)
 P.elements[row_o * P.width + col_o] = output;

Setting Block Size

30

#define BLOCK_SIZE (TILE_SIZE + 4)

dim3 dimBlock(BLOCK_SIZE,BLOCK_SIZE);

In general, block size should be tile size + (kernel size -1)

Tiling Benefit Analysis

31

Start with KERNEL_SIZE = 5

Each point in an input tile is
used multiple times.
– Each boundary point (blue) is used

9 times

– Each second boundary point
(yellow) is used 16 times

– Each inner boundary point (red) is
used 25 times

Reuse Analysis

32

For TILE_SIZE = 12
– 44 boundary points

– 36 boundary points

– 64 inside points

– Total uses 44*9 + 36*16 + 64*25 = 396+576+1600 = 2572

– Average reuse = 2572/144 = 17.9

As TILE_SIZE increases, the average reuse approach 25

In General

33

The number of boundary layers is proportional to the
KERNEL_SIZE

The maximal reuse of each data point is (KERNEL_SIZE) 2

BLOCK_SIZE is limited by the maximal number of threads in
a thread block

Input tile sizes could be could be N*TILE_SIZE +
(KERNEL_SIZE-1)
– By having each thread to calculate N input points (thread coarsening)

– N is limited is limited by the shared memory size

KERNEL_SIZE is decided by application needs

www.bsc.es

Applied CUDA Programming
Lecture 5: Reductions

Partition and Summarize

A commonly used strategy for processing large input data
sets
– There is no required order of processing elements in a data set

(associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from each chunk into the
final answer

We will focus on the reduction tree step for now.

Google and Hadoop MapReduce frameworks are examples of
this pattern

2

Reduction enables other techniques

Reduction is also needed to clean up after some commonly
used parallelizing transformations

Privatization
– Multiple threads write into an output location

– Replicate the output location so that each thread has a private output
location

– Use a reduction tree to combine the values of private locations into the
original output location

3

What is a reduction computation

Summarize a set of input values into one value using a
“reduction operation”
– Max

– Min

– Sum

– Product

– Often with user defined reduction operation function as long as the
operation

• Is associative and commutative

• Has a well-defined identity value (e.g., 0 for sum)

4

A sequential reduction algorithm performs N operations

Initialize the result as an identity value for the reduction
operation
– Smallest possible value for max reduction

– Largest possible value for min reduction

– 0 for sum reduction

– 1 for product reduction

Scan through the input and perform the reduction operation
between the result value and the current input value

5

A parallel reduction performs N-1 Operations in log(N) steps

3 1 7 0 4 1 6 3

3 7 4 6

ma
x

ma
x

ma
x

ma
x

ma
x

ma
x

7 6

ma
x

7

6

A Quick Analysis

For N input values, the reduction tree performs
– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1 operations

– In Log (N) steps – 1,000,000 input values take 20 steps
• Assuming that we have enough execution resources

– Average Parallelism (N-1)/Log(N))
• For N = 1,000,000, average parallelism is 50,000

• However, peak resource requirement is 500,000!

This is a work-efficient parallel algorithm
– The amount of work done is comparable to sequential

– Many parallel algorithms are not work efficient

7

A Sum Reduction Example

Parallel implementation:
– Recursively halve # of threads, add two values per thread in each

step

– Takes log(n) steps for n elements, requires n/2 threads

Assume an in-place reduction using shared memory
– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each step brings the partial sum vector closer to the sum

– The final sum will be in element 0

– Reduces global memory traffic due to partial sum values

8

Vector Reduction with Branch Divergence

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Thread 0 Thread 4 Thread 1 Thread 2 Thread 3 Thread 5

9

A Sum Example

3 1 7 0 4 1 6

4 7 5 9

11 14

25

1

2

3
steps

Thread 0 Thread 1 Thread 2 Thread 3

Dat
a

3

Active Partial
Sum elements

10

Simple Thread Index to Data Mapping

Each thread is responsible of an even-index location of the
partial sum vector
– One input is the location of responsibility

After each step, half of the threads are no longer needed

In each step, one of the inputs comes from an increasing
distance away

11

A Simple Thread Block Design

Each thread block takes 2* BlockDim input elements
Each thread loads 2 elements into shared memory
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] =
 input[start + t];
partialSum[blockDim+t] =
 input[start+ blockDim.x+t];

12

The Reduction Steps

for (unsigned int stride = 1;
 stride < blockDim.x; stride *= 2)
{
 __syncthreads();
 if (t % stride == 0)
 partialSum[2*t]+= partialSum[2*t+stride];
}

Why do we need syncthreads()?

13

Barrier Synchronization

syncthreads() are needed to ensure that all elements of each
version of partial sums have been generated before we
proceed to the next step

Why do we not need another syncthread() at the end of the
reduction loop?

14

Back to the Global Picture

Thread 0 in each thread block write the sum of the thread
block in partialSum[0] into a vector indexed by the blockIdx.x

There can be a large number of such sums if the original
vector is very large
– The host code may iterate and launch another kernel

If there are only a small number of sums, the host can simply
transfer the data back and add them together.

15

Some Observations

In each iteration, two control flow paths will be sequentially
traversed for each warp
– Threads that perform addition and threads that do not
– Threads that do not perform addition still consume execution resources

No more than half of threads will be executing after the first
step
– All odd index threads are disabled after first step
– After the 5th step, entire warps in each block will fail the if test, poor

resource utilization but no divergence.
• This can go on for a while, up to 5 more steps (1024/32=16= 25), where

each active warp only has one productive thread until all warps in a block
retire

16

Thread Index Usage Matters

In some algorithms, one can shift the index usage to improve
the divergence behavior
– Commutative and associative operators

Example - given an array of values, “reduce” them to a single
value in parallel

– Sum reduction: sum of all values in the array

– Max reduction: maximum of all values in the array

– …

17

A Better Strategy

Always compact the partial sums into the first locations in the
partialSum[] array

Keep the active threads consecutive

18

An Example of 16 threads
Thread 0

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31

Thread 1 Thread 2 Thread 14 Thread 15

19

A Better Reduction Kernel

for (unsigned int stride = blockDim.x/2;
 stride >= 1; stride >>= 1)
{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];
}

20

A Quick Analysis

For a 1024 thread block
– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each
step

– The final 5 steps will still have divergence

21

www.bsc.es

Introduction to CUDA Programming
Lecture 9: MPI and CUDA Programming

2

Outline

MPI for dummies

MPI meets CUDA

MPI and CUDA Example: 3D Stencil

MPI and CUDA 4.0

3

Message Passing Interface

MPI is a standard message passing API

Oriented to cluster machines
– Distributed memory

– Hides underlying interconnection network

Processes execute on different nodes of a network

4

MPI Model

Many processes distributed in a cluster

Each process computes part of the output

Processes communicate with each other

Processes can synchronize

Node Node Node Node

5

MPI Message Types

Point-to-point communication
– Send and Receive

Collective communication
– Barrier

– Broadcast

– Reduce

– Gather and Scatter

6

MPI Initialization, Info and Sync

int MPI_Init(int *argc, char ***argv)
– Initialize MPI

MPI_COMM_WORLD
– MPI group with all allocated nodes

int MPI_Comm_rank (MPI_Comm comm, int *rank)
– Rank of the calling process in group of comm

int MPI_Comm_size (MPI_Comm comm, int *size)
– Number of processes in the group of comm

int MPI_Barrier (MPI_Comm comm)
– Blocks the caller until all group members have called it; the call returns

at any process only after all group members have entered the call.

7

MPI Sending Data

int MPI_Send(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)
– Buf: Initial address of send buffer (choice)

– Count: Number of elements in send buffer (nonnegative integer)

– Datatype: Datatype of each send buffer element (handle)

– Dest: Rank of destination (integer)

– Tag: Message tag (integer)

– Comm: Communicator (handle)

DATA_DISTRIBUTE: Send to all nodes

8

MPI Receiving Data

int MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)
– Buf: Initial address of receive buffer (choice)

– Count: Maximum number of elements in receive buffer (integer)

– Datatype: Datatype of each receive buffer element (handle)

– Source: Rank of source (integer)

– Tag: Message tag (integer)

– Comm: Communicator (handle)

– Status: Status object (Status)

9

MPI Sending and Receiving Data

int MPI_Sendrecv(void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest, int sendtag, void
*recvbuf, int recvcount, MPI_Datatype recvtype, int
source, int recvtag, MPI_Comm comm, MPI_Status
*status)
– Sendbuf: Initial address of send buffer (choice)
– Sendcount: Number of elements in send buffer (integer)
– Sendtype: Type of elements in send buffer (handle)
– Dest: Rank of destination (integer)
– Sendtag: Send tag (integer)
– Recvcount: Number of elements in receive buffer (integer)
– Recvtype: Type of elements in receive buffer (handle)
– Source: Rank of source (integer)
– Recvtag: Receive tag (integer)
– Comm: Communicator (handle)
– Recvbuf: Initial address of receive buffer (choice)
– Status: Status object (Status). This refers to the receive

operation.

10

Outline

MPI for dummies

MPI meets CUDA

MPI and CUDA Example: 3D Stencil

MPI and CUDA 4.0

11

CUDA-based cluster

Each node contains N GPUs

…

…

GPU 0 GPU N
P

C
Ie

P
C

Ie

CPU 0 CPU M

Host Memory

…

…

GPU 0 GPU N

P
C

Ie

P
C

Ie

CPU 0 CPU M

Host Memory

12

CUDA and MPI Communication

Source MPI process:
– cudaMemcpy(tmp,src, cudaMemcpyDeviceToHost)
– MPI_Send()

Destination MPI process:
– MPI_Recv()
– cudaMemcpy(dst, src, cudaMemcpyDeviceToDevice)

GPU 0

GPU 1

Device
Memory

Device
Memory

MPI Process
N

MPI Process
N + 1

13

Outline

MPI for dummies

MPI meets CUDA

MPI and CUDA Example: 3D Stencil

MPI and CUDA 4.0

14

Stencil Code: Main Process

int main(int argc, char *argv[]) {
 int pad = 0, dimx = 480+pad, dimy = 480, dimz = 400, nreps = 100;
 int pid=-1, np=-1;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &pid);
 MPI_Comm_size(MPI_COMM_WORLD, &np);

 if(np < 3) {
 if(0 == pid) printf(“Nedded 3 or more processes.\n");
 MPI_Abort(MPI_COMM_WORLD, 1); return 1;
 }
 if(pid < np - 1)
 compute_node_stencil(dimx, dimy, dimz / (np - 1), nreps);
 else
 data_server(dimx,dimy,dimz, nreps);

 MPI_Finalize();
 return 0;
}

15

Stencil Domain Decomposition

Volumes are split into tiles (along the Z-axis)
– 3D-Stencil introduces data dependencies

y z

x

D1

D2

D3

D4

16

Stencil Code: Server Process (I)

void data_server(int dimx, int dimy, int dimz, int nreps) {
 int np, num_comp_nodes = np – 1, first_node = 0, last_node = np - 2;
 unsigned int num_points = dimx * dimy * dimz;
 unsigned int num_bytes = num_points * sizeof(float);
 float *input=0, *output=0;
 /* Set MPI Communication Size */
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 /* Allocate input data */
 input = (float *)malloc(num_bytes);
 output = (float *)malloc(num_bytes);
 if(input == NULL || output == NULL) {
 printf("server couldn't allocate memory\n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 }
 /* Initialize input data */
 random_data(input, dimx, dimy ,dimz , 1, 10);
 /* Calculate number of shared points */
 int edge_num_points = dimx * dimy * (dimz / num_comp_nodes + 4);
 int int_num_points = dimx * dimy * (dimz / num_comp_nodes + 8);
 float *send_address = input;

17

Stencil Code: Server Process (II)

 /* Send data to the first compute node */
 MPI_Send(send_address, edge_num_points, MPI_REAL, first_node,
 DATA_DISTRIBUTE, MPI_COMM_WORLD);
 send_address += dimx * dimy * (dimz / num_comp_nodes - 4);

 /* Send data to "internal" compute nodes */
 for(int process = 1; process < last_node; process++) {
 MPI_Send(send_address, int_num_points, MPI_REAL, process,
 DATA_DISTRIBUTE, MPI_COMM_WORLD);
 send_address += dimx * dimy * (dimz / num_comp_nodes);
 }

 /* Send data to the last compute node */
 MPI_Send(send_address, edge_num_points, MPI_REAL, last_node,
 DATA_DISTRIBUTE, MPI_COMM_WORLD);

18

Stencil Code: Main Process (I)

 /* Wait for nodes to compute */
 MPI_Barrier(MPI_COMM_WORLD);

 /* Collect output data */
 MPI_Status status;
 for(int process = 0; process < num_comp_nodes; process++)
 MPI_Recv(output + process * num_points / num_comp_nodes,
 num_points / num_comp_nodes, MPI_REAL, process,
 DATA_COLLECT, MPI_COMM_WORLD, &status);

 /* Store output data */
 store_output(output, dimx, dimy, dimz);

 /* Release resources */
 free(input);
 free(output);
}

19

Boundary Exchange Example (I)

Approach: two-stage execution
– Stage 1: compute the field points to be exchanged

GPU1 GPU2

y z

x

20

Boundary Exchange Example (II)

Approach: two-stage execution
– Stage 2: Compute the remaining points while exchanging the

boundaries

GPU1 GPU2

y z

x

21

Stencil Code: Compute Process (I)

void compute_node_stencil(int dimx, int dimy, int dimz, int nreps) {
 int np, pid;
 MPI_Comm_rank(MPI_COMM_WORLD, &pid);
 MPI_Comm_size(MPI_COMM_WORLD, &np);

 unsigned int num_points = dimx * dimy * (dimz + 8);
 unsigned int num_bytes = num_points * sizeof(float);
 unsigned int num_ghost_points = 4 * dimx * dimy;
 unsigned int num_ghost_bytes = num_ghost_points * sizeof(float);

 int left_ghost_offset = 0;
 int right_ghost_offset = dimx * dimy * (4 + dimz);
 int left_stage1_offset = 0;
 int right_stage1_offset = dimx * dimy * (dimz - 4);
 int stage2_offset = num_ghost_points;

22

Stencil Code: Compute Process (II)

 float *h_input = NULL, *h_output = NULL;
 float *d_input = NULL, *d_output = NULL, *d_vsq = NULL;
 float *h_left_ghost_own = NULL, *h_right_ghost_own = NULL;
 float *h_left_ghost = NULL, *h_right_ghost = NULL;

 /* Alloc host memory */
 h_input = (float *)malloc(num_bytes);
 h_output = (float *)malloc(num_bytes);

 /* Alloc host memory for ghost data */
 cudaMallocHost((void **)&h_left_ghost_own, num_ghost_bytes);
 cudaMallocHost((void **)&h_right_ghost_own, num_ghost_bytes);
 cudaMallocHost((void **)&h_left_ghost, num_ghost_bytes);
 cudaMallocHost((void **)&h_right_ghost, num_ghost_bytes);

 /* Alloca device memory for input and output data */
 cudaMalloc((void **)&d_input, num_bytes);
 cudaMalloc((void **)&d_output, num_bytes);

23

Stencil Code: Compute Process (III)

 MPI_Status status;
 int left_neighbor = (pid > 0) ? (pid - 1) : MPI_PROC_NULL;
 int right_neighbor = (pid < np - 2) ? (pid + 1) : MPI_PROC_NULL;
 int server_process = np - 1;

 /* Get the input data from main process */
 float *rcv_address = h_input + num_ghost_points * (0 == pid);
 MPI_Recv(rcv_address, num_points, MPI_REAL, server_process,
 DATA_DISTRIBUTE, MPI_COMM_WORLD, &status);
 cudaMemcpy(d_input, h_input, num_bytes, cudaMemcpyHostToDevice);

 /* Upload stencil cofficients */
 upload_coefficients(coeff, 5);

 /* Create streams used for stencil computation */
 cudaStream_t stream1, stream2;
 cudaStreamCreate(&stream1);
 cudaStreamCreate(&stream2);

24

Stencil Code: Compute Process (IV)

 MPI_Barrier(MPI_COMM_WORLD);
 for(int i=0; I < nreps; i++) {

 /* Compute values needed by other nodes first */
 launch_kernel(d_output + left_stage1_offset,
 d_input + left_stage1_offset, dimx, dimy, 12, stream1);
 launch_kernel(d_output + right_stage1_offset,
 d_input + right_stage1_offset, dimx, dimy, 12, stream1);

 /* Compute the remaining points */
 launch_kernel(d_output + stage2_offset, d_input + stage2_offset,
 dimx, dimy, dimz, stream2);

 /* Copy the data needed by other nodes to the host */
 cudaMemcpyAsync(h_left_ghost_own,
 d_output + num_ghost_points,
 num_ghost_bytes, cudaMemcpyDeviceToHost, stream1);
 cudaMemcpyAsync(h_right_ghost_own,
 d_output + right_stage1_offset + num_ghost_points,
 num_ghost_bytes, cudaMemcpyDeviceToHost, stream1);
 cudaStreamSynchronize(stream1);

25

Stencil Code: Compute Process (V)

 /* Send data to left, get data from right */
 MPI_Sendrecv(h_left_ghost_own, num_ghost_points, MPI_REAL,
 left_neighbor, i, h_right_ghost,
 num_ghost_points, MPI_REAL, right_neighbor, i,
 MPI_COMM_WORLD, &status);
 /* Send data to right, get data from left */
 MPI_Sendrecv(h_right_ghost_own, num_ghost_points, MPI_REAL,
 right_neighbor, i, h_left_ghost,
 num_ghost_points, MPI_REAL, left_neighbor, i,
 MPI_COMM_WORLD, &status);

 cudaMemcpyAsync(d_output+left_ghost_offset, h_left_ghost,
 num_ghost_bytes, cudaMemcpyHostToDevice, stream1);
 cudaMemcpyAsync(d_output+right_ghost_offset, h_right_ghost,
 num_ghost_bytes, cudaMemcpyHostToDevice, stream1);
 cudaDeviceSynchronize();

 float *temp = d_output;
 d_output = d_input; d_input = temp;
 }

26

Stencil Code: Compute Process (VII)

 /* Wait for previous communications */
 MPI_Barrier(MPI_COMM_WORLD);

 float *temp = d_output;
 d_output = d_input;
 d_input = temp;

 /* Send the output, skipping ghost points */
 cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost);
 float *send_address = h_output + num_ghost_points;
 MPI_Send(send_address, dimx * dimy * dimz, MPI_REAL,
 server_process, DATA_COLLECT, MPI_COMM_WORLD);
 MPI_Barrier(MPI_COMM_WORLD);

 /* Release resources */
 free(h_input); free(h_output);
 cudaFreeHost(h_left_ghost_own); cudaFreeHost(h_right_ghost_own);
 cudaFreeHost(h_left_ghost); cudaFreeHost(h_right_ghost);
 cudaFree(d_input); cudaFree(d_output);
}

27

Outline

MPI for dummies

MPI meets CUDA

MPI and CUDA Example: 3D Stencil

MPI and CUDA 4.0

28

Without GPU Direct

There is an internal copy (not seen by the user) between
CUDA buffers and Infinibad buffers

29

With GPU Direct

There is no internal copy, increasing performance

The program code remains unchanged

30

CUDA 4.0 and MPI

MPI Processes handle more than one GPU

Peer GPU to GPU communication without need for MPI

GPU 0

GPU 1

Device
Memory

Device
Memory

MPI Process
N

31

GMAC and MPI

MPI Processes handle more than one GPU using several
CPU (host) threads

MPI calls use host (shared) memory addresses

GMAC double-buffers MPI send/receive commands

GPU 0

GPU 1

MPI Process
N

www.bsc.es

Applied CUDA Programming
Lecture 6: Prefix Scan

Objective

To master parallel Prefix Sum (Scan) algorithms
– frequently used for parallel work assignment and resource allocation

– A key primitive to in many parallel algorithms to covert serial
computation into parallel computation

– Based on reduction tree and reverse reduction tree

Reading –Mark Harris, Parallel Prefix Sum with CUDA
– http://developer.download.nvidia.com/compute/cuda/1_1/Website/proj

ects/scan/doc/scan.pdf

2

3

(Inclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary
associative operator ⊕, and an array of n elements
 [x0, x1, …, xn-1],

and returns the array
 [x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)].

Example: If ⊕ is addition, then the all-prefix-sums operation
on the array [3 1 7 0 4 1 6 3],
would return [3 4 11 11 15 16 22 25].

4

A Inclusive Scan Application Example

Assume that we have a 100-inch sausage to feed 10

We know how much each person wants in inches
– [3 5 2 7 28 4 3 0 8 1]

How do we cut the sausage quickly?

How much will be left

Method 1: cut the sections sequentially: 3 inches first, 5
inches second, 2 inches third, etc.

Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

5

Other Applications

Assigning camp slots

Assigning farmer market space

Allocating memory to parallel threads

Allocating memory buffer for communication channels

…

6

A Inclusive Sequential Prefix-Sum

Given a sequence [x0, x1, x2, ...]

Calculate output [y0, y1, y2, ...]

Such that y0 = x0

 y1 = x0 + x1

 y2 = x0 + x1+ x2

 …
Using a recursive definition
 yi = yi − 1 + xi

7

A Work Efficient C Implementation

y[0] = x[0];
for (i = 1; i < Max_i; i++) y[i] = y [i-1] + x[i];

Computationally efficient:
– N additions needed for N elements - O(N)!

8

A Naïve Inclusive Parallel Scan

Assign one thread to calculate each y element

Have every thread to add up all x elements needed for the y
element

 y0 = x0

 y1 = x0 + x1

 y2 = x0 + x1+ x2

“Parallel programming is easy as long as you do not care about
performance.”

Let’s Look at the Reduction Tree Again

9

3 1 7 0 4 1 6 3

4 7 5 9

+ + + +

+ +

11 14

+

25

Reduction Scan Step

10

10

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7 x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In place calculation

Final value after reduce

Inclusive Post Scan Step

11

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value to a central
location where it is needed

Inclusive Post Scan Step

12

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6

Putting All Together

13

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg

14

Reduction Step Kernel Code

/* scan_array[BLOCK_SIZE] is in shared memory */
int stride = 1;
while(stride < BLOCK_SIZE)
{
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index < BLOCK_SIZE)
 scan_array[index] += scan_array[index-stride];

 stride = stride*2;
 __syncthreads();
}

threadIdx.x+1 = 1, 2, 3, 4….
stride = 1, index =

Putting All Together

15

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg

16

Post Scan Step

int stride = BLOCK_SIZE >> 1;

while(stride > 0)
{
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index < BLOCK_SIZE) {
 scan_array[index+stride] += scan_array[index];
 }
 stride = stride >> 1;
 __syncthreads();
}

17

(Exclusive) Prefix-Sum (Scan) Definition

Definition: The all-prefix-sums operation takes a binary
associative operator ⊕, and an array of n elements
 [a0, a1, …, an-1],

and returns the array
 [0, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

Example: If ⊕ is addition, then the all-prefix-sums operation
on the array [3 1 7 0 4 1 6 3],
would return [0 3 4 11 11 15 16 22].

18

Why Exclusive Scan

To find the beginning address of allocated buffers

Inclusive and Exclusive scans can be easily derived from
each other; it is a matter of convenience

 [3 1 7 0 4 1 6 3]
Exclusive [0 3 4 11 11 15 16 22]
Inclusive [3 4 11 11 15 16 22 25]

Exclusive Post Scan Step

19

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 0

0

∑x0..x3

Exclusive Post Scan Step

20

20

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 0

0

+ +

∑x0..x3

∑x0..x3 ∑x0..x5
∑x0..x1 0

+ + + +

∑x0..x6 ∑x0..x5 ∑x0..x4 ∑x0..x3 ∑x0..x1 ∑x0..x2 x0
0

Inclusive Post Scan Step

21

+

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6

Exclusive Scan Example – Reduction Step

22

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

Reduction Step (cont.)

23

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

Reduction Step (cont.)

24

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

Reduction Step (cont.)

25

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each corresponds
to a single thread.

Zero the Last Element

26

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

Post Scan Step from Partial Sums

27

T 3 4 7 11 4 5 6 0

Post Scan Step from Partial Sums (cont.)

28

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each corresponds
to a single thread.

Post Scan From Partial Sums (cont.)

29

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Stride 4

Stride 2

Each corresponds
to a single thread.

Post Scan Step From Partial Sums (cont.)

30

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 threads

Stride 2

Stride 4

Stride 1

Each corresponds
to a single thread.

31

Work Analysis

The parallel Inclusive Scan executes 2* log(n) parallel
iterations
– log(n) in reduction and log(n) in post scan

– The iterations do n/2, n/4,..1, 1, …., n/4. n/2 adds

– Total adds: 2* (n-1) O(n) work

The total number of adds is no more than twice of that done
in the efficient sequential algorithm
– The benefit of parallelism can easily overcome the 2X work

A Plausible Parallel Scan Algorithm

32

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 3 0

A Plausible Parallel Scan Algorithm

33

1. (previous slide)

2. Iterate log(n)

times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

• Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T0 and
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 0 3 4 8 7 4 5 7
Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 3 0

A Plausible Parallel Scan Algorithm

34

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)
 Iteration #2

Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 3 0

A Plausible Parallel Scan Algorithm

35

T1 0 3 4 11 11 15 16 22

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)
 Iteration #3

Stride = 4

In 3 1 7 0 4 1 6 3 0

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

A Plausible Parallel Scan Algorithm

36

Out 0 3 4 11 11 15 16 22

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

3. Write output to device
memory.

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 3 0

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

37

Work Efficiency Considerations

The plausible parallel Scan executes log(n) parallel iterations
– The steps do (n-1), (n-2), (n-4),..(n- n/2) adds

– Total adds: n * log(n) + (n-1) O(n*log(n)) work

This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

A parallel algorithm can be slow when execution resources
are saturated due to low work efficiency

38

Working on Arbitrary Length Input

Build on the scan kernel that handles up to 2*blockDim
elements

Have each section of 2*blockDim elements assigned to each
block

Have each block write the sum of its section into a Sum array
indexed by blockIdx.x

 Run parallel scan on the Sum array
– May need to break down Sum into multiple sections if it is too big for a

block

Add the scanned Sum array values to the elements of
corresponding sections

Overall Flow of Complete Scan

39

BSC, see IPR notice Spring / Summer 2012

PRACE Training @ BSC 14

PATC training, Barcelona, May 2012 ‹#›

INTELLECTUAL PROPERTY RIGHTS
NOTICE:

• The User may only download, make and retain a copy of
the materials for his/her use for non‐commercial and
research purposes.

• The User may not commercially use the material, unless
has been granted prior written consent by the Licensor
to do so; and cannot remove, obscure or modify
copyright notices, text acknowledging or other means of
identification or disclaimers as they appear.

• For further details, please contact BSC‐CNS patc@bsc.es

	PATC IPR notice
	CUDA Programming
	1_intro
	Introduction to CUDA Programming
	Disclaimer
	Course Goals
	Text/Notes
	The advent of GPUs
	Performance Advantage of GPUs
	GPU computing is catching on
	CPUs vs. GPUs
	CPUs: Latency Oriented Design
	GPUs: Throughput Oriented Design
	Stretching Traditional Architectures
	Winning Applications Use Both CPU and GPU
	A Common GPU Usage Pattern
	CUDA /OpenCL – Execution Model
	THE GPU Model
	From Natural Language to Electrons
	The ISA
	A program at the ISA level
	The Von-Neumann Model
	Arrays of Parallel Threads
	Thread Blocks: Scalable Cooperation
	blockIdx and threadIdx
	Vector Addition – Conceptual View
	Vector Addition – Traditional C Code
	Heterogeneous Computing vecAdd Host Code
	Partial Overview of CUDA Memories
	CUDA Device Memory Management API functions
	Host-Device Data Transfer API functions
	Heterogeneous Computing vecAdd Host Code
	Example: Vector Addition Kernel
	Example: Vector Addition Kernel
	More on Kernel Launch
	More on CUDA Function Declarations
	Kernel execution in a nutshell
	Compiling A CUDA Program

	2_cuda_model
	Introduction to CUDA Programming
	Block IDs and Thread IDs
	A Simple Example: Matrix Multiplication
	Square Matrix-Matrix Multiplication
	Memory Layout of a Matrix in C
	Square Matrix-Matrix Multiplication
	Kernel Function - A Small Example
	A Slightly Bigger Example
	A Slightly Bigger Example (cont.)
	Kernel Invocation (Host-side Code)
	Kernel Function
	Block (0,0) in a TILE_WIDTH = 2 Configuration
	Work for Block (1,0)
	Work for Block (0,1)
	Work for Block (1,1)
	A Simple Matrix Multiplication Kernel
	CUDA Thread Block
	Review of parallel execution
	History of parallelism
	History - Cont’d
	History – Instruction Level Parallelism
	Instruction Level Parallelism (Cont.)
	History – Cont’d
	Transparent Scalability
	Example: Executing Thread Blocks
	The Von-Neumann Model
	Example: Thread Scheduling
	Going back to the program
	Instructions and performance
	Operate Instructions
	Data Transfer Instructions
	Control Flow Operations
	How thread blocks are partitioned
	Control Flow Instructions
	Example: Thread Scheduling (Cont.)
	Block Granularity Considerations
	Application Programming Interface
	Common Runtime Component: Mathematical Functions
	Device Runtime Component: Mathematical Functions

	3_streams
	Introduction to CUDA Programming
	Objective
	Allocate/Free Pinned Memory (a.k.a. Page Locked Memory)
	Using Pinned Memory
	Serialized Data Transfer and GPU computation
	Device Overlap
	Overlapped (Pieplined) Timing
	Using CUDA Streams and Asynchronous MemCpy
	Conceptual View of Streams
	A Simple Multi-Stream Host Code
	A Simple Multi-Stream Host Code (Cont.)
	A View Closer to Reality
	Not quite the overlap want
	A Better Multi-Stream Host Code (Cont.)
	A View Closer to Reality
	Overlapped (Pipelined) Timing

	4_shared_memory
	Introduction to CUDA Programming
	Transparent Scalability
	Example: Executing Thread Blocks
	The Von-Neumann Model
	The Von-Neumann Model with SIMD units
	Example: Thread Scheduling
	How thread blocks are partitioned
	Control Flow Operations
	Control Flow Instructions
	Example: Thread Scheduling (Cont.)
	Outline of Tiling Technique
	Idea: Use Shared Memory to reuse global memory data
	Work for Block (0,0)
	Tiled Multiply
	Loading a Tile
	Work for Block (0,0)
	Work for Block (0,0)
	Work for Block (0,0)
	Work for Block (0,0)
	Barrier Synchronization
	Loading an M Tile
	Tiled Matrix Multiplication Kernel
	Loading an N Tile
	First-order Size Considerations
	Shared Memory and Threading
	Summary- Typical Structure of a CUDA Program

	5_constant_memory
	Introduction to CUDA Programming
	2D Convolution – Inside Cells
	2D Convolution – Halo Cells
	Access Pattern for M
	Programmer View of CUDA Memories
	Memory Hierarchies
	Cache - Cont’d
	Cache - Cont’d
	Caches - Cont’d
	Scratchpad vs. Cache
	Cache Coherence Protocol
	CPU and GPU have different caching philosophy
	How to Use Constant Memory
	More on Constant Caching
	Some Header File Stuff for M
	AllocateMatrix()
	AllocateMatrix() (Cont.)
	Host Code
	Tiling P
	Tiling N
	High-Level Tiling Strategy
	Input tiles need to be larger than output tiles.
	Dealing with Mismatch
	Shifting from output coordinates to input coordinates
	Shifting from output coordinates to input coordinate
	Threads that loads halos outside N should return 0.0
	Taking Care of Boundaries
	Some threads do not participate in calculating output
	Some threads do not write output
	Setting Block Size
	Tiling Benefit Analysis
	Reuse Analysis
	In General

	6_reduction
	Applied CUDA Programming
	Partition and Summarize
	Reduction enables other techniques
	What is a reduction computation
	A sequential reduction algorithm performs N operations
	A parallel reduction performs N-1 Operations in log(N) steps
	A Quick Analysis
	A Sum Reduction Example
	Vector Reduction with Branch Divergence
	A Sum Example
	Simple Thread Index to Data Mapping
	A Simple Thread Block Design
	The Reduction Steps
	Barrier Synchronization
	Back to the Global Picture
	Some Observations
	Thread Index Usage Matters
	A Better Strategy
	An Example of 16 threads
	A Better Reduction Kernel
	A Quick Analysis

	7_mpi
	Introduction to CUDA Programming
	Outline
	Message Passing Interface
	MPI Model
	MPI Message Types
	MPI Initialization, Info and Sync
	MPI Sending Data
	MPI Receiving Data
	MPI Sending and Receiving Data
	Outline
	CUDA-based cluster
	CUDA and MPI Communication
	Outline
	Stencil Code: Main Process
	Stencil Domain Decomposition
	Stencil Code: Server Process (I)
	Stencil Code: Server Process (II)
	Stencil Code: Main Process (I)
	Boundary Exchange Example (I)
	Boundary Exchange Example (II)
	Stencil Code: Compute Process (I)
	Stencil Code: Compute Process (II)
	Stencil Code: Compute Process (III)
	Stencil Code: Compute Process (IV)
	Stencil Code: Compute Process (V)
	Stencil Code: Compute Process (VII)
	Outline
	Without GPU Direct
	With GPU Direct
	CUDA 4.0 and MPI
	GMAC and MPI

	8_scan
	Applied CUDA Programming
	Objective
	(Inclusive) Prefix-Sum (Scan) Definition
	A Inclusive Scan Application Example
	Other Applications
	A Inclusive Sequential Prefix-Sum
	A Work Efficient C Implementation
	A Naïve Inclusive Parallel Scan
	Let’s Look at the Reduction Tree Again
	Reduction Scan Step
	Inclusive Post Scan Step
	Inclusive Post Scan Step
	Putting All Together
	Reduction Step Kernel Code
	Putting All Together
	Post Scan Step
	(Exclusive) Prefix-Sum (Scan) Definition
	Why Exclusive Scan
	Exclusive Post Scan Step
	Exclusive Post Scan Step
	Inclusive Post Scan Step
	Exclusive Scan Example – Reduction Step
	Reduction Step (cont.)
	Reduction Step (cont.)
	Reduction Step (cont.)
	Zero the Last Element
	Post Scan Step from Partial Sums
	Post Scan Step from Partial Sums (cont.)
	Post Scan From Partial Sums (cont.)
	Post Scan Step From Partial Sums (cont.)
	Work Analysis
	A Plausible Parallel Scan Algorithm
	A Plausible Parallel Scan Algorithm
	A Plausible Parallel Scan Algorithm
	A Plausible Parallel Scan Algorithm
	A Plausible Parallel Scan Algorithm
	Work Efficiency Considerations
	Working on Arbitrary Length Input
	Overall Flow of Complete Scan

	PATC IPR notice

