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PRACE Training Course: Introduction to CUDA Programming 

Area: Core HPC Curriculum 

Level: BEGINNERS: for trainees from different background and very little knowledge 
 
Prerequisites:  
Basic knowledge of C/C++ programming 
Attendees will need to bring their own laptops with a SSH client 
 
Convener: Isaac Gelado 
 
Objectives:  
The aim of this course is to provide students with knowledge and hands-on experience 
in developing applications software for processors with massively parallel computing 
resources. In general, we refer to a processor as massively parallel if it has the ability to 
complete more than 64 arithmetic operations per clock cycle. Many commercial 
offerings from NVIDIA, AMD, and Intel already offer such levels of concurrency. 
Effectively programming these processors will require in-depth knowledge about parallel 
programming principles, as well as the parallelism models, communication models, and 
resource limitations of these processors. The target audiences of the course are 
students who want to develop exciting applications for these processors, as well as 
those who want to develop programming tools and future implementations for these 
processors. 
 
Learning Outcomes: 
The students who finish this course will learn how to program massively parallel 
processors and achieve high performance, functionality, maintainability, and scalability 
across future generations. 
The students who finish this course will acquire technical knowledge required to achieve 
the above goals by learning principles and patterns of parallel algorithms, processor 
architecture features and constraints, and programming API, tools and techniques. 
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Timetable 
 
Day 1 / Session 1 / 9am - 1 pm: (3h lectures with 5 min breaks on the hour)  

1. Introduction to CUDA  
2. CUDA Threading Model (I) 
3. CUDA Threading Model (II) 

 
Session 2 / 2 pm- 6 pm: 3h practical session – lab exercises  

Day 2 / Session 3 / 9am- 1 pm: (3h practical session) 

1. CUDA Memory Model 
2. Matrix Multiplication – Shared Memory 
3. 2D Convolution – Constant Memory 

 
Session 4 / 2 pm- 6 pm: 3h practical session – lab exercises 

 

Day 3 / Session 5 / 9am- 1 pm: (3h practical session)  

1. CUDA Memory Model 
2. Matrix Multiplication – Shared Memory 
3. 2D Convolution – Constant Memory 

 
Session 6 / 2 pm- 6 pm: 3h practical session – lab exercises  

 

Day 4 / Session 7 / 9am- 1 pm: (3h practical session)  

1. Parallel Reductions 
2. Memory Bandwidth Considerations 
3. Prefix Scan 

 
Session 8 / 2 pm- 6 pm: 3h practical session – lab exercises 

 
END of COURSE 
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Introduction to CUDA Programming 

Lecture 1: Introduction 



Disclaimer 

All the material of this Seminar is based on the ECE408 
course imparted at the University of Illinois 

All the credit for this material goes to: 
– Prof. Wen-mei W. Hwu 

• Full Professor at the ECE and CS Departments in 
the University of Illinois 

• Director of the Blue-Waters Supercomputer 

– David Kirk 
• NVIDIA Fellow 

• Professor of ECE 

 



Course Goals 

Learn how to program massively parallel processors and 
achieve 
– high performance 
– functionality and maintainability 
– scalability across future generations 

Acquire technical knowledge required to achieve the above 
goals 
– principles and patterns of parallel algorithms 
– processor architecture features and constraints 
– programming API, tools and techniques 



Text/Notes 

1. D. Kirk and W. Hwu, “Programming Massively 
Parallel Processors – A Hands-on Approach,” 
Morgan Kaufman Publisher, 2010, ISBN 978-
0123814722  

2. NVIDIA, NVidia CUDA C Programming Guide, 
version 4.0, NVidia, 2011 (reference book) 

3. Lecture notes and recordings will be posted at the 
class web site 



THE ADVENT OF GPUS 
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Performance Advantage of GPUs 

An enlarging peak performance advantage: 
– Calculation: 1 TFLOPS vs. 100 GFLOPS 
– Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s 

Courtesy: John Owens 



GPU computing is catching on 

280 submissions to GPU Computing Gems 
– 110 articles included in two volumes 
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CPUs vs. GPUs 

CPUs and GPUs have fundamentally different design 
philosophies 

Cache 

ALU 

Control 

ALU 

ALU 

ALU 

DRAM 

CPU 

DRAM 

GPU 



CPUs: Latency Oriented Design  

Large caches 
– Convert long latency memory accesses to short latency cache 

accesses 

Sophisticated control 
– Branch prediction for reduced  

branch latency 

– Data forwarding for reduced data  
latency 

Powerful ALU 
– Reduced operation latency 

 

Cache 

ALU 

Control 

ALU 

ALU 

ALU 

DRAM 

CPU 



GPUs: Throughput Oriented Design 

Small caches 
– To boost memory throughput 

 

Simple control 
– No branch prediction 

– No data forwarding 

 

Energy efficient ALUs 
– Many, long latency but heavily pipelined for high throughput 

 

Require massive number of threads to tolerate latencies 

DRAM 

GPU 



Traditional applications

Current architecture 
coverage

New applications

Domain-specific
architecture coverage

Obstacles

Stretching Traditional Architectures  

Traditional parallel 
architectures cover some 
super-applications 
– DSP, GPU, network apps, 

Scientific 

 

The game is to grow 
mainstream architectures 
“out” or domain-specific 
architectures “in” 
– CUDA is latter 

 



CPUs for sequential 
parts where latency 
matters 
– CPUs can be 10+X faster 

than GPUs for sequential 
code 

 

GPUs for parallel 
parts where 
throughput wins 
– GPUs can be 10+X faster 

than CPUs for parallel code 

Winning Applications Use Both CPU and GPU  



A Common GPU Usage Pattern 

A desirable approach considered impractical 
– Due to excessive computational requirement 

– But demonstrated to achieve domain benefit 

– Convolution filtering (e.g. bilateral Gaussian filters), De Novo gene 
assembly, etc. 

Use GPUs to accelerate the most time-consuming aspects of 
the approach 
– Kernels in CUDA 

– Refactor host code to better support kernels 

Rethink the domain problem 



Integrated host+device app C program 
– Serial or modestly parallel parts in host C code 

– Highly parallel parts in device SPMD kernel C code 

CUDA /OpenCL – Execution Model 

Serial Code (host)  

. . . 

. . . 

Parallel Kernel (device)  

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)  

Parallel Kernel (device)  

KernelB<<< nBlk, nTid >>>(args); 



THE GPU MODEL 
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From Natural Language to Electrons 

Natural Language (e.g, English) 

Algorithm 

High-Level Language (C/C++…) 

Instruction Set Architecture 

Microarchitecture 

Circuits 

Electrons 
 

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond 

Compiler 



The ISA 

An Instruction Set Architecture (ISA) is a contract 
between the hardware and the software. 

 

As the name suggests, it is a set of instructions that 
the architecture (hardware) can execute. 



A program at the ISA level 

A program is a set of instructions stored in memory 
that can be read, interpreted, and executed by the 
hardware. 

 

Program instructions operate on data stored in 
memory or provided by Input/Output (I/O) device. 



The Von-Neumann Model 

Memory 

Control Unit 
 
 

I/O 

ALU 
Reg 
File 

PC IR 

Processing Unit 



20 

i = blockIdx.x * blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
0 1 2 254 255 

… 

A CUDA kernel is executed by a grid (array) of threads 
– All threads in a grid run the same kernel code (SPMD) 

– Each thread has an index that it uses to compute memory 
addresses and make control decisions 

Arrays of Parallel Threads 



Divide thread array into multiple blocks 
– Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization 

– Threads in different blocks cannot cooperate 

Thread Blocks: Scalable Cooperation 

… 
i = blockIdx.x * 
blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
0 1 2 

25
4 

25
5 

Thread Block 1 

… 

i = blockIdx.x * 
blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
0 1 2 

25
4 

25
5 

Thread Block 0 

… 

i = blockIdx.x * 
blockDim.x + 
threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
0 1 2 

25
4 

25
5 

Thread Block N-1 

… 



• Each thread uses indices to 
decide what data to work 
on 
– blockIdx: 1D, 2D, or 3D 

(CUDA 4.0) 
– threadIdx: 1D, 2D, or 3D  

• Simplifies memory 
addressing when 
processing 
multidimensional data 
– Image processing 
– Solving PDEs on volumes 
– … 

 

 

blockIdx and threadIdx 



A[0] vector  A 

vector  B 

vector  C 

A[1] A[2] A[3] A[4] A[N-1] 

B[0] B[1] B[2] B[3] 

… 

B[4] … B[N-1] 

C[0] C[1] C[2] C[3] C[4] C[N-1] … 

+ + + + + + 

Vector Addition – Conceptual View 



Vector Addition – Traditional C Code 

// Compute vector sum C = A+B 
void vecAdd(float* A, float* B, float* C, int n) 
{ 
  for (i = 0, i < n, i++) 
    C[i] = A[i] + B[i]; 
} 

 
int main() 
{ 
    // Memory allocation for A_h, B_h, and C_h 
   // I/O to read A_h and B_h, N elements 
   … 
    vecAdd(A_h, B_h, C_h, N); 
} 



Heterogeneous Computing vecAdd Host Code 

void vecAdd(float* A, float* B, float* C, int n)  
{ 
   int size = n* sizeof(float);  
   float* A_d, B_d, C_d; 
   … 
1. // Allocate device memory for A, B, and C 
    // copy A and B to device memory  
     
2. // Kernel launch code – to have the device 
    // to perform the actual vector addition 
 
3. // copy C from the device memory 
    // Free device vectors 
} 
 

CPU 

Host Memory 

GPU 
Part 2 

Device Memory 

Part 1 

Part 3 



Device code can: 

– R/W per-thread registers 

– R/W per-grid global memory 
 

Host code can 

– Transfer data to/from per 
grid global memory  

Partial Overview of CUDA Memories 

(Device) Grid 

Global 
Memory 

Block (0, 0) 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

We will cover more later. 

 



Grid 

Global Memory 

Block (0, 0) 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

cudaMalloc() 
– Allocates object in the device 

global memory 

– Two parameters 
• Address of a pointer to the 

allocated object 

• Size of of allocated object in 
terms of bytes 

cudaFree() 
– Frees object from device 

global memory 
• Pointer to freed object 

CUDA Device Memory Management API functions 

 



cudaMemcpy() 
– Memory data transfer 

– Requires four parameters 
• Pointer to destination  

• Pointer to source 

• Number of bytes copied 

• Type of transfer 

 
– Transfer to device is 

asynchronous 

Host-Device Data Transfer API functions 

Grid 

Global Memory 

Block (0, 0) 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

 



Heterogeneous Computing vecAdd Host Code 

void vecAdd(float* A, float* B, float* C, int n) 
{ 
   int size = n * sizeof(float);  
    float* A_d, B_d, C_d; 
 
1. // Transfer A and B to device memory  

    cudaMalloc((void **) &A_d, size); 
    cudaMemcpy(A_d, A, size); 
    cudaMalloc((void **) &B_d, size); 
    cudaMemcpy (B_d, B, size); 

 
     // Allocate device memory for 
     cudaMalloc((void **) &C_d, size); 
 
2.   // Kernel invocation code – to be shown later 
     … 
3.    // Transfer C from device to host 
     cudaMemcpy (C, C_d, size); 
       // Free device memory for A, B, C 
     cudaFree(A_d); cudaFree(B_d); cudaFree (C_d); 
 



Example: Vector Addition Kernel 

// Compute vector sum C = A+B 
// Each thread performs one pair-wise addition 
__global__ 
void vecAddKernel(float* A_d, float* B_d, float* C_d, int n) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    if(i<n) C_d[i] = A_d[i] + B_d[i]; 
} 

 
int vectAdd(float* A, float* B, float* C, int n) 
{ 
  // A_d, B_d, C_d allocations and copies omitted 
    // Run ceil(n/256) blocks of 256 threads each 
    vecAddKernel<<<ceil(n/256), 256>>>(A_d, B_d, C_d, n); 
} 

Device Code 



Example: Vector Addition Kernel 

// Compute vector sum C = A+B 
// Each thread performs one pair-wise addition 
__global__ 
void vecAddkernel(float* A_d, float* B_d, float* C_d, int n) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    if(i<n) C_d[i] = A_d[i] + B_d[i]; 
} 

 
int vecAdd(float* A, float* B, float* C, int n) 
{ 
 // A_d, B_d, C_d allocations and copies omitted  
 // Run ceil(n/256) blocks of 256 threads each 
  vecAddKernnel<<<ceil(n/256),256>>>(A_d, B_d, C_d, n); 
} 

Host Code 



More on Kernel Launch 

 
 
int vecAdd(float* A, float* B, float* C, int n) 
{ 
 // A_d, B_d, C_d allocations and copies omitted  
 // Run ceil(n/256) blocks of 256 threads each 
  dim3 DimGrid(ceil(n/256), 1, 1); 
  dim3 DimBlock(256, 1, 1); 
 
  vecAddKernnel<<<DimGrid,DimBlock>>>(A_d, B_d, C_d, n); 
} 
 
 

Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit synch needed for blocking 

Host Code 



•  __global__ defines a kernel function 
• Each “__” consists of two underscore characters 
• A kernel function must return void 

•  __device__ and __host__ can be used together 

More on CUDA Function Declarations 

host host __host__   float HostFunc()  

host device __global__ void  KernelFunc()  

device device __device__ float DeviceFunc()  

Only callable 
from the: 

Executed 
on the: 



__global__ 
void vecAddKernel(float *A_d, 
     float *B_d, float *C_d, int n) 
{ 
   int i = blockIdx.x * blockDim.x 
             + threadIdx.x; 
 
   if( i<n ) C_d[i] = A_d[i]+B_d[i]; 
} 

__host__ 
Void vecAdd() 
{ 
  dim3 DimGrid = (ceil(n/256,1,1); 
  dim3 DimBlock = (256,1,1); 
 
vecAddKernel<<<DimGrid,DimBlock>>>
(A_d,B_d,C_d,n); 
} 

Kernel execution in a nutshell 

Kernel Blk 0 Blk 
N-1 • • • 

GPU 
M0 

RAM 

Mk 
• • • 

Schedule onto multiprocessors 



Compiling A CUDA Program 

Integrated C programs with CUDA extensions 

NVCC Compiler 

Host C Compiler/ 
Linker 

Host Code Device Code (PTX) 

Device Just-in-Time 
Compiler 

Heterogeneous Computing Platform with 
CPUs, GPUs 
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Introduction to CUDA Programming 
Lecture 2: CUDA Parallel Execution Model 



Each thread uses IDs to decide 
what data to work on 
– Block ID: 1D, 2D, or 3D  

– Thread ID: 1D, 2D, or 3D  

Simplifies memory 
addressing when processing 
multidimensional data 
– Image processing 

– Solving PDEs on volumes 

– … 

2 

Block IDs and Thread IDs 

 



3 

A Simple Example: Matrix Multiplication 

A simple illustration of the basic features of memory and 
thread management in CUDA programs 
– Thread index usage 

– Memory layout 

– Register usage 

– Assume square matrix for simplicity 

– Leave shared memory usage until later 

 



4 

Square Matrix-Matrix Multiplication 
P = M * N of size WIDTH x WIDTH 
– Each thread calculates one element of P 

– Each row of M is loaded WIDTH times 
from global memory 

– Each column of N is loaded WIDTH times 
from global memory 

 

M 

N 

P 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 



Memory Layout of a Matrix in C 
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M2,0 

M1,1 

M1,0 M0,0 

M0,1 

M3,0 

M2,1 M3,1 

M2,0 M1,0 M0,0 M3,0 M1,1 M0,1 M2,1 M3,1 M1,2 M0,2 M2,2 M3,2 

M1,2 M0,2 M2,2 M3,2 

M1,3 M0,3 M2,3 M3,3 

M1,3 M0,3 M2,3 M3,3 

M 
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Square Matrix-Matrix Multiplication 
 
void MatrixMul(float* M, float* N, float* P, 
                int Width)  
{    
  for (int i = 0; i < Width; ++i)  
     for (int j = 0; j < Width; ++j) { 
        double sum = 0; 
        for (int k = 0; k < Width; ++k) { 
          double a = M[i * Width + k]; 
          double b = N[k * Width + j]; 
          sum += a * b; 
      } 
      P[i * Width + j] = sum; 
   } 
 } 

 

M 

N 

P 

 
 
 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 
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Have each 2D thread block to compute a 
(TILE_WIDTH)2 sub-matrix (tile) of the result matrix 
– Each has (TILE_WIDTH)2 threads 

Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks 

Kernel Function - A Small Example 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Block(0,0) Block(1,0) 

Block(1,1) Block(0,1) 

WIDTH = 4;   TILE_WIDTH = 2 
Each block has 2*2 = 4 threads 

WIDTH/TILE_WIDTH = 2 
Use 2* 2 = 4 blocks 



A Slightly Bigger Example 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

P5,0 P4,0 

P4,1 

P6,0 P7,0 

P5,1 

P4,2 P6,2 P7,2 P5,2 

P7,1 P6,1 

44,3 P6,3 P7,3 P5,3 

P1,4 P0,4 

P0,5 

P2,4 P3,4 

P1,5 

P0,6 P2,6 P3,6 P1,6 

P3,5 P2,5 

P0,7 P2,7 P3,7 P1,7 

P5,4 P4,4 

P4,5 

P6,4 P7,4 

P5,5 

P4,6 P6,6 P7,6 P5,6 

P7,5 P6,5 

P4,7 P6,7 P7,7 P5,7 

WIDTH = 8;   TILE_WIDTH = 2 
Each block has 2*2 = 4 threads 

WIDTH/TILE_WIDTH = 4 
Use 4* 4 = 16 blocks 

Block(0,0) Block(1,0) 

Block(0,1) 

Block(0,2) 

Block(2,0) Block(3,0) 



A Slightly Bigger Example (cont.) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

P5,0 P4,0 

P4,1 

P6,0 P7,0 

P5,1 

P4,2 P6,2 P7,2 P5,2 

P7,1 P6,1 

44,3 P6,3 P7,3 P5,3 

P1,4 P0,4 

P0,5 

P2,4 P3,4 

P1,5 

P0,6 P2,6 P3,6 P1,6 

P3,5 P2,5 

P0,7 P2,7 P3,7 P1,7 

P5,4 P4,4 

P4,5 

P6,4 P7,4 

P5,5 

P4,6 P6,6 P7,6 P5,6 

P7,5 P6,5 

P4,7 P6,7 P7,7 P5,7 

WIDTH = 8;   TILE_WIDTH = 4 
Each block has 4*4 =16 threads 

WIDTH/TILE_WIDTH = 2 
Use 2* 2 = 4 blocks 

Block(0,0) Block(1,0) 
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Kernel Invocation (Host-side Code) 

/* Setup the execution configuration */ 
/* TILE_WIDTH is a #define constant */ 
dim3 dimGrid(Width/TILE_WIDTH Width/TILE_WIDTH, 1); 
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1); 
 
/* Launch the device computation threads!*/ 
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

 



11 

Kernel Function 

/* Matrix multiplication kernel – per thread code */ 
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, 

int Width)  
{ 
    /* Pvalue is used to store the element of the matrix 
    that is computed by the thread */ 
    float Pvalue = 0; 

 



Col  = 0 *  (TILE_WIDTH) + threadIdx.x 
Row = 0 * (TILE_WIDTH) + threadIdx.y 

C
ol =

 0 
C

ol =
 1 

Block (0,0) in a TILE_WIDTH = 2 Configuration 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 

Row = 0 

Row = 1 

blockIdx.x blockIdx.y 



Work for Block (1,0) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Row = 0 

Row = 1 

C
ol =

 2 

C
ol =

 3 Col  = 1 * (TILE_WIDTH) + threadIdx.x 
Row = 0 * (TILE_WIDTH) + threadIdx.y 

blockIdx.x blockIdx.y 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 



Work for Block (0,1) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Row = 2 

Row = 3 

C
ol =

 0 
C

ol =
 1 Col  = 0 * (TILE_WIDTH) + threadIdx.x 

Row = 1 * (TILE_WIDTH) + threadIdx.y 

blockIdx.x blockIdx.y 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 



Work for Block (1,1) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

Row = 2 

Row = 3 

C
ol =

 2 

C
ol =

 3 Col  = 1 * (TILE_WIDTH) + threadIdx.x 
Row = 1 * (TILE_WIDTH) + threadIdx.y 

blockIdx.x blockIdx.y 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 
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A Simple Matrix Multiplication Kernel 

__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int 
Width) 

{ 

   /* Calculate the row index of the Pd element and M */ 

   int Row = blockIdx.y*blockDim.y + threadIdx.y; 

   /* Calculate the column idenx of Pd and N */ 

   int Col = blockIdx.x*blockDim.x + threadIdx.x; 

 

   float Pvalue = 0; 

   /* Each thread computes one element of the block sub- matrix */ 

   for (int k = 0; k < Width; ++k) 

      Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col]; 

 

   d_P[Row*Width+Col] = Pvalue; 

} 
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CUDA Thread Block 
All threads in a block execute the same kernel 
program (SPMD) 

Programmer declares block: 

– Block size 1 to 1024 concurrent threads 

– Block shape 1D, 2D, or 3D 

– Block dimensions in threads 

Threads have thread index numbers within block 

– Kernel code uses thread index and block index to 
select work and address shared data 

Threads in the same block share data and 
synchronize while doing their share of the work 

Threads in different blocks cannot cooperate 

– Each block can execute in any order relative to 
other blocks! 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, 
NVIDIA 



REVIEW OF PARALLEL EXECUTION 



 

1st gen - Instructions are executed sequentially in 
program order, one at a time. 

Example: 
 

Cycle 1 2 3 4 5 6 
Instruction1 Fetch Decode Execute Memory     
Instruction2         Fetch Decode 

History of parallelism 

19 



 

2nd gen - Instructions are executed sequentially, in 
program order, in an assembly line fashion. (pipeline) 

Example: 

Cycle 1 2 3 4 5 6 
Instruction1 Fetch Decode Execute Memory 

Instruction2 Fetch Decode Execute Memory   
Instruction3     Fetch  Decode Execute Memory 

History - Cont’d 

20 
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History – Instruction Level Parallelism 

3rd gen - Instructions are executed in parallel 

 

Example code 1: 

 c = b + a;   

 d = c + e; 

 

Example code 2: 

 a = b + c; 

 d = e + f; 

 

Non-parallelizable 

Parallelizable 



Two forms of ILP: 
– Superscalar: At runtime, fetch, decode, and execute multiple 

instructions at a time. Execution may be out of order 

 

 

 

 

 

 

 

– VLIW: At compile time, pack multiple, independent instructions 
in one large instruction and process the large instructions as 
the atomic units. 

Cycle 1 2 3 4 5 

Instruction1 Fetch Decode Execute Memory   

Instruction2 Fetch Decode Execute Memory 

Instruction3 Fetch Decode Execute Memory 

Instruction4 Fetch Decode Execute Memory 

Instruction Level Parallelism (Cont.) 
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History – Cont’d 

 

4th gen – Multi-threading: multiple threads are executed in 
an alternating or simultaneous manner on the same 
processor/core. (will revisit) 

 

5th gen - Multi-Core: Multiple threads are executed 
simultaneously on multiple processors 
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Transparent Scalability 
Hardware is free to assigns blocks to any 
processor at any time 
– A kernel scales across any number of parallel 

processors 
 

Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative 
to other blocks.  

time 



Threads are assigned to Streaming Multiprocessors in block 
granularity 

– Up to 8 blocks to each SM as resource allows 

– Fermi SM can take up to 1536 threads (256 (threads/block) * 6 blocks or 512 
(threads/block) * 3 blocks, etc.) 

Threads run 
concurrently 
– SM maintains 

thread/block id #s 

– SM 
manages/schedules 
thread execution 

25 

Example: Executing Thread Blocks 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 



The Von-Neumann Model 

26 

Memory 

Control Unit 
 
 

I/O 

ALU 
Reg 
File 

PC IR 

Processing Unit 
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Example: Thread Scheduling 

… 
t0 t1 t2 … t31 

… 
… 

t0 t1 t2 … t31 
… 

Block 1 Warps Block 2 Warps 

… 
t0 t1 t2 … t31 

… 
Block 1 Warps 

Register File 
(128 KB) 

L1 
(16 KB) 

Shared Memory 
(48 KB) 

Each Block is executed as 
32-thread Warps 

An implementation decision, 
not part of the CUDA 
programming model 

Warps are scheduling units 
in SM 

If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps 
are there in an SM? 

Each Block is divided into 
256/32 = 8 Warps 

There are 8 * 3 = 24 Warps  
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Going back to the program 

 

Every instruction needs to be fetched from memory, decoded, 
then executed. 

 

Instructions come in three flavors: Operate, Data transfer, and 
Program Control Flow. 

 

An example instruction cycle is the following: 
 

Fetch | Decode | Execute | Memory 

 



INSTRUCTIONS AND PERFORMANCE 
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Operate Instructions 

 

Example of an operate instruction: 

  ADD R1, R2, R3 

 

Instruction cycle for an operate instruction: 

Fetch | Decode | Execute | Memory 
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Data Transfer Instructions 

 

Examples of data transfer instruction: 

  LDR R1, R2, #2 

  STR R1, R2, #2 

 

Instruction cycle for an operate instruction: 

Fetch | Decode | Execute | Memory 
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Control Flow Operations 

 

Example of control flow instruction: 

  BRp #-4 

 if the condition is positive, jump back four instructions 

 

Instruction cycle for an arithmetic instruction: 

Fetch | Decode | Execute | Memory 
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How thread blocks are partitioned 

Thread blocks are partitioned into warps 
– Thread IDs within a warp are consecutive and increasing 

– Warp 0 starts with Thread ID 0 

 

Partitioning is always the same 
– Thus you can use this knowledge in control flow  

– However, the exact size of warps may change from generation to 
generation 

– (Covered next) 

 

However, DO NOT rely on any ordering between warps 
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results (more later). 
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Control Flow Instructions 

Main performance concern with branching is divergence 

– Threads within a single warp take different paths 

– Different execution paths are serialized in current GPUs 

A common case: avoid divergence when branch condition is a function of 
thread ID 

– Example with divergence:  if(threadIdx.x > 2) { } 

• This creates two different control paths for threads in a block 

• Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of 
the threads in the first warp 

– Example without divergence: if(threadIdx.x / WARP_SIZE > 2) { } 

• Also creates two different control paths for threads in a block 

• Branch granularity is a whole multiple of warp size; all threads in any given warp follow 
the same path 

 



SM implements zero-overhead warp scheduling 
– At any time, 1 or 2 of the warps is executed by SM 
– Warps whose next instruction has its operands ready for 

consumption are eligible for execution 
– Eligible Warps are selected for execution on a prioritized scheduling 

policy 
– All threads in a warp execute the same instruction when selected 

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Example: Thread Scheduling (Cont.) 
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Block Granularity Considerations 

For Matrix Multiplication using multiple blocks, should I use 8X8, 
16X16 or 32X32 blocks? 

– For 8X8, we have 64 threads per Block. Since each SM can take up to 
1536 threads, there are 24 Blocks. However, each SM can only take up to 
8 Blocks, only 512 threads will go into each SM! 

 

– For 16X16, we have 256 threads per Block. Since each SM can take up to 
1536 threads, it can take up to 6 Blocks and achieve full capacity unless 
other resource considerations overrule. 

 

– For 32X32, we would have 1024 threads per Block. Only one block can fit 
into an SM for Fermi. Using only 2/3 of the thread capacity of an SM. Also, 
this works for CUDA 3.0 and beyond but too large for some early CUDA 
versions. 
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Application Programming Interface 

The API is an extension to the C programming language 

It consists of: 
– Language extensions 

• To target portions of the code for execution on the device 

– A runtime library split into: 
• A common component providing built-in vector types and a subset of the 

C runtime library in both host and device codes 

• A host component to control and access one or more devices from the 
host 

• A device component providing device-specific functions 
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Common Runtime Component: Mathematical Functions 

pow, sqrt, cbrt, hypot 
exp, exp2, expm1 
log, log2, log10, log1p 
sin, cos, tan, asin, acos, atan, atan2 
sinh, cosh, tanh, asinh, acosh, atanh 
ceil, floor, trunc, round 
– When executed on the host, a given function uses the C runtime 

implementation if available 

– These functions are only supported for scalar types, not vector types 
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Device Runtime Component: Mathematical Functions 

Some mathematical functions (e.g. sin(x)) have a less 
accurate, but faster device-only version (e.g. __sin(x)) 
– __pow 
– __log, __log2, __log10 

– __exp 

– __sin, __cos, __tan 
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Introduction to CUDA Programming 
Lecture 7:  Data Transfer and CUDA Streams 



Objective 

To understand the major factors that dictate 
performance when using GPU as an compute 
accelerator for the CPU 
– The feeds and speeds of the traditional CPU world 

– The feeds and speeds when employing a GPU  

– To form a solid knowledge base for performance 
programming in modern GPU’s 

Knowing yesterday, today, and tomorrow 
– The PC world is becoming flatter 

– CPU and GPU are being Fused together 

– Outsourcing of computation is becoming easier… 



Allocate/Free Pinned Memory (a.k.a. Page Locked Memory) 

cudaHostAlloc() 
– Three parameters 

– Address of pointer to the allocated memory 

– Size of the allocated memory in bytes 

– Option – use cudaHostAllocDefault for now 
 

cudaFreeHost() 
– One parameter 

– Pointer to the memory to be freed 

 



Using Pinned Memory 

Use the allocated memory and its pointer the same way those 
returned by malloc(); 

The only difference is that the allocated memory cannot be 
paged by the OS 

The cudaMemCpy function should be about 2X faster with 
pinned memory 

 



Serialized Data Transfer and GPU computation 

So far, the way we use cudaMemCpy serializes data 
transfer and GPU computation  

Trans. A Trans. B Vector Add Tranfer 
C time 

Only use one direction, 
GPU idle 

PCIe Idle Only use one direction, 
GPU idle 



Device Overlap 

Some CUDA devices support device overlap 
– Simultaneously execute a kernel while performing a copy between 

device and host memory 
 

 int Device; 
cudaDeviceProp prop; 
 
cudaGetDevice(&Device); 
cudaGetDeviceProperties(&prop, Device); 
 
if (prop.deviceOverlap) …  
 



Overlapped (Pieplined) Timing 

Divide large vectors into segments 

Overlap transfer and compute of adjacent segments 

Trans 
A.1 

Trans 
B.1 

Trans 
C.1 

Trans 
A.2 

Comp  
C.1 = A.1 + B.1 

Trans 
B.2 

Comp  
C.2 = A.2 + B.2 

Trans 
A.3 

Trans 
B.3 

Trans 
C.2 

Comp  
C.3 = A.3 + B.3 

Trans 
A.4 

Trans 
B.4 



Using CUDA Streams and Asynchronous MemCpy 

CUDA supports parallel execution of kernels and MemCpy 
with “Streams” 

Each stream is a queue of operations (kernels and MemCpys) 

Operations in different streams can go in parallel 
– “Task parallelism” 

 

 

 



Conceptual View of Streams 

MemCpy A.1 

MemCpy B.1 

Kernel 1 

MemCpy C.1 

MemCpy A.2 

MemCpy B.2 

Kernel 2 

MemCpy C.2 

Stream 0 Stream 1 

Copy 
Engine 

PCI 
UP 

PCI 
Down 

Kernel 
Engine 

Operations (Kernels, MemCpys) 



A Simple Multi-Stream Host Code 

cudaStream_t stream0, stream1; 
cudaStreamCreate( &stream0); 
cudaStreamCreate( &stream1); 
float *d_A0, *d_B0, *d_C0; // device memory for stream 0 
float *d_A1, *d_B1, *d_C1;  // device memory for stream 1 
 
// cudaMalloc for d_A0, d_B0, d_C0, d_A1, d_B1, d_C1 go here 
 
for (int i=0; i<n; i+=SegSize*2) { 
  cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0); 
  cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0); 
  vecAdd<<<SegSize/256, 256, 0, stream0); 
  cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0); 
 



A Simple Multi-Stream Host Code (Cont.) 
for (int i=0; i<n; i+=SegSize*2) { 
  cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0); 
  cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0); 
  vecAdd<<<SegSize/256, 256, 0, stream0)(d_A0, d_B0, …); 
  cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0); 
 
  cudaMemCpyAsync(d_A1, h_A+i+SegSize;  
     SegSize*sizeof(float),.., stream1); 
  cudaMemCpyAsync(d_B1, h_B+i+SegSize;  
     SegSize*sizeof(float),.., stream1); 
  vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …); 
  cudaMemCpyAsync(d_C1, h_C+i+SegSize; 
     SegSize*sizeof(float),.., stream1); 
} 



A View Closer to Reality 

MemCpy A.1 

MemCpy B.1 

MemCpy C.1 

MemCpy A.2 

MemCpy B.2 

Kernel 1 

Kernel 2 

Stream 0 Stream 1 

Copy  
Engine 

PCI 
UP 

PCI 
Down 

Kernel 
Engine 

Operations (Kernels, MemCpys) 

MemCpy C.2 



Not quite the overlap want 

C.1 blocks A.2 and B.2 in the copy engine queue 

Trans 
A.1 

Trans 
B.1 

Trans 
C.1 

Trans 
A.2 

Comp  
C.1 = A.1 + B.1 

Trans 
B.2 

Comp  
C.2 = A.2 + 
B.2 



A Better Multi-Stream Host Code (Cont.) 
for (int i=0; i<n; i+=SegSize*2) { 
  cudaMemCpyAsync(d_A0, h_A+i; SegSize*sizeof(float),.., stream0); 
  cudaMemCpyAsync(d_B0, h_B+i; SegSize*sizeof(float),.., stream0); 
  cudaMemCpyAsync(d_A1, h_A+i+SegSize;  
     SegSize*sizeof(float),.., stream1); 
  cudaMemCpyAsync(d_B1, h_B+i+SegSize;  
     SegSize*sizeof(float),.., stream1);  
   
  vecAdd<<<SegSize/256, 256, 0, stream0)(d_A0, d_B0, …); 
  vecAdd<<<SegSize/256, 256, 0, stream1>>>(d_A1, d_B1, …); 
  cudaMemCpyAsync(d_C0, h_C+I; SegSize*sizeof(float),.., stream0); 
  cudaMemCpyAsync(d_C1, h_C+i+SegSize; 
     SegSize*sizeof(float),.., stream1); 
} 
 



A View Closer to Reality 

MemCpy A.1 

MemCpy B.1 

MemCpy A.2 

MemCpy B.2 

MemCpy C.1 

Kernel 1 

Kernel 2 

Stream 0 Stream 1 

Copy  
Engine 

PCI 
UP 

PCI 
Down 

Kernel 
Engine 

Operations (Kernels, MemCpys) 

MemCpy C.2 



Overlapped (Pipelined) Timing 

Divide large vectors into segments 

Overlap transfer and compute of adjacent segments 

Trans 
A.1 

Trans 
B.1 

Trans 
C.1 

Trans 
A.2 

Comp  
C.1 = A.1 + B.1 

Trans 
B.2 

Comp  
C.2 = A.2 + B.2 

Trans 
A.3 

Trans 
B.3 

Trans 
C.2 

Comp  
C.3 = A.3 + B.3 

Trans 
A.4 

Trans 
B.4 
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Introduction to CUDA Programming 
Lecture 3: Tiled Matrix-Matrix Multiplication 



Transparent Scalability 

2 

• Hardware is free to assigns blocks to any 
processor at any time 

• A kernel scales across any number of parallel 
processors 

Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative 
to other blocks.  

time 



Threads are assigned to Streaming Multiprocessors in block 
granularity 

– Up to 8 blocks to each SM as resource allows 

– Fermi SM can take up to 1536 threads 

• Could be 256 (threads/block) * 6 blocks  

• Or 512 (threads/block) * 3 blocks, etc. 

Threads run 
concurrently 
– SM maintains 

thread/block id #s 
– SM 

manages/schedul
es thread 
execution 

3 

Example: Executing Thread Blocks 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 



The Von-Neumann Model 
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Memory 

Control Unit 
 
 

I/O 

ALU 
Reg 
File 

PC IR 

Processing Unit 



The Von-Neumann Model with SIMD units 
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Memory 

Control Unit 
 
 

I/O 

ALU 
Reg 
File 

PC IR 

Processing Unit 
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Example: Thread Scheduling 

… 
t0 t1 t2 … t31 

… 
… 

t0 t1 t2 … t31 
… 

Block 1 Warps Block 2 Warps 

… 
t0 t1 t2 … t31 

… 
Block 1 Warps 

Register File 
(128 KB) 

L1 
(16 KB) 

Shared Memory 
(48 KB) 

Each Block is executed as 
32-thread Warps 

An implementation decision, 
not part of the CUDA 
programming model 

Warps are scheduling units 
in SM 

If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps 
are there in an SM? 

Each Block is divided into 
256/32 = 8 Warps 

There are 8 * 3 = 24 Warps  
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How thread blocks are partitioned 

Thread blocks are partitioned into warps 
– Thread IDs within a warp are consecutive and increasing 
– Warp 0 starts with Thread ID 0 

Partitioning is always the same 
– Thus you can use this knowledge in control flow  
– However, the exact size of warps may change from generation to 

generation 
– (Covered next) 

However, DO NOT rely on any ordering between warps 
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results (more later). 



Control Flow Operations 

8 

Example of control flow instruction: 

  BRp #-4 

 if the condition is positive, jump back four instructions 

 

Instruction cycle for an arithmetic instruction: 

Fetch | Decode | Execute | Memory 
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Control Flow Instructions 

Main performance concern with branching is divergence 
– Threads within a single warp take different paths 
– Different execution paths are serialized in current GPUs 

A common case: avoid divergence when branch condition is a function of 
thread ID 
– Example with divergence: If (threadIdx.x > 2) { } 

• This creates two different control paths for threads in a block 
• Branch granularity < warp size; threads 0, 1 and 2 follow different path than the 

rest of the threads in the first warp 
– Example without divergence: If (threadIdx.x / WARP_SIZE > 2) { } 

• Also creates two different control paths for threads in a block 
• Branch granularity is a whole multiple of warp size; all threads in any given warp 

follow the same path 

 



SM implements zero-overhead warp scheduling 
– At any time, 1 or 2 of the warps is executed by SM 
– Warps whose next instruction has its operands ready for 

consumption are eligible for execution 
– Eligible Warps are selected for execution on a prioritized 

scheduling policy 
– All threads in a warp execute the same instruction when 

selected 

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Example: Thread Scheduling (Cont.) 

10 
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Outline of Tiling Technique 

Identify a block/tile of global memory content that are 
accessed by multiple threads 

Load the block/tile from global memory into on-chip memory 

Have the multiple threads to access their data from the on-
chip memory 

Move on to the next block/tile 

 



Idea: Use Shared Memory to reuse global memory data 

12 

12 

• Each input element is read by WIDTH 
threads. 

• Load each element into Shared Memory 
and have several threads use the local 
version to reduce the memory bandwidth 

• Tiled algorithms M 

N 

P 

 
 

 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

ty 

tx 
 
 

 



Work for Block (0,0) 
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C
ol =

 1 

C
ol =

 0 
Col  =  0 * (blockDim.x) + threadIdx.x 
Row =  0 * (blockDim.y) + threadIdx.y 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 

Row = 0 

Row = 1 



Tiled Multiply 
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Break up the execution of the 
kernel into phases so that the data 
accesses in each phase is focused 
on one subset (tile) of d_M and d_N 

bx 
0 1 2 

by 

2 

1 

0 

tx 
0 1 TILE_WIDTH-1 2 

ty 2 
1 
0 

TILE_WIDTH-1 

Md 

Nd 

Pd 

Pdsub 

TILE_WIDTH 

WIDTH WIDTH 

TILE_WIDTH TILE_WIDTH 
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Loading a Tile 

All threads in a block participate 
– Each thread loads one Md element and one Nd element in based tiled 

code 

 

Assign the loaded element to each thread such that the 
accesses within each warp is coalesced (more later). 

 



Work for Block (0,0) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 

M1,0 M0,0 

M0,1 M1,1 

N1,0 N0,0 

N0,1 N1,1 

SM 

SM 



Work for Block (0,0) 
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P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 

M1,0 M0,0 

M0,1 M1,1 

N1,0 N0,0 

N0,1 N1,1 

SM 

SM 



Work for Block (0,0) 

18 

P1,0 P0,0 

P0,1 

P2,0 P3,0 

P1,1 

P0,2 P2,2 P3,2 P1,2 

P3,1 P2,1 

P0,3 P2,3 P3,3 P1,3 

M1,0 M0,0 

M0,1 

M2,0 M3,0 

M1,1 

M0,2 M2,2 M3,2 M1,2 

M3,1 M2,1 

M0,3 M2,3 M3,3 M1,3 

N1,0 N0,0 

N0,1 

N2,0 N3,0 

N1,1 

N0,2 N2,2 N3,2 N1,2 

N3,1 N2,1 

N0,3 N2,3 N3,3 N1,3 

N0,2 N1,2 

N0,3 N1,3 

M2,0 M3,0 

M3,1 M2,1 

SM 

SM 



Work for Block (0,0) 
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Barrier Synchronization 

An API function call in CUDA 
– __synchthreads() 

 

All threads in the same block must reach the 
__synchtrheads() before any can move on 

 

Best used to coordinate tiled algorithms 
– To ensure that all elements of a tile are loaded 

– To ensure that all elements of a tile are consumed 

 



Upper left corner of the M tile at step m:  
 by * TILE_WIDTH * WIDTH + m* TILE_WIDTH 
 
Each thread uses ty and tx to load an element 
 Upper left corner + ty * Width + tx 
 
     = by * TILE_WIDTH * Width + m * TILE_WIDTH + 
 ty * Width + tx 
 
     = (by * TILE_WIDTH + ty) * Width + 
 m * TILE_WIDTH + tx 
 
     = Row * Width + 
 m * TILE_WIDTH + tx 
 
 
 
 

Loading an M Tile 
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Tiled Matrix Multiplication Kernel 
1. __global__ void MatrixMul(float* d_M, float* d_N, float* d_P, int Width) 
2. { 
3.   __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH]; 
4.   __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH]; 

 
5.   int bx = blockIdx.x;  int by = blockIdx.y; 
6.   int tx = threadIdx.x; int ty = threadIdx.y; 

 
7.   // Identify the row and column of the Pd element to work on 
8.   int Row = by * TILE_WIDTH + ty; 
9.   int Col = bx * TILE_WIDTH + tx; 
10.   float Pvalue = 0; 
11.   // Loop over the Md and Nd tiles required to compute the Pd element 
12.   for (int m = 0; m < Width/TILE_WIDTH; ++m) { 
13.     // Coolaborative loading of Md and Nd tiles into shared memory 
14.     ds_M[ty][tx] = d_M[Row*Width + m*TILE_WIDTH+tx]; 
15.     ds_N[ty][tx] = d_N[Col+(m*TILE_WIDTH+ty)*Width]; 
16.     __syncthreads(); 
17.     for (int k = 0; k < TILE_WIDTH; ++k) 
18.       Pvalue += ds_M[ty][k] * ds_N[k][tx]; 
19.     __synchthreads(); 
20.   }  
21.   d_P[Row*Width+Col] = Pvalue; 
22. } 

 



Loading an N Tile 
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Upper left corner of N tile at step m:  
 bx*TILE_WIDTH + m*TILE_WIDTH*Width 
 
Each thread uses ty and tx to load an element 
 Upper left corner + ty * Width + tx 
 
     = bx*TILE_WIDTH + m*TILE_WIDTH*Width + 
 ty * Width + tx 
 
     = bx*TILE_WIDTH+tx + (m*TILE_WIDTH+ty)* Width 
 
     = Col + (m*TILE_WIDTH+ty)* Width 
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First-order Size Considerations 

Each thread block should have many threads 
– TILE_WIDTH of 16 gives 16*16 = 256 threads 

– TILE_WIDTH of 32 gives 32*32 = 1024 threads 

 

For 16, each block performs 2*256 = 512 float loads from 
global memory for 256 * (2*16) = 8,192 mul/add operations.  

 

For 32, each block performs 2*1024 = 2048 float loads from 
global memory for 1024 * (2*32) = 65,536 mul/add operations 
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Shared Memory and Threading 

Each SM in Fermi has 16KB or 48KB shared memory* 
– SM size is implementation dependent! 

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared 
memory.  

– Can potentially have up to 8 Thread Blocks actively executing  
• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block) 

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory 
usage per thread block, allowing 2 or 6 thread blocks active at the same time 

Using 16x16 tiling, we reduce the accesses to the global memory by a 
factor of 16 
– The 150 GB/s bandwidth can now support: (150/4)*16 = 600 GFLOPS! 

*Configurable vs L1, total 64KB 



Global variables declaration 
– __host__ 
– __device__... __global__, __constant__, __texture__ 

Function prototypes 
– __global__ void kernelOne(…) 
– float handyFunction(…) 

Main () 
– allocate memory space on the device – cudaMalloc(&d_GlblVarPtr, bytes ) 
– transfer data from host to device – cudaMemCpy(d_GlblVarPtr, h_Gl…) 
– execution configuration setup 
– kernel call – kernelOne<<<execution configuration>>>( args… ); 
– transfer results from device to host – cudaMemCpy(h_GlblVarPtr,…) 
– optional: compare against golden (host computed) solution 

Kernel – void kernelOne(type args,…) 
– variables declaration - auto, __shared__ 

• automatic variables transparently assigned to registers  
– syncthreads()… 

Other functions 
– float handyFunction(int inVar…);      
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Summary- Typical Structure of a CUDA Program 

repeat 
as 
needed 
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Introduction to CUDA Programming 
Lecture 4: Convolution, Constant Memory 

and Caching 



2D Convolution – Inside Cells 

2 

3 4 5 6 7 
2 3 4 5 6 
1 2 3 4 5 
2 3 5 6 7 
0 1 1 3 1 

1 2 3 2 1 
2 3 4 3 2 
3 4 5 4 3 
2 3 4 3 2 
1 2 3 2 1 

3 8 15 12 7 

4 9 16 15 12 

3 8 15 16 15 

4 9 20 18 14 

0 2 3 6 1 

235 

M 

N P 



2D Convolution – Halo Cells 
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Access Pattern for M 

M is referred to as mask (a.k.a. kernel, filter, etc.) 
– Elements of M are called mask (kernel, filter) coefficients 

Calculation of all output P elements need M 

M is not changed during kernel 

 

Bonus - M elements are accessed in the same order when 
calculating all P  elements 

 

M is a good candidate for Constant Memory 

 



Each thread can: 
– Read/write per-thread 

registers (~1 cycle) 

– Read/write per-block 
shared memory (~5 
cycles) 

– Read/write per-grid global 
memory (~500 cycles) 

– Read/only per-grid 
constant memory (~5 
cycles with caching) 

5 

Programmer View of  CUDA Memories 
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Registers 

Host 
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Memory Hierarchies 

If every time we needed a piece of data, we had to go to main 
memory to get it, computers would take a lot longer to do 
anything 

On today’s processors, main memory accesses take 
hundreds of cycles 

 

One solution: Caches 

 



In order to keep cache fast, it needs to be small, so we 
cannot fit the entire data set in it 

 

Cache - Cont’d 
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Cache - Cont’d 

Cache is unit of volatile memory storage 
 
A cache is an “array” of cache lines 
 
Cache line can usually hold data from several consecutive 
memory addresses 
 
When data is requested from memory, an entire cache line is 
loaded into the cache, in an attempt to reduce main memory 
requests 
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Caches - Cont’d 

Some definitions: 
– Spatial locality: is when the data elements stored in consecutive 

memory locations are access consecutively 

– Temporal locality: is when the same data element is access multiple 
times in short period of time 

Both spatial locality and temporal locality improve the 
performance of caches 
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Scratchpad vs. Cache 

Scratchpad (shared memory in CUDA) is another 
type of temporary storage used to relieve main 
memory contention. 

In terms of distance from the processor, scratchpad 
is similar to L1 cache. 

Unlike cache, scratchpad does not necessarily hold a 
copy of data that is in main memory 

It requires explicit data transfer instructions, whereas 
cache doesn’t 



Cache Coherence Protocol 
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A mechanism for caches to propagate updates by their 
local processor to other caches (processors) 
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CPU and GPU have different caching philosophy 

CPU L1 caches are usually coherent 
– L1 is also replicated for each core 

– Even data that will be changed can be cached in L1 

– Updates to local cache copy invalidates (or less commonly updates) 
copies in other caches 

– Expensive in terms of hardware and disruption of services (cleaning 
bathrooms at airports..) 

 

GPU L1 caches are usually incoherent 
– Avoid caching data that will be modified 
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How to Use Constant Memory 

Host code allocates, initializes variables the same way as any 
other variables that need o be copied to the device 

 

Use  cudaMemcpyToSymbol(dest, src, size) to copy the 
variable into the device memory 

 

This copy function tells the device that the variable will not be 
modified by the kernel and can be safely cached. 

 



Each SM has its own L1 
cache 
– Low latency, high bandwidth 

access by all threads 

However, there is no way 
for threads in one SM to 
update the L1 cache in 
other SMs 
– No L1 cache coherence 
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More on Constant Caching 
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This is not a problem if a variable is NOT modified 
by a kernel. 
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Some Header File Stuff for M 

#define KERNEL_SIZE 5 
 
// Matrix Structure declaration 
typedef struct { 
   unsigned int width; 
   unsigned int height; 
   unsigned int pitch; 
   float* elements; 
} Matrix; 
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AllocateMatrix()  

// Allocate a device matrix of dimensions height*width 

// If init == 0, initialize to all zeroes.   

// If init == 1, perform random initialization. 

//  If init == 2, initialize matrix parameters, but do 
//  not allocate memory  
 

Matrix AllocateMatrix(int height, int width, int init) 

{ 

    Matrix M; 

    M.width = M.pitch = width; 

    M.height = height; 

    int size = M.width * M.height; 

    M.elements = NULL; 
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AllocateMatrix() (Cont.) 

// Don't allocate memory on option 2 

  if(init == 2) return M; 

  M.elements = (float*) malloc(size*sizeof(float)); 

 

  for(unsigned int i = 0; i < M.height * M.width; i++) 

  { 

    M.elements[i] = (init == 0) ? (0.0f) :  

  (rand() / (float)RAND_MAX); 

   if(rand() % 2) M.elements[i] = - M.elements[i] 

  } 

 

return M; 

}  
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Host Code 

// global variable, outside any function 

   __constant__ float Mc[KERNEL_SIZE][KERNEL_SIZE]; 

… 

   // allocate N, P, initialize N elements, copy N to Nd 

   Matrix  M; 

   M  = AllocateMatrix(KERNEL_SIZE, KERNEL_SIZE, 1); 

   // initialize M elements 

…. 

   cudaMemcpyToSymbol(Mc, M.elements,  

 KERNEL_SIZE*KERNEL_SIZE*sizeof(float)); 

   ConvolutionKernel<<<dimGrid, dimBlock>>>(Nd, Pd); 

 



Use a thread block to calculate a tile of P 
– Thread Block size determined by the TILE_SIZE 

 

Tiling P 

19 



Each N element is used in calculating up to KERNEL_SIZE 
* KERNEL_SIZE P elements (all elements in the tile) 

 

Tiling N 
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Load a tile of N into shared memory (SM) 
– All threads participate in loading 

– A subset of threads then use each N element in SM 

 

High-Level Tiling Strategy 
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Input tiles need to be larger than output tiles. 
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Dealing with Mismatch 
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Use a thread block that matches input tile 

 

Each thread loads one element of the input tile 

 

Some threads do not participate in calculating output 

 

There will be if statements and control divergence 

 



Shifting from output coordinates to input coordinates 

24 



Shifting from output coordinates to input coordinate  

25 

int tx = threadIdx.x; 
int ty = threadIdx.y; 
int row_o = blockIdx.y * TILE_SIZE + ty; 
int col_o = blockIdx.x * TILE_SIZE + tx; 
 
int row_i = row_o - 2; 
int col_i = col_o - 2; 



Threads that loads halos outside N should return 0.0  

26 



Taking Care of Boundaries 

27 

float output = 0.0f; 
 

  if((row_i >= 0) && (row_i < N.height) &&  
     (col_i >= 0)  && (col_i < N.width) ) { 
    Ns[ty][tx] = N.elements[row_i*N.width + col_i]; 
  } 
  else{ 
    Ns[ty][tx] = 0.0f; 
  } 



Some threads do not participate in calculating output 

28 

 if(ty < TILE_SIZE && tx < TILE_SIZE){ 
     for(i = 0; i < 5; i++) { 
       for(j = 0; j < 5; j++) { 
         output += Mc[i][j] * Ns[i+ty][j+tx]; 
     } 
  } 



Some threads do not write output 

29 

 if(row_o < P.height && col_o < P.width) 
   P.elements[row_o * P.width + col_o] = output; 
 



Setting Block Size 

30 

#define BLOCK_SIZE (TILE_SIZE + 4) 
 
dim3 dimBlock(BLOCK_SIZE,BLOCK_SIZE); 
 

In general, block size should be tile size + (kernel size -1) 

 



Tiling Benefit Analysis 

31 

Start with KERNEL_SIZE = 5 

Each point in an input tile is 
used multiple times. 
– Each boundary point (blue) is used 

9 times 

– Each second boundary point 
(yellow) is used 16 times 

– Each inner boundary point (red) is 
used 25 times 

 



Reuse Analysis 

32 

For TILE_SIZE = 12 
– 44 boundary points 

– 36 boundary points 

– 64 inside points 

– Total uses 44*9 + 36*16 + 64*25 = 396+576+1600 = 2572 

– Average reuse = 2572/144 = 17.9 

 

As TILE_SIZE increases, the average reuse approach 25 

 



In General 

33 

The number of boundary layers is proportional to the 
KERNEL_SIZE 

The maximal reuse of each data point is (KERNEL_SIZE) 2 

BLOCK_SIZE is limited by the maximal number of threads in 
a thread block 

Input tile sizes could be could be N*TILE_SIZE + 
(KERNEL_SIZE-1) 
– By having each thread to calculate N input points (thread coarsening) 

– N is limited is limited by the shared memory size 

KERNEL_SIZE is decided by application needs 
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Applied CUDA Programming 
Lecture 5: Reductions 



Partition and Summarize 

A commonly used strategy for processing large input data 
sets 
– There is no required order of processing elements in a data set  

(associative and commutative) 

– Partition the data set into smaller chunks 

– Have each thread to process a chunk 

– Use a reduction tree to summarize the results from each chunk into the 
final answer 

We will focus on the reduction tree step for now. 

Google and Hadoop MapReduce frameworks are examples of 
this pattern 

2 



Reduction enables other techniques 

Reduction is also needed to clean up after some commonly 
used parallelizing transformations 

 

Privatization 
– Multiple threads write into an output location 

– Replicate the output location so that each thread has a private output 
location 

– Use a reduction tree to combine the values of private locations into the 
original output location 

 

3 



What is a reduction computation 

Summarize a set of input values into one value using a 
“reduction operation” 
– Max 

– Min 

– Sum 

– Product 

– Often with user defined reduction operation function as long as the 
operation 

• Is associative and commutative 

• Has a well-defined identity value (e.g., 0 for sum) 

 

4 



A sequential reduction algorithm performs N operations 

Initialize the result as an identity value for the reduction 
operation 
– Smallest possible value for max reduction 

– Largest possible value for min reduction 

– 0 for sum reduction 

– 1 for product reduction 

 

Scan through the input and perform the reduction operation 
between the result value and the current input value 

 

5 



A parallel reduction performs N-1 Operations in log(N) steps 
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A Quick Analysis 

For N input values, the reduction tree performs 
– (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1 operations 

– In Log (N) steps – 1,000,000 input values take 20 steps 
• Assuming that we have enough execution resources 

– Average Parallelism (N-1)/Log(N)) 
• For N = 1,000,000, average parallelism is 50,000 

• However, peak resource requirement is 500,000! 

This is a work-efficient parallel algorithm 
– The amount of work done is comparable to sequential 

– Many parallel algorithms are not work efficient 

7 



A Sum Reduction Example 

Parallel implementation: 
– Recursively halve # of threads, add two values per thread in each 

step 

– Takes log(n) steps for n elements, requires n/2 threads 

Assume an in-place reduction using shared memory 
– The original vector is in device global memory 

– The shared memory is used to hold a partial sum vector 

– Each step brings the partial sum vector closer to the sum 

– The final sum will be in element 0 

– Reduces global memory traffic due to partial sum values 
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Vector Reduction with Branch Divergence 
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A Sum Example 
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Simple Thread Index to Data Mapping 

Each thread is responsible of an even-index location of the 
partial sum vector  
– One input is the location of responsibility 

 

After each step, half of the threads are no longer needed 

 

In each step, one of the inputs comes from an increasing 
distance away 
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A Simple Thread Block Design 

Each thread block takes 2* BlockDim input elements 
Each thread loads 2 elements into shared memory 
__shared__ float partialSum[2*BLOCK_SIZE]; 
 
unsigned int t = threadIdx.x; 
unsigned int start = 2*blockIdx.x*blockDim.x; 
partialSum[t] =  
 input[start + t]; 
partialSum[blockDim+t] =  
 input[start+ blockDim.x+t]; 
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The Reduction Steps 

for (unsigned int stride = 1;  
   stride < blockDim.x;  stride *= 2)  
{ 
  __syncthreads(); 
  if (t % stride == 0) 
   partialSum[2*t]+= partialSum[2*t+stride]; 
} 
 

Why do we need syncthreads()? 
 

13 



Barrier Synchronization 

syncthreads() are needed to ensure that all elements of each 
version of partial sums have been generated before we 
proceed to the next step 

 

Why do we not need another syncthread() at the end of the 
reduction loop? 
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Back to the Global Picture 

Thread 0 in each thread block write the sum of the thread 
block in partialSum[0] into a vector indexed by the blockIdx.x 

 

There can be a large number of such sums if the original 
vector is very large 
– The host code may iterate and launch another kernel 

 

If there are only a small number of sums, the host can simply 
transfer the data back and add them together. 
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Some Observations 

In each iteration, two control flow paths will be sequentially 
traversed for each warp 
– Threads that perform addition and threads that do not 
– Threads that do not perform addition still consume execution resources 

 

No more than half of threads will be executing after the first 
step 
– All odd index threads are disabled after first step 
– After the 5th step, entire warps in each block will fail the if test, poor 

resource utilization but no divergence. 
• This can go on for a while, up to 5 more steps (1024/32=16= 25), where 

each active warp only has one productive thread until all warps in a block 
retire  

 

16 



Thread Index Usage Matters 

In some algorithms, one can shift the index usage to improve 
the divergence behavior 
– Commutative and associative operators 

 

Example - given an array of values, “reduce” them to a single 
value in parallel 

– Sum reduction: sum of all values in the array 

– Max reduction: maximum of all values in the array 

– … 
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A Better Strategy 

Always compact the partial sums into the first locations in the 
partialSum[] array 

 

Keep the active threads consecutive 
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An Example of 16 threads 
Thread 0 

0 1 2 3 … 13 15 14 18 17 16 19 

0+16 15+31 

Thread 1 Thread 2 Thread 14 Thread 15 
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A Better Reduction Kernel 

for (unsigned int stride = blockDim.x/2;  
   stride >= 1;  stride >>= 1)  
{ 
  __syncthreads(); 
  if (t < stride) 
   partialSum[t] += partialSum[t+stride]; 
} 
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A Quick Analysis 

For a 1024 thread block 
– No divergence in the first 5 steps 

– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each 
step 

– The final 5 steps will still have divergence  

 

21 
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Lecture 9: MPI and CUDA Programming 
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Outline 

MPI for dummies  

 

MPI meets CUDA 

 

MPI and CUDA Example: 3D Stencil 

 

MPI and CUDA 4.0 
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Message Passing Interface 

MPI is a standard message passing API 

 

Oriented to cluster machines 
– Distributed memory 

– Hides underlying interconnection network 

 

Processes execute on different nodes of a network 
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MPI Model 

Many processes distributed in a cluster 

 

 

 

 

 

Each process computes part of the output 

Processes communicate with each other 

Processes can synchronize 

Node Node Node Node 
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MPI Message Types 

Point-to-point communication 
– Send and Receive 

Collective communication 
– Barrier 

– Broadcast 

– Reduce 

– Gather and Scatter 
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MPI Initialization, Info and Sync 

int MPI_Init(int *argc, char ***argv) 
– Initialize MPI 

MPI_COMM_WORLD 
– MPI group with all allocated nodes 

int MPI_Comm_rank (MPI_Comm comm, int *rank) 
– Rank of the calling process in group of comm 

int MPI_Comm_size (MPI_Comm comm, int *size) 
– Number of processes in the group of comm 

int MPI_Barrier (MPI_Comm comm) 
– Blocks the caller until all group members have called it; the call returns 

at any process only after all group members have entered the call. 
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MPI Sending Data 

int MPI_Send(void *buf, int count, MPI_Datatype 
datatype, int dest, int tag, MPI_Comm comm) 
– Buf: Initial address of send buffer (choice)  

– Count: Number of elements in send buffer (nonnegative integer)  

– Datatype: Datatype of each send buffer element (handle)  

– Dest: Rank of destination (integer)  

– Tag: Message tag (integer)  

– Comm: Communicator (handle) 

 

DATA_DISTRIBUTE: Send to all nodes 
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MPI Receiving Data 

int MPI_Recv(void *buf, int count, MPI_Datatype 
datatype, int source, int tag, MPI_Comm comm, 
MPI_Status *status) 
– Buf: Initial address of receive buffer (choice) 

– Count: Maximum number of elements in receive buffer (integer)  

– Datatype: Datatype of each receive buffer element (handle)  

– Source: Rank of source (integer)  

– Tag: Message tag (integer)  

– Comm: Communicator (handle)  

– Status: Status object (Status) 
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MPI Sending and Receiving Data 

int MPI_Sendrecv(void *sendbuf, int sendcount, 
MPI_Datatype sendtype, int dest, int sendtag, void 
*recvbuf, int recvcount, MPI_Datatype recvtype, int 
source, int recvtag, MPI_Comm comm, MPI_Status 
*status) 
– Sendbuf: Initial address of send buffer (choice)  
– Sendcount: Number of elements in send buffer (integer)  
– Sendtype: Type of elements in send buffer (handle)  
– Dest: Rank of destination (integer)  
– Sendtag: Send tag (integer)  
– Recvcount: Number of elements in receive buffer (integer)  
– Recvtype: Type of elements in receive buffer (handle)  
– Source: Rank of source (integer)  
– Recvtag: Receive tag (integer)  
– Comm: Communicator (handle)  
– Recvbuf: Initial address of receive buffer (choice)  
– Status: Status object (Status). This refers to the receive 

operation.  
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Outline 

MPI for dummies  

 

MPI meets CUDA 

 

MPI and CUDA Example: 3D Stencil 

 

MPI and CUDA 4.0 
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CUDA-based cluster 

Each node contains N GPUs 

 

… 

… 

GPU 0 GPU N 
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CUDA and MPI Communication 

Source MPI process: 
– cudaMemcpy(tmp,src, cudaMemcpyDeviceToHost) 
– MPI_Send() 

Destination MPI process: 
– MPI_Recv() 
– cudaMemcpy(dst, src, cudaMemcpyDeviceToDevice) 

GPU 0 

GPU 1 

Device 
Memory 

Device 
Memory 

MPI Process 
N 

MPI Process 
N + 1 
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Outline 

MPI for dummies  

 

MPI meets CUDA 

 

MPI and CUDA Example: 3D Stencil 

 

MPI and CUDA 4.0 
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Stencil Code: Main Process 

int main(int argc, char *argv[]) { 
 int pad = 0, dimx  = 480+pad, dimy  = 480, dimz  = 400, nreps = 100; 
 int pid=-1, np=-1; 
 
 MPI_Init(&argc, &argv); 
 MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
 MPI_Comm_size(MPI_COMM_WORLD, &np); 
 
 if(np < 3) { 
  if(0 == pid) printf(“Nedded 3 or more processes.\n"); 
  MPI_Abort( MPI_COMM_WORLD, 1 ); return 1; 
 } 
 if(pid < np - 1) 
  compute_node_stencil(dimx, dimy, dimz / (np - 1), nreps); 
 else 
  data_server( dimx,dimy,dimz, nreps ); 
 
 MPI_Finalize(); 
 return 0; 
} 
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Stencil Domain Decomposition 

Volumes are split into tiles (along the Z-axis) 
– 3D-Stencil introduces data dependencies 

 

y z 

x 

D1 

D2 

D3 

D4 
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Stencil Code: Server Process (I) 

void data_server(int dimx, int dimy, int dimz, int nreps) { 
 int np, num_comp_nodes = np – 1, first_node = 0, last_node = np - 2; 
 unsigned int num_points = dimx * dimy * dimz; 
 unsigned int num_bytes  = num_points * sizeof(float); 
 float *input=0, *output=0; 
 /* Set MPI Communication Size */ 
 MPI_Comm_size(MPI_COMM_WORLD, &np); 
 /* Allocate input data */ 
 input = (float *)malloc(num_bytes); 
 output = (float *)malloc(num_bytes); 
 if(input == NULL || output == NULL) { 
  printf("server couldn't allocate memory\n"); 
  MPI_Abort( MPI_COMM_WORLD, 1 ); 
 } 
 /* Initialize input data */ 
 random_data(input, dimx, dimy ,dimz , 1, 10); 
 /* Calculate number of shared points */ 
 int edge_num_points = dimx * dimy * (dimz / num_comp_nodes + 4); 
 int int_num_points  = dimx * dimy * (dimz / num_comp_nodes + 8); 
 float *send_address = input; 
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Stencil Code: Server Process (II) 

 /* Send data to the first compute node */ 
 MPI_Send(send_address, edge_num_points, MPI_REAL, first_node, 
   DATA_DISTRIBUTE, MPI_COMM_WORLD ); 
 send_address += dimx * dimy * (dimz / num_comp_nodes - 4); 
 
 /* Send data to "internal" compute nodes */ 
 for(int process = 1; process < last_node; process++) { 
  MPI_Send(send_address, int_num_points, MPI_REAL, process, 
    DATA_DISTRIBUTE, MPI_COMM_WORLD); 
  send_address += dimx * dimy * (dimz / num_comp_nodes); 
 } 
  
 /* Send data to the last compute node */ 
 MPI_Send(send_address, edge_num_points, MPI_REAL, last_node, 
   DATA_DISTRIBUTE, MPI_COMM_WORLD); 
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Stencil Code: Main Process (I) 

 /* Wait for nodes to compute */ 
 MPI_Barrier(MPI_COMM_WORLD); 
 
 /* Collect output data */ 
 MPI_Status status; 
 for(int process = 0; process < num_comp_nodes; process++) 
  MPI_Recv(output + process * num_points / num_comp_nodes, 
   num_points / num_comp_nodes, MPI_REAL, process, 
   DATA_COLLECT, MPI_COMM_WORLD, &status ); 
  
 /* Store output data */ 
 store_output(output, dimx, dimy, dimz); 
 
 /* Release resources */ 
 free(input); 
 free(output); 
} 
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Boundary Exchange Example (I) 

Approach: two-stage execution 
– Stage 1: compute the field points to be exchanged 

GPU1 GPU2 

y z 

x 
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Boundary Exchange Example (II) 

Approach: two-stage execution 
– Stage 2: Compute the remaining points while exchanging the 

boundaries 

GPU1 GPU2 

y z 

x 



21 

Stencil Code: Compute Process (I) 

void compute_node_stencil(int dimx, int dimy, int dimz, int nreps ) { 
 int np, pid; 
 MPI_Comm_rank(MPI_COMM_WORLD, &pid); 
 MPI_Comm_size(MPI_COMM_WORLD, &np); 
 
 unsigned int num_points       = dimx * dimy * (dimz + 8); 
 unsigned int num_bytes        = num_points * sizeof(float); 
 unsigned int num_ghost_points = 4 * dimx * dimy; 
 unsigned int num_ghost_bytes  = num_ghost_points * sizeof(float); 
 
 int left_ghost_offset   = 0; 
 int right_ghost_offset  = dimx * dimy * (4 + dimz); 
 int left_stage1_offset  = 0; 
 int right_stage1_offset = dimx * dimy * (dimz - 4); 
 int stage2_offset       = num_ghost_points; 
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Stencil Code: Compute Process (II) 

 float *h_input = NULL, *h_output = NULL; 
 float *d_input = NULL, *d_output = NULL, *d_vsq = NULL; 
 float *h_left_ghost_own = NULL, *h_right_ghost_own = NULL; 
 float *h_left_ghost = NULL, *h_right_ghost = NULL; 
 
 /* Alloc host memory */ 
 h_input  = (float *)malloc(num_bytes); 
 h_output = (float *)malloc(num_bytes); 
 
 /* Alloc host memory for ghost data */ 
 cudaMallocHost((void **)&h_left_ghost_own,  num_ghost_bytes ); 
 cudaMallocHost((void **)&h_right_ghost_own, num_ghost_bytes ); 
 cudaMallocHost((void **)&h_left_ghost,      num_ghost_bytes ); 
 cudaMallocHost((void **)&h_right_ghost,     num_ghost_bytes ); 
 
 /* Alloca device memory for input and output data */ 
 cudaMalloc((void **)&d_input,  num_bytes ); 
 cudaMalloc((void **)&d_output, num_bytes ); 
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Stencil Code: Compute Process (III) 

 MPI_Status status; 
 int left_neighbor  = (pid > 0)    ? (pid - 1) : MPI_PROC_NULL; 
 int right_neighbor = (pid < np - 2) ? (pid + 1) : MPI_PROC_NULL; 
 int server_process = np - 1; 
 
 /* Get the input data from main process */ 
 float *rcv_address = h_input + num_ghost_points * (0 == pid); 
 MPI_Recv(rcv_address, num_points, MPI_REAL, server_process, 
   DATA_DISTRIBUTE, MPI_COMM_WORLD, &status ); 
 cudaMemcpy(d_input, h_input, num_bytes, cudaMemcpyHostToDevice ); 
 
 /* Upload stencil cofficients */ 
 upload_coefficients(coeff, 5); 
 
 /* Create streams used for stencil computation */ 
 cudaStream_t stream1, stream2; 
 cudaStreamCreate(&stream1); 
 cudaStreamCreate(&stream2); 
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Stencil Code: Compute Process (IV) 

 MPI_Barrier( MPI_COMM_WORLD ); 
 for(int i=0; I < nreps; i++) { 

 /* Compute values needed by other nodes first */ 
  launch_kernel(d_output + left_stage1_offset,  
   d_input + left_stage1_offset, dimx, dimy, 12, stream1); 
  launch_kernel(d_output + right_stage1_offset, 
   d_input + right_stage1_offset, dimx, dimy, 12, stream1); 
 
  /* Compute the remaining points */ 
  launch_kernel(d_output + stage2_offset, d_input + stage2_offset, 
     dimx, dimy, dimz, stream2); 
 
  /* Copy the data needed by other nodes to the host */ 
  cudaMemcpyAsync(h_left_ghost_own, 
    d_output + num_ghost_points, 
    num_ghost_bytes, cudaMemcpyDeviceToHost, stream1 ); 
  cudaMemcpyAsync(h_right_ghost_own, 
     d_output + right_stage1_offset + num_ghost_points, 
     num_ghost_bytes, cudaMemcpyDeviceToHost, stream1 ); 
  cudaStreamSynchronize(stream1); 
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Stencil Code: Compute Process (V) 

  /* Send data to left, get data from right */ 
  MPI_Sendrecv(h_left_ghost_own, num_ghost_points, MPI_REAL, 
     left_neighbor,  i, h_right_ghost,   
     num_ghost_points, MPI_REAL, right_neighbor, i, 
     MPI_COMM_WORLD, &status ); 
  /* Send data to right, get data from left */ 
  MPI_Sendrecv(h_right_ghost_own, num_ghost_points, MPI_REAL, 
     right_neighbor, i, h_left_ghost, 
     num_ghost_points, MPI_REAL, left_neighbor,  i, 
     MPI_COMM_WORLD, &status ); 
 
  cudaMemcpyAsync(d_output+left_ghost_offset,  h_left_ghost, 
     num_ghost_bytes, cudaMemcpyHostToDevice, stream1); 
  cudaMemcpyAsync(d_output+right_ghost_offset, h_right_ghost, 
     num_ghost_bytes, cudaMemcpyHostToDevice, stream1 ); 
  cudaDeviceSynchronize(); 
   
  float *temp = d_output; 
  d_output = d_input; d_input = temp; 
 } 
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Stencil Code: Compute Process (VII) 

 /* Wait for previous communications */ 
 MPI_Barrier(MPI_COMM_WORLD); 
 
 float *temp = d_output; 
 d_output = d_input; 
 d_input = temp; 
 
 /* Send the output, skipping ghost points */ 
 cudaMemcpy(h_output, d_output, num_bytes, cudaMemcpyDeviceToHost); 
 float *send_address = h_output + num_ghost_points;  
 MPI_Send(send_address, dimx * dimy * dimz, MPI_REAL, 
   server_process, DATA_COLLECT, MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD); 
 
 /* Release resources */ 
 free(h_input); free(h_output); 
 cudaFreeHost(h_left_ghost_own); cudaFreeHost(h_right_ghost_own); 
 cudaFreeHost(h_left_ghost); cudaFreeHost(h_right_ghost); 
 cudaFree( d_input ); cudaFree( d_output ); 
} 
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Outline 

MPI for dummies  

 

MPI meets CUDA 

 

MPI and CUDA Example: 3D Stencil 

 

MPI and CUDA 4.0 
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Without GPU Direct 

There is an internal copy (not seen by the user) between 
CUDA buffers and Infinibad buffers 
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With GPU Direct 

There is no internal copy, increasing performance 

The program code remains unchanged 
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CUDA 4.0 and MPI 

MPI Processes handle more than one GPU 

 

 

 

 

 

 

 

Peer GPU to GPU communication without need for MPI 

 
 

GPU 0 

GPU 1 

Device 
Memory 

Device 
Memory 

MPI Process 
N 
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GMAC and MPI 

MPI Processes handle more than one GPU using several 
CPU (host) threads 

 

 

 

 

 

MPI calls use host (shared) memory addresses 

GMAC double-buffers MPI send/receive commands 

 
 

GPU 0 

GPU 1 

MPI Process 
N 
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Applied CUDA Programming 
Lecture 6: Prefix Scan 



Objective 

To master parallel Prefix Sum (Scan) algorithms 
– frequently used for parallel work assignment and resource allocation 

– A key primitive to in many parallel algorithms to covert serial 
computation into parallel computation 

– Based on reduction tree and reverse reduction tree 

 

Reading –Mark Harris, Parallel Prefix Sum with CUDA 
– http://developer.download.nvidia.com/compute/cuda/1_1/Website/proj

ects/scan/doc/scan.pdf 

2 
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(Inclusive) Prefix-Sum (Scan) Definition 

Definition: The all-prefix-sums operation takes a binary 
associative operator ⊕, and an array of n elements 
                        [x0, x1, …, xn-1], 

and returns the array 
  [x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)]. 

 

Example: If ⊕ is addition, then the all-prefix-sums operation 
on the array   [3  1  7   0   4    1   6   3], 
would return [3  4 11 11 15 16 22 25]. 
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A Inclusive Scan Application Example 

Assume that we have a 100-inch sausage to feed 10 

We know how much each person wants in inches 
– [3  5   2   7   28 4  3 0  8  1] 

How do we cut the sausage quickly?  

How much will be left 

Method 1: cut the sections sequentially: 3 inches first, 5 
inches second, 2 inches third, etc.  

Method 2: calculate Prefix scan 
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left) 
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Other Applications 

Assigning camp slots 

 

Assigning farmer market space 

 

Allocating memory to parallel threads 

 

Allocating memory buffer for communication channels 

 

… 
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A Inclusive Sequential Prefix-Sum 

Given a sequence  [x0, x1, x2, ... ] 

Calculate output [y0, y1, y2, ... ] 
 

Such that   y0 = x0 

   y1 = x0 + x1 

   y2 = x0 + x1+ x2 

   … 
Using a recursive definition  
   yi = yi − 1 + xi 
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A Work Efficient C Implementation 

y[0] = x[0]; 
for (i = 1; i < Max_i; i++) y[i] = y [i-1] + x[i]; 

 

Computationally efficient: 
– N additions needed for N elements - O(N)! 
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A Naïve Inclusive Parallel Scan 

Assign one thread to calculate each y element 

Have every thread to add up all x elements needed for the y 
element 

   y0 = x0 

   y1 = x0 + x1 

   y2 = x0 + x1+ x2 

 

“Parallel programming is easy as long as you do not care about 
performance.” 

 



Let’s Look at the Reduction Tree Again 
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3 1 7 0 4 1 6 3 

4 7 5 9 

+ + + + 

+ + 

11 14 

+ 

25 



Reduction Scan Step 
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10 

+ 

+ 

+ + + 

+ 

+ 

x0 x3 x4 x5 x6 x7 x1 x2 

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7 

∑x0..x3 
∑x4..x7 

∑x0..x7 

Time 

In place calculation  

Final value after reduce 



Inclusive Post Scan Step 
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+ 

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7 

∑x0..x5 

Move (add) a critical value  to a central 
location where it is needed 



Inclusive Post Scan Step 
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+ 

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7 

∑x0..x5 

+ + 

∑x0..x2 ∑x0..x4 

+ 

∑x0..x6 



Putting All Together 
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http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg
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Reduction Step Kernel Code 

 
/* scan_array[BLOCK_SIZE] is in shared memory */ 
int stride = 1; 
while(stride < BLOCK_SIZE) 
{ 
   int index = (threadIdx.x+1)*stride*2 - 1; 
   if(index < BLOCK_SIZE) 
      scan_array[index] += scan_array[index-stride]; 
 
   stride = stride*2; 
   __syncthreads(); 
} 
 

threadIdx.x+1    = 1, 2, 3, 4…. 
stride = 1, index =  
   



Putting All Together 
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http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg
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Post Scan Step  

 
int stride = BLOCK_SIZE >> 1; 
 
while(stride > 0) 
{ 
   int index = (threadIdx.x+1)*stride*2 - 1; 
   if(index < BLOCK_SIZE) { 
      scan_array[index+stride] += scan_array[index]; 
   } 
   stride = stride >> 1; 
    __syncthreads(); 
} 
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(Exclusive) Prefix-Sum (Scan) Definition 

Definition: The all-prefix-sums operation takes a binary 
associative operator ⊕, and an array of n elements 
                        [a0, a1, …, an-1], 

and returns the array 
  [0, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]. 

 

Example: If ⊕ is addition, then the all-prefix-sums operation 
on the array   [3  1  7   0   4   1   6    3], 
would return [0  3  4 11  11 15 16 22]. 
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Why Exclusive Scan 

To find the beginning address of allocated buffers 

 

Inclusive and Exclusive scans can be easily derived from 
each other; it is a matter of convenience 

   

   [3 1 7 0 4 1 6 3] 
Exclusive  [0 3 4 11 11 15 16 22] 
Inclusive [3 4 11 11 15 16 22 25] 

 

 



Exclusive Post Scan Step 
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+ 

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 0 

0 

∑x0..x3 



Exclusive Post Scan Step 
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20 

+ 

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 0 

0 

+ + 

∑x0..x3 

∑x0..x3 ∑x0..x5 
∑x0..x1 0 

+ + + + 

∑x0..x6 ∑x0..x5 ∑x0..x4 ∑x0..x3 ∑x0..x1 ∑x0..x2 x0 
0 



Inclusive Post Scan Step 
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+ 

x0 x4 x6 x2 ∑x0..x1 ∑x4..x5 ∑x0..x3 ∑x0..x7 

∑x0..x5 

+ + 

∑x0..x2 ∑x0..x4 

+ 

∑x0..x6 



Exclusive Scan Example – Reduction Step 
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T 3 1 7 0 4 1 6 3 

Assume array is already in shared memory 



Reduction Step (cont.) 
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T 3 1 7 0 4 1 6 3 

T 3 4 7 7 4 5 6 9 

Stride 1 Iteration 1, n/2 threads 

Iterate log(n) times. Each thread adds value stride elements away to its own value 

Each       corresponds 
to a single thread. 



Reduction Step (cont.) 
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T 3 1 7 0 4 1 6 3 

T 3 4 7 7 4 5 6 9 

T 3 4 7 11 4 5 6 14 

Stride 1 

Stride 2 Iteration 2, n/4 threads 

Iterate log(n) times. Each thread adds value stride elements away to its own value 

Each       corresponds 
to a single thread. 



Reduction Step (cont.) 
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T 3 1 7 0 4 1 6 3 

T 3 4 7 7 4 5 6 9 

T 3 4 7 11 4 5 6 14 

T 3 4 7 11 4 5 6 25 

Iterate log(n) times. Each thread adds value stride elements away to its own value. 
 
Note that this algorithm operates in-place: no need for double buffering 

Iteration log(n), 1 thread 

Stride 1 

Stride 2 

Stride 4 

Each       corresponds 
to a single thread. 



Zero the Last Element 
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T 3 4 7 11 4 5 6 0 

We now have an array of partial sums.  Since this is an exclusive scan, 
set the last element to zero.  It will propagate back to the first element. 



Post Scan Step from Partial Sums  
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T 3 4 7 11 4 5 6 0 



Post Scan Step from Partial Sums (cont.) 
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T 3 4 7 0 4 5 6 11 

T 3 4 7 11 4 5 6 0 

Iterate log(n) times. Each thread adds value stride elements away to its own value, 
and sets the value stride elements away to its own previous value. 

Iteration 1 
1 thread 

Stride 4 

Each       corresponds 
to a single thread. 



Post Scan From Partial Sums (cont.) 
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T 3 4 7 0 4 5 6 11 

T 3 4 7 11 4 5 6 0 

T 3 0 7 4 4 11 6 16 

Iterate log(n) times. Each thread adds value stride elements away to its own value, 
and sets the value stride elements away to its own previous value. 

Iteration 2  
2 threads 

Stride 4 

Stride 2 

Each       corresponds 
to a single thread. 



Post Scan Step From Partial Sums (cont.) 
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T 3 4 7 0 4 5 6 11 

T 3 4 7 11 4 5 6 0 

T 3 0 7 4 4 11 6 16 

T 0 3 4 11 11 15 16 22 

Done!  We now have a completed scan that we can write out to device memory. 
 
Total steps: 2 * log(n).   
Total work: 2 * (n-1) adds = O(n)     Work Efficient! 

Iteration log(n)  
n/2 threads 

Stride 2 

Stride 4 

Stride 1 

Each       corresponds 
to a single thread. 
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Work Analysis 

The parallel Inclusive Scan executes 2* log(n) parallel 
iterations 
– log(n) in reduction and log(n) in post scan 

– The iterations do n/2, n/4,..1, 1, …., n/4. n/2 adds 

– Total adds: 2* (n-1)  O(n) work 

 

The total number of adds is no more than twice of that done 
in the efficient sequential algorithm 
– The benefit of parallelism can easily overcome the 2X work 

 



A Plausible Parallel Scan Algorithm 
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1. Read input from  
device memory to  
shared memory. Set 
first element to zero 
and shift others right 
by one. 
 
 

Each thread reads one value from the input 
array in device memory into shared memory array T0. 

Thread 0 writes 0 into shared memory array. 

T0 0 3 1 7 0 4 1 6 

In 3 1 7 0 4 1 6 3 0 



A Plausible Parallel Scan Algorithm 
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1. (previous slide) 

 
2. Iterate log(n)  

times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays)  
 

• Active threads: stride to n-1 (n-stride threads) 
• Thread j adds elements j and j-stride from T0 and 
writes result into shared memory buffer T1 (ping-pong) 

Iteration #1 
Stride = 1 

T1 0 3 4 8 7 4 5 7 
Stride 1 

T0 0 3 1 7 0 4 1 6 

In 3 1 7 0 4 1 6 3 0 



A Plausible Parallel Scan Algorithm 
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T1 0 3 4 8 7 4 5 7 

T0 0 3 4 11 11 12 12 11 

Stride 1 

Stride 2 

1. Read input from  
device memory to  
shared memory. Set 
first element to zero 
and shift others right 
by one. 
 

2. Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays)  
 Iteration #2 

Stride = 2 

T0 0 3 1 7 0 4 1 6 

In 3 1 7 0 4 1 6 3 0 



A Plausible Parallel Scan Algorithm 
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T1 0 3 4 11 11 15 16 22 

1. Read input from  
device memory to  
shared memory. Set 
first element to zero 
and shift others right 
by one. 
 

2. Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays)  
 Iteration #3 

Stride = 4 

In 3 1 7 0 4 1 6 3 0 

T1 0 3 4 8 7 4 5 7 

T0 0 3 4 11 11 12 12 11 

Stride 1 

Stride 2 

T0 0 3 1 7 0 4 1 6 



A Plausible Parallel Scan Algorithm 
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Out 0 3 4 11 11 15 16 22 

1. Read input from  
device memory to  
shared memory. Set 
first element to zero 
and shift others right 
by one. 
 

2. Iterate log(n)  
times: Threads stride 
to n: Add pairs of 
elements stride 
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays)  
 

3. Write output to device 
memory.  

T1 0 3 4 11 11 15 16 22 

In 3 1 7 0 4 1 6 3 0 

T1 0 3 4 8 7 4 5 7 

T0 0 3 4 11 11 12 12 11 

Stride 1 

Stride 2 

T0 0 3 1 7 0 4 1 6 
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Work Efficiency Considerations 

The plausible parallel Scan executes log(n) parallel iterations 
– The steps do (n-1), (n-2), (n-4),..(n- n/2) adds 

– Total adds: n * log(n)  + (n-1)  O(n*log(n)) work 

 

This scan algorithm is not very work efficient 
– Sequential scan algorithm does n adds 

– A factor of log(n) hurts: 20x for 10^6 elements! 

 

A parallel algorithm can be slow when execution resources 
are saturated due to low work efficiency 
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Working on Arbitrary Length Input 

Build on the scan kernel that handles up to 2*blockDim 
elements 

Have each section of 2*blockDim elements assigned to each 
block 

Have each block write the sum of its section into a Sum array 
indexed by blockIdx.x 

 Run parallel scan on the Sum array 
– May need to break down Sum into multiple sections if it is too big for a 

block 

Add the scanned Sum array values to the elements of 
corresponding sections 



Overall Flow of Complete Scan 
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