
For the best experience, open this PDF portfolio in

Acrobat X or Adobe Reader X, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

www.bsc.es

Performance analysis with BSC-Tools

DIMEMAS simulator

Juan Gonzalez – juan.gonzalez@bsc.es

Key factors
– Abstract architecture

– Basic MPI protocols

– No attempt to model details

Objectives
– Simple / General

– Fast simulations

Linear Components
– Point-to-point

– CPU / Module speed ratios

Non-linear components
– Synchronizations

– Resource contention

Network of SMPs / GRID

DIMEMAS: Coarse grain trace driven simulator

CPU

Local

Memory

B

CPU

CPU

L

CPU

CPU

CPU

Local

Memory

L

CPU

CPU

CPU

Local

Memory

L

Structure

– Barrier / FAN-IN / FAN-OUT

Cost of communication

phase

– Generic

– Per call

• Model factor

– LIN / LOG / CONST

• Size of message

– MIN / AVG / MAX

Collective communication model

Execution

Blocking (Barrier)

Communication

FAN_IN

FAN_OUT

Understanding applications

MPIRE 32 tasks, no network contention

L=25us, BW=100MB/s L=1000us, BW=100MB/s

L=25us, BW=10MB/s

All windows same scale

SPECFEM3D

– Do we need asynchronous

communications?

Predicting performance

Courtesy Dimitri Komatitsch

Real

Ideal

Prediction

MN

Prediction

5MB/s

Prediction

1MB/s

Prediction

10MB/s

Prediction

100MB/s

WRF

– Iberia 4Km, 4procs/node

– NMM / ARW models

None sensitive to latency

NMM

– Bandwidth (BW). 256MB/s

– 512 proc.  sensitive to

contention

ARW

– BW. 512MB/s

– Sensitive to contention

Parametric studies – Network sensitivity
Impact of latency (BW=256; B=0)

0.99

0.992

0.994

0.996

0.998

1

1.002

0 2 4 8 16 32

S
p

e
e
d

u
p

 v
s
.

N

o
m

in
a
l

L
a
te

n
c
y

NMM 512

ARW 512

NMM 256

ARW 256

NMM 128

ARW 128

Impact of BW (L=8; B=0)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 4 16 64 256 1024

E
ff

ic
ie

n
c
y

NMM 512

ARW 512

NMM 256

ARW 256

NMM 128

ARW 128

Contention Impact (L=8; BW=256)

0

0.2

0.4

0.6

0.8

1

1.2

4 8 12 16 20 24 28 32 36

Commectivity (B)

S
p

e
e
d

u
p

 v
s
.
F

u
ll
 c

o
m

e
c
ti

v
it

y
NMM 512

ARW 512

NMM 256

ARW 256

NMM 128

ARW 128

Left: clusters IPC with

different cache sizes

– 64KB - 512MB

Right: execution time with

different network BW and

cache size

– 125MB/s – 500MB/s

NAS BT

– Can compensate cache

reduction with more network

BW

VAC, WRF

– Dominated by computation

Multi-scale simulation: L2 cache size vs. Network BW

4MB /250Mb/s

64KB,

500Mb/s

GADGET: Application limits

Load balance / dependences?

Real run

Ideal Network: infinite bandwidth / no latency

GADGET: Impact of architectural parameters

Ideal speeding up ALL computation bursts by a the CPUratio

factor

The more processes, the less speed-up

– Higher impact of bandwidth limitations!!!!
6

4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

1

4

16
64

0

20

40

60

80

100

120

140

Bandwidth (MB/s)

CPU

ratio

Speedup

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

1

8

64

0

20

40

60

80

100

120

140

Bandwidth (MB/s)

CPU

ratio

Speedup

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

1

8

64

0

20

40

60

80

100

120

140

Bandwidth (MB/s)

CPU

ratio

Speedup

64 procs 128 procs 256 procs

Profile

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13

code region

%
 o

f
c
o

m
p

u
ta

ti
o

n
 t

im
e

Hybrid/accelarator

parallelization

– Speed-up SELECTED regions

by the CPUratio factor

We do need to overcome

the hybrid Amdahl’s law

– Asynchrony + Load Balancing

GADGET (what-if?): potential of hybrid parallelization

%
e

la
p

s
e

d
 t
im

e

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

1

4

16

64

0

5

10

15

20

Bandwdith (MB/s)

CPU

ratio

Speedup

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

1

8

64

0

5

10

15

20

Bandwdith (MB/s)

CPU

ratio

Speedup

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

1

8

64

0

5

10

15

20

Bandwdith (MB/s)

CPU

ratio

Speedup

93.67% 97.49%
99.11%

Code region

128 procs.

(Previous slide: speed-ups up to 120x)

CG-POP mpi2s1D 180x120

Comparing 10 iterations – same time scale

24 tasks

48 tasks

96 tasks

180 tasks

360 tasks

Good scalability!

speed up

0

5

10

15

20

0 100 200 300 400

CG-POP mpi2s1D 180x120

Comparing 1 iteration – different time scale
MPI call view o Duration of computing phase

24

48

96

180

360

CG-POP mpi2s1D 180x120: Efficiency

Comparing 10 iterations program global efficiency

0,5

0,7

0,9

1,1

1,3

1,5

1,7

0 100 200 300 400

Efficiency

Parallel eff

instr. eff

avg-IPC

IPC eff

Cores Time Parallel eff. tot-Ins avg-IPC

24 163804479 0,75 8633761558 0,91

48 81589358 0,72 8701167887 0,95

96 43793988 0,63 8745555664 1,05

180 22508326 0,59 8834298647 1,24

360 9890676 0,55 8877820754 1,49

CG-POP mpi2s1D 180x120: Efficiency

Comparing 10 iterations parallel efficiency

0,5

0,6

0,7

0,8

0,9

1

1,1

0 100 200 300 400

Parallel eff

LB

Comm

uLB

transfer

Cores Parallel eff LB Comm uLB transfer

24 0,75 0,76 0,99 1,00 0,99

48 0,72 0,74 0,97 1,00 0,98

96 0,63 0,66 0,95 1,00 0,95

180 0,59 0,65 0,90 0,99 0,92

360 0,55 0,69 0,80 0,97 0,83

CG-POP mpi2s1D: Block size impact

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

96 - 180x120 96 - 120x80 360 - 180x20 360 - 60x40

Efficiency Parallel eff LB Comm uLB transfer instr. eff avg-IPC

CG-POP mpi2s1D 180x120: Sensitivity

Parametric studies

– Sensitivity to network bandwitdh and CPU speed

– Comparing 24, 48 and 96

– Boundary at 512 / 1024 MB/s network BW

– Speed-up potential reduced when scaling

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

10

20

30

40

50

60

70

Bandwdith (MB/s)

CPU

ratio

24 tasks

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

10

20

30

40

50

60

70

Bandwdith (MB/s)

CPU

ratio

48 tasks

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

10

20

30

40

50

60

70

Bandwdith (MB/s)

CPU

ratio

96 tasks

CG-POP mpi2s1D 180x120: Sensitivity

Parametric studies

– Sensitivity to network bandwidth and CPU speed.

– Comparing 96, 180 and 360

– Boundary at 512 / 1024 MB/s network BW

– Speed-up potential reduced when scaling

• NOTE: previous slide max. speed-up of 70

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

5

10

15

20

25

30

Bandwdith (MB/s)

CPU

ratio

360 tasks

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

5

10

15

20

25

30

Bandwdith (MB/s)

CPU

ratio

180 tasks

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

5

10

15

20

25

30

Bandwdith (MB/s)

CPU

ratio

96 tasks

CG-POP mpi2s1D 180x120: Sensitivity

Sensitivity to CPU, Bandwidth and latency for 360 tasks case

1248163264
16

20

5

10

15

20

25

30

35

40

45

CPU ratio

latency (us)

360 tasks

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

1

2

3

4

5

6

7

Bandwdith (MB/s)

CPU

ratio

360 tasks

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

16

20

1

2

3

4

5

Bandwdith (MB/s)

latency

(us)

360 tasks

Latency 4 us Bw 1024 MB/s CPU 4 times faster

(Latency = 0 may not be realistic)

CG-POP mpi2s1D: Block size impact

96 tasks – Very similar

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

5

10

15

20

25

30

Bandwdith (MB/s)

CPU

ratio

96 tasks - 120x80

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

5

10

15

20

25

30

Bandwdith (MB/s)

CPU

ratio

96 tasks - 180x120

Still place for improvement?

CG-POP mpi2s1D: Block size impact

360 tasks – Small impact / Worst with small block size

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

1

2

3

4

5

6

7

Bandwdith (MB/s)

CPU

ratio

360 tasks - 60x40

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

1

8

64

0

1

2

3

4

5

6

7

Bandwdith (MB/s)

CPU

ratio

360 tasks - 180x120

Reaching the plateau?

CG-POP mpi2s1D 180x120: Imbalance

Study impact of balancing main computation

– 96 tasks

– Eliminate main imbalanced computation MPI calls view

– Same time scale

Nominal
simulation

Nominal sim.
Zeroing main

computation

Real execution

CG-POP mpi2s1D 180x120: Imbalance

96 tasks

Communication phase only
– Small computations point-to-point / collective calls

– MPI calls view / same time scale

– Imbalance in halo exchange

• Computation (75%) / # messages (65%)

– Small amount of serialization

– Large transfer time

0

10

20

30

40

50

60

70

80

90

100

#
 m

e
s
s
a

g
e

s

Tasks

0,00

0,40

0,80

1,20

Parallel eff. LB Comm uLB transfer

96 - 180x120 96 - zero C1

Ideal
network

Nominal sim.
Zeroing main

computation

Conclusions

Sometimes things are not as they look like

– Even the scalability is good, the parallel efficiency does not scale but

IPC improvements compensate

Small scale analysis can give hints to identify problems at

large scale

– IPC variability

– Code replication

– What-if analyses

www.bsc.es

Outlook:
Fault Tolerance in MPI Programs

With material from W. Gropp, E. Lusk
 Argonne National Laboratory

Contents

Declaration

Existing FT MPI

FT & MPI standard

Write (non-transparent) FT in MPI

Summary & discussion

Declaration

Fault tolerance is a property of a program, not of an API
specification or an implementation.

Within certain constraints, MPI can provide a useful context
for writing application programs that exhibit significant
degrees of fault tolerance.

Current FT MPI

Manetho
n faults
EZ92

Egida
RAV99

MPI/FT
Redundance

of tasks
BNC01

FT-MPI
Modification of MPI

routines
User Fault Treatment

FD00

MPICH-V2
N faults

Distributed
logging
ABFC03

MPI-FT
N fault

Centralized
server
LNLE00

Non Automatic Automatic

Pessimistic log

Log based
coordinated

based

Causal log Optimistic log

Framework

API

Comm. Lib.

Cocheck
Independent
of MPI Ste96

Starfish
Enrichment of MPI

AF 99
Clip

Semi-transparent
Checkpoint

CLP97
Pruitt 98

2 faults sender based
Pru98

Optimistic recovery
In distributed systems

n faults with
coherent checkpoint

SY85

Coordinated
checkpoint

MPICH-CL
N faults

???

Sender based Mess.
Log.

1 fault sender based
JZ87

Fault Tolerance & MPI standard

FT is a property of an MPI program coupled with the MPI
implementation.

Four lever of “survive”
– Automatically recovers (MPICH)
– Error notification (FT-MPI)
– Failure can be ignore (Manager/worker)
– Restart from checkpoint (CoCheck etc)

Ease of use

Fault Tolerance & MPI standard

MPI Standard does mention about the FT.
– Require to implement reliable communication
– Built in or user defined error handlers
– Predefined error

Writing FT App in MPI

Basic approach
– Checkpointing & roll back

• System directed
• User directed

– Redundancy & vote

Approach technique
– MPI
– Modify / Extend MPI

The checkpoint frequency

ET=T(1+k0/t0+a(k1+t0/2))
0=dET/dt0=-k0/t02+a/2

)2kT(1E 01T kαα ++=

α
0

0
2t k=

to

ET

α
02k

Additional cost

Use intercommunicators

Worker processors

Manager(s)

Centralized/Distributed work pool

The intermediate status of the computing is stored at the
manager party.

Manager/Worker
Model

intercommunicator

Modify/Extend MPI

Modify MPI Semantics
– Break the constrain of the MPI semantics
– Provider the programmer more error information and error handling

methods

Extending MPI
– Define extensions to MPI (MPE_XXX)
– Encapsulate the MPI procedures

Summary

MPI Standard provides in the way of support for writing fault-
tolerant programs.

Many approach could be used to write the “nontransparent”
FT MPI program.

		Outlook:�Fault Tolerance in MPI Programs

		Contents

		Declaration

		Current FT MPI

		Fault Tolerance & MPI standard

		Fault Tolerance & MPI standard

		Writing FT App in MPI

		The checkpoint frequency

		Use intercommunicators

		Modify/Extend MPI

		Summary

Parallel Programming Course 2012 ‐ 2013

PATC @ BSC
1

INTELLECTUAL PROPERTY RIGHTS
NOTICE:

• The User may only download, make and retain a copy of
the materials for his/her use for non‐commercial and
research purposes.

• The User may not commercially use the material, unless
has been granted prior written consent by the Licensor to
do so; and cannot remove, obscure or modify copyright
notices, text acknowledging or other means of
identification or disclaimers as they appear.

• For further details, please contact BSC‐CNS patc@bsc.es

PRACE TRAINING COURSE
under

PRACE Advance Training Centre at
BSC

BSC‐CNS http://www.bsc.es/

PRACE project http://www.prace‐ri.eu/

PRACE Training Portal http://www.training.prace‐ri.eu/

PATC @ BSC Training Program

http://www.bsc.es/marenostrum‐support‐services/hpc‐
trainings/prace‐trainings

Introduction to the Use of Dimemas

Material
This directory contains an example and guidelines to get started on the use of Dimemas. You can find:

• A Paraver trace Iberia-128-CA.chop1.1it.shifted.prv for a 128 processor run of the
WRF application. The traces was obtained on MareNostrum with Extrae, using the
LD_PRELOAD mechanism to intercept entries and exits to MPI. The trace contains events on
entry and exit to the MPI calls and hardware counter (cache misses, instructions and cycles) events
at these points.

• Its corresponding .pcf file with the symbolic information for the numerically encoded records in
the trace.

• A directory ./cfgs with some paraver configuration files that will be used during the analysis of
the traces obtained in this session.

• Four initial Dimemas configuration files named MN.128.{1,2,4,8}ppn.cfg

• A directory ./full_session.1ppn with all the derived Dimemas configuration files and its
simulation outputs for the 1-processor-per-node configuration. We recommended to initially
ignore its content and follow the tutorial to get acquainted with Dimemas and DimemasGUI.

Objective
We have a Paraver trace file, describing an actual run (one iteration) of the WRF code in MareNostrum.
Our objective is to perform several Dimemas simulations to identify the sensitivity of the application
performance to interconnect parameters.

A first step would be to model with Dimemas the actual MareNostrum configuration and check whether the
prediction matches the actual behavior. Then we can proceed to study the potential benefit of hypothetical
changes in the architecture.

Generating a Dimemas trace and performing a simulation
The first step is to convert the Paraver trace into a Dimemas file using prv2dim. To do so, execute the
following command in a terminal window:

> $(DIMEMAS_HOME)/bin/prv2dim Iberia-128-
CA.chop1.1it.shifted.prv Iberia-128-
CA.chop1.1it.shifted.dim

We have provided a Dimemas configuration file (MN.128.1ppn.cfg) that describes an architecture
model idealized from MareNostrum (8 us latency, 250 MB/s but no contention in the network) with only
one process per node. Run the following the command in a terminal window:

> $(DIMEMAS_HOME)/bin/Dimemas -S 32K -p
prediction.1ppn.prv MN.128.1ppn.cfg

In a few seconds you should get the prediction.1ppn.prv trace which is a reconstruction of what would have
been the behavior on the machine modeled by the MN.128.1ppn.cfg file.

We can now load the original trace in Paraver and the cfgs/mpi_call.cfg. We can do the same thing
with the predicted trace (also load cfgs/mpi_call.cfg). In order to ensure that both windows are at
the same timescale, we should copy it from the original to the synthetic trace (right click in the original
trace timeline window, select “Copy”, and then move to the timeline of the synthetic trace and do “Paste

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/Iberia-128-CA.chop1.1it.shifted.prv

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/cfgs/mpi_call.cfg

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/prediction.1ppn.prv

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/cfgs/mpi_call.cfg

Size” and “Paste Time”). We can see that the prediction of Dimemas is slightly optimistic, but quite close
to the reality.

Changing the machine model
Let us assume that we are interested in finding out what would be the impact of a slower network (i.e. only
10 MB/s). We should use the Dimemas GUI to tune the cfg file. First load the GUI executing following
command in your terminal:

> $(DIMEMAS_HOME)/bin/DimemasGUI

Once the it has load, follow the next sequence of action:

1. “Configuration -> Load configuration” and select MN.128.1ppn.cfg

2. “Configuration -> Target configuration”. Click on the “Config” button by the “Environment
information” to change the network bandwidth to 10.0 MB/s and click “Save”

3. “Configuration -> Save configuration” to a file (i.e. MN.128.1ppn.10MBps.cfg)

Perform the Dimemas simulation specifying a name for the output Paraver file and the just saved Dimemas
cfg file:

> $(DIMEMAS_HOME)/bin/Dimemas -S 32K -p
prediction.1ppn.10MBs.prv MN.128.1ppn.10MBps.cfg

Now, load the new Paraver trace, load the cfg/mpi_call.cfg on it and copy its timescale to the other
two traces we had already loaded. We can see that although the reduction in bandwidth was very significant
(divided by 25), the actual impact on performance was not huge (just 15%)

We may thus wonder what would be the impact of reducing bandwidth further. Let us say to just 5 MB/s.
You can repeat the process. Now the impact starts to be larger. It is also apparent that the impact is not the
same in all phases of the time-line. you can load the cfgs/p2p_size.cfg configuration and it will be
apparent that the communication phases that are more sensitive to the bandwidth are those with larger
messages as one would expect. In general, the actual impact of a reduction in bandwidth will depend on the
computational granularity of the application, the message sizes, but also on the level of load balance and
the actual use of asynchronous communications within the application or its tolerance to shifts in process
pipelining.

- What is the impact of the latency?
You may start from the original MN.128.1ppn.cfg description. Come back to the Dimemas GUI, load
the configuration file asdo the following steps:

1. “Configuration -> Target configuration”. Push the “Config” button by the “Node information”
label.

2. Change the “Startup on remote comm” entry and set it to 0.0001 for example to model a 100 us
latency.

3. After changing it click on the “Do all the same” button to apply the new latency to all nodes (you
could actually specify different latencies for different nodes, the node number's showed up at the
top of this window).

4. “Save” the specified latencies (startups). In Dimemas terms, latency is not end to end but actually
represents the local overhead an MPI implementation has. It is assumed to use the CPU and after
it, data transfer can start.

5. Create a new Dimemas configuration file (again “Configuration -> Save configuration”) and
perform the simulation (executing the simulator in the terminal window).

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/cfgs/p2p_size.cfg

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/cfg/mpi_call.cfg

If you load the resulting trace in Paraver, you can see that the performance impact of such bad latency is
negligible for this trace.

- Would I benefit from multi-rail adapters?
Start from the configuration of 5 MB/s. Go back to the Dimemas GUI. In the “Node Information” window
change the “Number of input links” to 2, and also for the output links. Save the configuration file and
simulate.

You can see a certain potential gain by this configuration. One might also study increasing the input links
but not the output links. Although not a foreseeable feature of future architectures, this structure can give
insight on the structure of the application. For example if one region of an application shows an
improvement in this situation, it means that there is significant end point contention. One would probably
suggest to the application developer to restructure the schedule of communications so that not all processes
send to the same processes at the same time, a frequently disregarded problem in many codes.

- What is the impact of contention?
Starting again from the original machine description you can wonder whether contention caused by bad
routing can hurt the performance. One way of modeling this at a very abstract level is to change the
“Number of buses” parameter in the “Environment information” window. The number you put in this field
is the maximum number of possible concurrent transfers (except that a 0 means no limit on the number of
concurrent communications). A value of 1 would mean the network topology would be a bus, with only
one possible transfer at any time. You can vary this parameter and see how sensitive is the application to
contention. In our case, the application still performs well with a very small number of concurrent transfers
(ie. 2 is actually enough).

– What would be the impact of a faster processor?
For the previous machine description change the “Relative processor speed” of the “Node Information”
window to 5.0. This will model a processor 5 times faster in the execution of the sequential computation
burst between MPI calls. You will observe that now the application is more sensitive to contention. You
will need to increase the number of buses to achieve a good efficiency.

An interesting simulation is to assume infinite bandwidth (you have to put a 0 in the “Network bandwidth”
field) and zero latency. This will give a limit of the efficiency of the application due to load imbalance and
dependence chains.

- What happens if we simulate 2 processors per node? What about 4 and 8?
At this point, try to repeat the whole analysis described in this section varying “Number of processors” and
comparing also with the previous results simulated with less processors.

Visualization of the internals of the communication
Given that Dimemas has knowledge of the actual point in time where a data transfer takes place, it can emit
such information to the generated Paraver file. The following paraver configuration files shows how this
information can be visualized or which measurements can be made. Let us assume we do a simulation with
10x processor speed, only 20 concurrent communication.

• Configuration file /cfgs/used_network_bw.cfg >displays the aggregated instantaneous
bandwidth through the network.

file:///home/jgonzale/Applications/WXPARAVER/tutorials/Introduction_to_Dimemas/cfgs/used_network_bw.cfg

