Parallel Programming Course

PATC @ BSC

INTELLECTUAL PROPERTY RIGHTS
NOTICE:

* The User may only download, make and retain a copy of

the materials for his/her use for non-commercial and
research purposes.

* The User may not commercially use the material, unless
has been granted prior written consent by the Licensor to
do so; and cannot remove, obscure or modify copyright

notices, text acknowledging or other means of
identification or disclaimers as they appear.

* For further details, please contact BSC-CNS patc@bsc.es

PRACE (B

PRACE TRAINING COURSE
under
PRACE Advance Training Centre at
BSC
BSC-CNS http://www.bsc.es/
PRACE project http://www.prace-ri.eu/

PRACE Training Portal http://www.training.prace-ri.eu/
PATC @ BSC Training Program

http://www.bsc.es/marenostrum-support-services/hpc-
trainings/prace-trainings

2012 - 2013

- Session 5: Parallel
I Programmingwith OpenMP

A

ﬁavier VERIE
&_\; |
Barcelona Supereomputing Center

Agenda
Agenda

10:00 - 11:00
11:00 - 11:30
11:30 - 12:00
12:00 - 12:15
12:15-13:00
13:00 - 14:00
14:00 - 14:30
14:30 - 15:30
15:30 - 16:00
16:00 - 17:00

OpenMP fundamentals, parallel regions
Worksharing constructs

Break

Synchronization mechanisms in OpenMP

Practical: heat diffusion

Lunch

Tasking in OpenMP

Programming using a hybrid MPI/OpenMP approach

@

Practical: heat diffusion
PATC Parallel Programming Workshop November 26-30, 2012 2/120

Xavier Martorell (BSC)

Part |

OpenMP fundamentals, parallel regions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 3/120

@ OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

@ Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 4/120

OpenMP Overview

Outline

@ OpenMP Overview

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 5/120

What is OpenMP?

@ It's an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines

o Current version is 3.0 (May 2008)
e Supported by most compiler vendors

@ Intel,IBM,PGl,Sun,Cray,Fujitsu,HP,GCC,...

@ Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 6/120

OpenMP Overview

A bit of history

O'OenMP 3.0

P N e e e e e e e R o o o R
[DA DX VX A VA VI DI VR DI DR DR VA VAR VAR VR SRR PR D S s
1997 1998 1999 2000 2002 2005 2008

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 7/120

Advantages of OpenMP

@ Mature standard and implementations
e Standardizes practice of the last 20 years

@ Good performance and scalability
@ Portable across architectures

@ Incremental parallelization

@ Maintains sequential version

@ (mostly) High level language
e Some people may say a medium level language :-)

@ Supports both task and data parallelism
@ Communication is implicit

W

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 8/120

OpenMP Overview

Disadvantages of OpenMP

Communication is implicit

Flat memory model

Incremental parallelization creates false sense of glory/failure
No support for accelerators

No error recovery capabilities

Difficult to compose

Lacks high-level algorithms and structures

Does not run on clusters

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 9/120

The OpenMP model

Outline

@ The OpenMP model

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 10/120

The OpenMP model

OpenMP at a glance

OpenMP componen

Environment
OpenMP Exec OpenMP API

[OpenMP Runtime Library -]

[OS Threading Libraries]

cPU cPU cPU cPU cPU BEED : -

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 11/120

The OpenMP model

Execution model

Fork-join model

@ OpenMP uses a fork-join model

o The master thread spawns a team of threads that joins at the end of
the parallel region
e Threads in the same team can collaborate to do work

/@ D

Nested Parallel Reglon

rrrrrrrrrrrr | T

Parallel Region Parallel Region

\\

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 12/120

The OpenMP model

Memory model

@ OpenMP defines a relaxed memory model

e Threads can see different values for the same variable
e Memory consistency is only guaranteed at specific points
@ Luckily, the default points are usually enough

@ Variables can be shared or private to each thread

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 13/120

Writing OpenMP programs

Outline

@ Writing OpenMP programs

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 14/120

Writing OpenMP programs
OpenMP directives syntax

In Fortran
Through a specially formatted comment:

sentinel construct [clauses]

where sentinel is one of:
@ ! SOMP or CSOMP or »SOMP in fixed format

@ ! SOMP in free format

| \,

In C/C++
Through a compiler directive:

#pragma omp construct [clauses]

@ OpenMP syntax is ignored if the compiler does not recognize
OpenMP)

15/120

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

sentinel construct [clauses]

where sentinel is one of:
@ ! SOMP or CSOMP or »SOMP in fixed format

@ ! SOMP in free format

In C/C++

Through a compiler directive:

#pragma omp construct [clauses]

@ OpenMP syntax is ignored if the compiler does not recognize

.

We'll be using C/C++ syntax through this tutorial

15/120

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

Writing OpenMP programs
Headers/Macros

@ omp.h contains the API prototypes and data types definitions
@ The _OPENMP is defined by OpenMP enabled compiler
o Allows conditional compilation of OpenMP

@ The omp_lib module contains the subroutine and function
definitions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 16/120

Writing OpenMP programs

Structured Block

Most directives apply to a structured block:
@ Block of one or more statements
@ One entry point, one exit point
@ No branching in or out allowed

@ Terminating the program is allowed

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 17/120

Creating Threads

Outline

@ Creating Threads

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 18/120

Creating Threads

The parallel construct

#pragma omp parallel [clauses]
structured block

where clauses can be:
@ num_threads (expression)

if (expression)

shared(var-list)«—

private(var-list) /
firstprivate(var-list)
default(none|shared| private {_fi i

reduction(var-list)
copyin(var—list)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 19/120

Coming shortly!

Only in Fortran

Creating Threads

The parallel construct

Specifying the number of threads

@ The number of threads is controlled by an internal control variable
(Icv) called nthreads-var.
@ When a parallel construct is found a parallel region with a
maximum of nthreads-var is created
e Parallel constructs can be nested creating nested parallelism
@ The nthreads-var can be modified through

o the omp_set_num_threads API called
e the OMP_NUM_THREADS environment variable

@ Additionally, the num_threads clause causes the implementation
to ignore the ICV and use the value of the clause for that region.

)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 20/120

Creating Threads

The parallel construct

Avoiding parallel regions

@ Sometimes we only want to run in parallel under certain conditions
e E.g., enough input data, not running already in parallel, ...

@ The if clause allows to specify an expression. When evaluates to
false the parallel construct will only use 1 thread

o Note that still creates a new team and data environment

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 21/120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

omp_set_num_threads(2);
#pragma omp parallel

#pragma omp parallel num_threads(random()%4+1) if(0)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22/120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel
An unknown number of threads here. Use OMP_NUM_THREADSJ
omp_set_num aas(zJ,;
#pragma omp parallel

#pragma omp parallel num threads(random()%4+1) if(0)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22/120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

omp_set_num_threads(2);

#pragma omp rallel
- A team of two threads here.
#pragma omp parallel num threads om()%4+1) if(0)

}

22/120

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

omp_set_num_threads(2);
#pragma omp parallel

e G random ()%4+1) if(0)
000 A team of 1 thread here.

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22/120

Creating Threads

API calls

Other useful routines

int omp_get_num_threads() Returns the number of threads in the cur-

rent team

int omp_get_thread num() Returns the id of the thread in the current
team

int omp_get_num_procs() Returns the number of processors in the
machine

int omp_get_max_threads() Returns the maximum number of threads
that will be used in the next parallel region

double omp_get_wtime() Returns the number of seconds since an
arbitrary point in the past

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 23/120

Data-sharing attributes

Outline

@ Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 24 /120

Data-sharing attributes

Data environment

A number of clauses are related to building the data environment that
the construct will use when executing.

shared

private

firstprivate

default

threadprivate

lastprivate

reduction———{ We'll see them later
copyin
Copypﬁvaiee————{Outofourscopetoday]

v

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 25/120

Data-sharing attributes
Data-sharing attributes

When a variable is marked as shared, the variable inside the
construct is the same as the one outside the construct.
@ In a parallel construct this means all threads see the same
variable
@ but not necessarily the same value
@ Usually need some kind of synchronization to update them
correctly
e OpenMP has consistency points at synchronizations

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 26 /120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel shared(X) num threads(2)

{
X++;
printf ("sd\n",x);

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 /120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel shared(x) num_threads(2)

{

X++;

printf("sd\n",x);
}
printf ("sd\n" ,x); Prints 2 or 3

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 /120

Data-sharing attributes
Data-sharing attributes

When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value.

@ In a parallel construct this means all threads have a different
variable

@ Can be accessed without any kind of synchronization

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 28/120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel private(X) num threads(2)

{
X++]
printf ("sd\n" ,x);

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

29/120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel private(X) num_threads(2)

{

X++;
printf("sd\n",x); <—[Can print anything)

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

29/120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel private(X) num_threads(2)

{
X++;
printf("sd\n",x);

}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

29/120

Data-sharing attributes
Data-sharing attributes

Firstprivate

When a variable is marked as £irstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original variable value.
@ In a parallel construct this means all threads have a different
variable with the same initial value

@ Can be accessed without any kind of synchronization

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 30/120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel firstprivate(X) num_threads(2)

{
X++]
printf ("sd\n",x);

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

31/120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel firstprivate(X) num_threads(2)

{

X++;
printf("sd\n",x); Prints 2 (twice)

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

31/120

Data-sharing attributes

Data-sharing attributes

Example

int x=1;
#pragma omp parallel firstprivate(X) num_threads(2)

{
X++;
printf("sd\n",x);

}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

31/120

Data-sharing attributes

Data-sharing attributes

What is the default?

@ Static/global storage is shared

@ Heap-allocated storage is shared

@ Stack-allocated storage inside the construct is private
@ Others

o If there is a default clause, what the clause says

@ none means that the compiler will issue an error if the attribute is not
explicitly set by the programmer

e Otherwise, depends on the construct
@ Forthe parallel region the default is shared

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 32/120

Data-sharing attributes

Data-sharing attributes

Example
int x,y;
#pragma omp parallel private(y)
{
X =
y =
#pragma omp parallel private(X)
{
X =
y =
}
}
v

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33/120

Data-sharing attributes

Data-sharing attributes

Example
int x,y;
#pragma omp parallel private(y)
{
y = \
X =
y =
}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33/120

Data-sharing attributes

Data-sharing attributes

Example

int x,y;
#pragma omp parallel private(y)
{
X =
y =
#pragma omp parallel private(X)
{
X = X is private
y =
} y is shared

i

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33/120

Data-sharing attributes

Threadprivate storage

The threadprivate construct

#pragma omp threadprivate (var—list)

@ Can be applied to:

o Global variables
o Static variables
o Class-static members

@ Allows to create a per-thread copy of “global” variables.

@ threadprivate storage persist across parallel regions if the
number of threads is the same

v

©

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 34/120

Threadprivate persistence across nested regions is complex

Data-sharing attributes

Threaprivate storage

charx foo ()

{
static char buffer [BUF_SIZE];

#pragma omp threadprivate (buffer)

return buffer;

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/120

Data-sharing attributes

Threaprivate storage

charx foo ()

{

static char buffer[BUF_SIZE]; Creates one static
#pragma omp threadprivate (buffer) copy of buffer per
thread

return buffer;

}

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/120

Data-sharing attributes

Threaprivate storage

charx foo ()

{

static char buffer [BUF_SIZE]; Now foo can be called by
#pragma omp threadprivate (buffer) multiple threads at the same
time

return buffer;

}

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35/120

Part Il

Worksharing constructs

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 36/120

Outline

@ The worksharing concept

@ Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 37/120

The worksharing concept

Outline

@ The worksharing concept

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 38/120

The worksharing concept

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

@ Threads cooperate to do some work

@ Better way to split work than using thread-ids
@ Lower overhead than using tasks
o But, less flexible

In OpenMP, there are four worksharing constructs:
@ single
@ loop worksharing
@ section——{ we'll see them later)

@ worksharee——

Restriction: worksharings cannot be nested =

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 39/120

Loop worksharing

Outline

@ Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 40/120

Loop worksharing

Loop parallelism

The for construct

#pragma omp for [clauses]
for(init—expr ; test—expr ; inc—expr)

where clauses can be:
@ private
@ firstprivate
@ lastprivate(variable-list)
@ reduction (operator:variable-list)
@ schedule (schedule-kind)
@ nowait
-]
)

collapse (n)
ordered We'll see it later

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 41/120

Loop worksharing

The for construct

The iterations of the loop(s) associated to the construct are divided
among the threads of the team.
@ Loop iterations must be independent
@ Loops must follow a form that allows to compute the number of
iterations
@ Valid data types for inductions variables are: integer types,
pointers and random access iterators (in C++)
e The induction variable(s) are automatically privatized

@ The default data-sharing attribute is shared

It can be merged with the parallel construct:

#pragma omp parallel for

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 42/120

Loop worksharing

The for construct

void foo (int «m, int N, int M)
{
int i;
#pragma omp parallel for private(j)
for (i =0; i <N; i++)
for (j =0; j <M; j++)
mlillj] = 0;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43/120

Loop worksharing

The for construct

void foo (int «m, int N, int M)

{
"t":a'; omo oarallel forcosive NEW created threads cooperate to exe-
fgr ?mT _ %;Pi <N; i++) cute all the iterations of the loop
for (j =0; j <M; j++)
mli][j] = 0;

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43/120

Loop worksharing

The for construct

void foo (int «m, int N, int M)
{
int i;
#pragma omp p i i
for (i«=8+1 The i variable is automatically privatized
for (j = oy T =W TFF
} mi][j] = O;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43/120

Loop worksharing

The for construct

void foo (int xm, int N, int M)
{
int i;
#pragma omp parallel for private(j)
for (i =0; i <N: j++)
for (j<=—0s— Must be explicitly privatizedj
mEi][j] = b3

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43/120

Loop worksharing

The for construct

void foo (std::vector<int> &v)
{
#pragma omp parallel for
for (std::vector<int>::iterator it = v.begin() ;
it <v.end() ;
it ++)
xit = 0;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 /120

Loop worksharing

The for construct

void foo (std::vector<int> &v)
{ #pragma omp parallel for random access iterators
for (std::vector<int>::iterator<«d (and pointers) are valid
it < v.end() 5 types
it ++)
xit = 0;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 /120

Loop worksharing

The for construct

void foo (std::vector<int> &v)
{ #pragma omp parallel for
for (std::vector<int>::jterator it = v beain()
it < v.end()« I= cannot be used in the test expression)
it ++)
xit = 0;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 /120

Loop worksharing

Removing dependences

i =0; i <n; i++)

VLI = Each iteration x depends on the ’
X += dx;

previous one. Can'’t be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 45/120

Loop worksharing

Removing dependences

i =0; i <n; i++)

. . But x can be rewritten in terms of .
X = i x dx;] .
vii] = x; Now it can be parallelized

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 46/120

Loop worksharing
The lastprivate clause

When a variable is declared lastprivate, a private copy is
generated for each thread. Then the value of the variable in the last
iteration of the loop is copied back to the original variable.

@ A variable can be both firstprivate and lastprivate

®

November 26-30, 2012 47 /120

Xavier Martorell (BSC) PATC Parallel Programming Workshop

Loop worksharing
The reduction clause

A very common pattern is where all threads accumulate some values
into a single variable

@ E.g., n +=V[i], our pi program, ...
@ Using critical or atomic is not good enough
o Besides being error prone and cumbersome

Instead we can use the reduction clause for basic types.
@ Valid operators are: +,-,%,,||,&,&&,"
@ The compiler creates a private copy that is properly initialized

@ At the end of the region, the compiler ensures that the shared
variable is properly (and safely) updated.

We can also specify reduction variables in the parallel construct.

v

W

November 26-30, 2012 48/120

Xavier Martorell (BSC) PATC Parallel Programming Workshop

Loop worksharing

The reduction clause

int vector_sum (int n, int v[n])
{
int i, sum = 0;
#pragma omp parallel for reduction(+:sum)
{
for (i =0; i <n; i++)
sum += v[i];
}
return sum;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49/120

Loop worksharing

The reduction clause

int vector_sum (int n, int v[n])
{
int i, sum = 0O;
#pragma i .
{ Private copy initialized here to the identity value
for Tr=uorTr=< T
sym += v[ijl-
} Shared variable updated here with the partial values of each thread)
return Sorr;
}

v

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49/120

Loop worksharing

The schedule clause

The schedule clause determines which iterations are executed by
each thread.

@ If no schedule clause is present then is implementation defined
There are several possible options as schedule:

@ STATIC

@ STATIC, chunk

@ DYNAMIC][, chunk]

@ GUIDED[, chunk]

@ AUTO

@ RUNTIME

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 50/120

Loop worksharing
The schedule clause

Static schedule

The iteration space is broken in chunks of approximately size
N/num — threads. Then these chunks are assigned to the threads in a
Round-Robin fashion.

v

Static,N schedule (Interleaved)

The iteration space is broken in chunks of size N. Then these chunks
are assigned to the threads in a Round-Robin fashion.

Characteristics of static schedules
@ Low overhead

@ Good locality (usually)
@ Can have load imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 51/120

Loop worksharing
The schedule clause

Dynamic,N schedule

Threads dynamically grab chunks of N iterations until all iterations
have been executed. If no chunk is specified, N = 1.

v

Guided,N schedule
Variant of dynamic. The size of the chunks deceases as the threads
grab iterations, but it is at least of size N. If no chunk is specified,
N=1.

Characteristics of dynamic schedules
@ Higher overhead
@ Not very good locality (usually)
@ Can solve imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 52 /120

Loop worksharing

The schedule clause

Auto schedule
In this case, the implementation is allowed to do whatever it wishes.
@ Do not expect much of it as of now

v

Runtime schedule

The decision is delayed until the program is run through the
sched-nvar ICV. It can be set with:

@ The OMP_SCHEDULE environment variable
@ The omp_set_schedule() API call

v

©

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 53/120

Loop worksharing
The nowait clause

When a worksharing has a nowait clause then the implicit barrier
at the end of the loop is removed.

@ This allows to overlap the execution of non-dependent
loops/tasks/worksharings

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 54 /120

Loop worksharing

The nowait clause

. First and second loop are indepen-
#pragma omp for nowait
) dent so we can overlap them

for (i =0; i <n ; i
v[ii] = 0;

#pragma omp for:

for (i = 0; i <n ; i++)
a[i] = 0;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

55/120

Loop worksharing

The nowait clause

#pragma omp for nowait

for (i =0; i <n ; i++) |On a side note, you would be bet-
v[i] = 0; ter by fusing the loops in this case
#pragma omp for
for (i = 0; i <n ; i++)
a[i] = 0;

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

55/120

Loop worksharing

The nowait clause

First and second loop are depen-
#pragma omp for nowait dent!. No guarantees that the pre-
forin; = 85 i <n; i++) |vious iteration is finished
#pragma omp for/
for (i = 0; i <n ; i++)
afi]l = v[ilxv[il;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 56 /120

Loop worksharing

The nowait clause

Exception: static schedules

If the two (or more) loops have the same static schedule and all
have the same number of iterations.

Example

#pragma omp for schedule(static ,2) nowait

for (i =0; i <n ; i++)
v[i] = 0;
#pragma omp for schedule(static ,2)

for (i =0; i <n ; i++)
afi] = v[ilxv[il;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 57 /120

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops.
@ Loops must be perfectly nested
@ The nest must traverse a rectangular iteration space

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 /120

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops.
@ Loops must be perfectly nested
@ The nest must traverse a rectangular iteration space

#pragma omp for collapse(2) i and j loops are folded and itera-
for (i =0; i <N; i++) tions distributed among all threads.
for ((j =05] <M j++) Both i and j are privatized

foo (i,j);

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 /120

Coffee time! :-)

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 59/120

Part

Basic Synchronizations

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 60 /120

Outline

@ Thread barriers

@ Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 61/120

Why synchronization?

Mechanisms

Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

@ barrier
@ critical
@ atomic
@ taskwait

) ordered<—(We’II see them Iater)
® lockse—"

v

W

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 62 /120

Thread barriers

Outline

@ Thread barriers

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 63 /120

Thread barriers

Thread Barrier

The barrier construct

#pragma omp barrier

@ Threads cannot proceed past a barrier point until all threads reach
the barrier AND all previously generated work is completed

@ Some constructs have an implicit barrier at the end
o E.g., the parallel construct

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 64 /120

Thread barriers

Barrier

Example

#pragma omp parallel

foo ();

#pragma omp barrier
bar ();

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65/120

Thread barriers

Barrier

Example

#pragma omp parallel

foo ();) Forces all foo occurrences too
#pragma omp barrier

bar () : happen before all bar occurrences
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65/120

Thread barriers

Barrier

Example

#pragma omp parallel

foo ();
#pragma omp barrier
bar ():
}<—(Implicit barrier at the end of the parallel region)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65/120

Exclusive access

Outline

@ Exclusive access

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2! 66 /120

Exclusive access
Exclusive access

The critical construct

#pragma omp critical [(name)]
structured block

@ Provides a region of mutual exclusion where only one thread can
be working at any given time.
@ By default all critical regions are the same, but you can provide
them with names
o Only those with the same name synchronize

v

@

67 /120

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

Exclusive access

Critical construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp critical
X++;

1

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 /120

Exclusive access

Critical construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{
#pragma omp crjitical

X++; Only one thread at a time here)
}

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 /120

Exclusive access

Critical construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{
#pragma omp crjitical

X++; Only one thread at a time here)
}

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 /120

Exclusive access

Critical construct

Example

int x=1,y=0;
#pragma omp parallel num_threads(4)
{
#pragma omp critical (Xx)
X++;
#pragma omp critical (y)
y++;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69/120

Exclusive access

Critical construct

Example

int x=1,y=0;
#pragma omp parallel num_ threads(4)

{
#pragma omp critical (X) (pifferent names: One thread can ’

#pra;;;;w update x while another updates y
y++;

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69/120

Exclusive access
Exclusive access

The atomic construct

#pragma omp atomic
expression

@ Provides an special mechanism of mutual exclusion to do read &
update operations
@ Only supports simple read & update expressions
e E.g,x+=1,x=x-foo()
@ Only protects the read & update part
e foo() not protected

@ Usually much more efficient than a eritical construct

@ Not compatible with eritical

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 70/120

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp atomic
X++;

1

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71/120

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp atomic
x++;<—fgnly one thread at a time updates x here)

}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71/120

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num_threads(2)

{

#pragma omp atomic
X++;

1

printf ("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71/120

Exclusive access

Atomic construct

Example
int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp critical
X++;
#pragma omp atomic
X++;
}
printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72/120

Exclusive access

Atomic construct

Example

int x=1;
#pragma omp parallel num threads(2)

{

#pragma omp critical

| Different threads can update x at

X++] ' ’
#pragma WJ the same time!
X++]

}

printf("sd\n",x);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

72/120

Exclusive access

Atomic construct

Example
int x=1;
#pragma omp parallel num threads(2)
{
#pragma omp critical
X++;
#pragma omp atomic
X++;
} .
printf("sd\n",x); Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72/120

Part IV

Practical: heat diffusion

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 73/120

Outline

@ Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 74 /120

Heat diffusion

Outline

@ Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 75/120

Heat diffusion
Before you start

Enter the OpenMP directory to do the following exercises.)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 76 /120

Heat diffusion

Description of the Heat Diffusion app Hands-on

The file solver.c implements the computation of the Heat diffusion
@ Annotate the jacobi, redblack, and gauss functions with OpenMP

©Q Execute the application with different numbers of processors, and
compare the results

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 77 /120

Break

Xavier Martorell (BSC)

PATC Parallel Programming Workshop

Bon appétit!*

*Disclaimer: actual food may differ
from the image! :-)

November 26-30, 20

78/120

Part V

Task Parallelism in OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 79/120

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop

November 26-30, 2012

80/120

OpenMP tasks

Outline

@ OpenMP tasks

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 81/120

OpenMP tasks

Task parallelism in OpenMP

Task parallelism model

Tearh | Task poo

@ Parallelism is extracted from “several” pieces of code
@ Allows to parallelize very unstructured parallelism
e Unbounded loops, recursive functions, ...

v

\\

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 82/120

OpenMP tasks

What is a task in OpenMP ?

@ Tasks are work units whose execution may be deferred
e they can also be executed immediately
@ Tasks are composed of:

@ code to execute
@ a data environment

@ |Initialized at creation time
e internal control variables (ICVs)

@ Threads of the team cooperate to execute them

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 83/120

OpenMP tasks

Creating tasks

The task construct

#pragma omp task [clauses]
structured block

Where clauses can be:
@ shared
@ private
@ firstprivate
e Values are captured at creation time

@ default

@ if (expression)

@ untied

v

S

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 84 /120

OpenMP tasks

When are task created?

@ Parallel regions create tasks
e One implicit task is created and assigned to each thread
@ So all task-concepts have sense inside the parallel region
@ Each thread that encounters a task construct

e Packages the code and data
o Creates a new explicit task

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 85/120

OpenMP tasks

Default task data-sharing attributes

When there are no clauses ...

If no default clause
@ Implicit rules apply
@ e.g., global variables are shared
@ Otherwise...

o firstprivate
@ shared attribute is lexically inherited

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 86 /120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;
#pragma omp task

int e;

® QOO0 T®
LI [| B

1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;
#pragma omp task

int e;

shared

® QOO0 T®
LI [| B

1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;
#pragma omp task

int e;

shared
firstprivate

® QOO0 T®
LI [| B

1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;
#pragma omp task

int e;
shared

firstprivate
shared

® Q0 T
Il

1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;

#pragma omp task
int e;
a = shared
b = firstprivate
Cc = shared
d = firstprivate
e =

1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;
#pragma omp task

int e;

a = shared
b = firstprivate
Cc = shared
d = firstprivate
€ = private

1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

Task default data-sharing attributes

In practice...

int a;

void foo () {
int b,c;
#pragma omp parallel shared(b)
#pragma omp parallel private(b)
{

int d;
#pragma omp task
{

int e;

= shared
firstprivate
shared

= firstprivate

= private

® QOO0 T

111

Tip: default (none) is your friend if you do not see it clearly)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87/120

OpenMP tasks

List traversal

void traverse_list (List |)

{
Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
process(e) ;(—(e is firstprivate)
1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 88/120

Task synchronization

Outline

@ Task synchronization

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 89/120

Task synchronization

Task synchronization

There are two main constructs to synchronize tasks:
@ barrier
e Remember: all previous work (including tasks) must be completed

@ taskwait

&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 90/120

Task synchronization

Waiting for children

The taskwait construct

#pragma omp taskwait

Suspends the current task until all children tasks are completed
@ Just direct children, not descendants

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 91/120

Task synchronization

Taskwait

void traverse_list (List |)
{
Element e;
for (e = |—>first; e ; e = e—>next)
#pragma omp task
process(e);

#Prarjma omn taskwait

All tasks guaranteed to be completed here)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 92/120

Task synchronization

Taskwait

void traverse_list (List |)
{

Element e;

for (e = |—>first; e ; e = e—>next)

#pragma omp task "\, \ve need some threads
process(e);
to execute the tasks

#pragma omp taskwait

}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 92/120

Task synchronization

List traversal
Completing the picture

List |

#pragma omp parallel
traverse_list(1);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 93/120

Task synchronization

List traversal
Completing the picture

List

#pragma omp parallel
traverse_list(I) ;<—[This will generate multiple traversalsj

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 93/120

Task synchronization

List traversal
Completing the picture

List

#pragma omp parallel

traverse list(1): We need a way to have a single

thread execute traverse_list

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 93/120

The single construct

Outline

@ The single construct

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 94 /120

The single construct

Giving work to just one thread

The single construct

#pragma omp single [clauses]
structured block

@ where clauses can be:

private
firstprivate

nowait We'll see it later

e copyprivate
@ Only one thread of the team executes the structured block
@ There is an implicit barrier at the end

v

@&

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 95/120

The single construct

The single construct

int main (int argc, char xxargv)
{
#pragma omp parallel
{
#pragma omp single
printf("Hello_world!\n");
}
}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 96 /120

The single construct

The single construct

int main (int argc, char xxargv)
{
#pragma omp parallel
{
#pragma omp single
printf ("Hello_world!\n"); This pro%ram outputijust
} one “Hello world
}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 96 /120

The single construct

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma single
traverse_list(l);

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 97 /120

The single construct

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma single
traverse_list (1) ;<—(One thread creates the tasks of the traversal)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 97 /120

The single construct

List traversal
Completing the picture

List |

#pragma omp parallel
#pragma single
traverse_list (1) ;<—[AII threads cooperate to execute them)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 97 /120

Task clauses

Outline

@ Task clauses

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2! 98/120

Task clauses

Task scheduling

Tasks are tied by default
@ Tied tasks are executed always by the same thread
@ Not necessarily the creator
@ Tied tasks have scheduling restrictions
e Deterministic scheduling points (creation, synchronization, ...)
@ Tasks can be suspended/resumed at these points
@ Another constraint to avoid deadlock problems

@ Tied tasks may run into performance problems

v

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 99/120

Task clauses
The untied clause

A task that has been marked as untied has none of the previous
scheduling restrictions:

@ Can potentially switch to any thread

@ Can potentially switch at any moment
@ Bad mix with thread based features
e thread-id, critical regions, threadprivate

@ Gives the runtime more flexibility to schedule tasks

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 100/ 120

Task clauses

The if clause

@ If the the expression of an i £ clause evaluates to false

e The encountering task is suspended
o The new task is executed immediately

@ with its own data environment
o different task with respect to synchronization

@ The parent task resumes when the task finishes
o Allows implementations to optimize task creation

@ For very fine grain task you may need to do your own if

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 101/120

Common tasking problems

Outline

@ Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 102/120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
int i,res;

it (n==1j) {
/% good solution, count it */
solutions ++;
return;

}
/% try each possible solutionx/

for (i = 0; i < n; i++)

state[j] = i;

if (ok(j+1,state)) {
search(n,j+1,state);

}

}

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 103/120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
int i,res;
it (n==1j) {

/% good solution, count it */
solutions ++;

return;
}
/% try each possible solutionx/
for (i = 0; i < n; i++)

#pragma omp task
state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}

}

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 103/120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)

int i,res;
it (n==7j) { .
/x good solution, count it x/ Data scoping
solutions ++;
return: Because it's an orphaned

}
/% try each possible solution s/ task all variables are

sy (= 5 1 g) firstprivate

#pragma omp task

state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103/120

Common tasking problems

Search problem

Example
\{loid search (int n, int j, bool xstate) Data SCOplng

int i,res;

o i) Because it's an orphaned
/* good solution, count it x*/ task a” Variables are
solutions ++; 0 -

, return: firstprivate

/% try each possiblg solution */ -

o) State is not captured

U ostatelin - i; Just the pointer is captured

if k(j+1, 0
e not the pointed data
} v

}

| | ©

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103/120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)

int i,res;
if (n==1j) {
/% good solution, count it */
solutions ++; Problem #1
return;
) Incorrectly capturing
/%t h ibl lution */ H
171 S G, Sy pointed data

#pragma omp task

state[j] = i;
if (ok(j+1,state)) {
search(n,j+1,state);
}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103 /120

Common tasking problems

Problem #1

Incorrectly capturing pointed data

Problem
firstprivate does not allow to capture data through pointers

@ Capture it manually
© Copy it to an array and capture the array with firstprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 104 /120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
it (n==1j) {
/% good solution, count it =/
solutions ++;
return;
}
/+ try each possible solution x/
for (i = 0; i < n; i++)
#pragma omp task
{
bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}
}
v

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
it (n==j) {
/% good solution, count it =/
solutions ++;
return;
J Will new_state still be valid
/+ try each possible solution x/ : .
for (i = 0: i <n: i+3) by the time memcpy is
R G B executed?
bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}
}

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 105/120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
it (n==1j) {
/% good solution, count it =/
solutions ++;
return;
) Problem #2
/+ try each possible solution x/
for (1 o 0r | e 14 Data can go out of scope!
#pragma omp task
{
bool xnew_state = alloca(sizeof(bool)*n);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}
}

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 105/120

Common tasking problems

Problem #2

Out-of-scope data

Stack-allocated parent data can become invalid before being used by

child tasks
@ Only if not captured with firstprivate

@ Use firstprivate when possible

© Allocate it in the heap
o Not always easy (we also need to free it)

© Put additional synchronizations
e May reduce the available parallelism

v

A

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 106 /120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)

int i,res;

if (n==j)
/% good solution, count it =*/
solutions++;

return;

}

/% try each possible solutionx/

for (i = 0; i < n; i++)

#pragma omp task

{
bool xnew_state = alloca(sizeof(bool)xn);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {

search(n,j+1,new_state);

}

}

#pragma omp taskwait

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 07 /120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)

int i,res;

it (n==j) {
/% good solution , * X
solutions++ Shared variable needs protected access)
return;

}

/% try each possible solutionx/

for (i = 0; i < n; i++)

#pragma omp task

{
bool xnew_state = alloca(sizeof(bool)xn);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {

search(n,j+1,new_state);

}

}

#pragma omp taskwait

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 107 /120

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
int i,res;

if (n==j) {
/% good solution, count it =*/
solutions++;
return;

}

/% try each possible solutionx/

@ Use critical

for (i = 0; i <n; i++) 0
#pragma omp task o Use atomic
{ .

bool xnew_state = alloca (sizeof(bool)xn); @ Use threadprivate

memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)) {
search(n,j+1,new_state);
}
}

#pragma omp taskwait

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 107 /120

Common tasking problems

Reductions for tasks

int solutions=0;

int mysolutions=0;
><—(Use a separate counter for each thread)

#pragma omp threadprivate (mysolutions

void start_search ()

{

#pragma omp parallel
#pragma omp single

bool initial_state[n];
search(n,0,initial_state);

}
#pragma omp atomic
solutions += mysolutions; <—(Accumulate them at the end)

November 26-30, 2012 108/120

PATC Parallel Programming Workshop

Xavier Martorell (BSC)

Common tasking problems

Search problem

void search (int n, int j, bool xstate)
{
int i,res;
if (n==j)
/% good solution, count it =/
mysolutions++;
return;

}

/= try each possible solutionx/
for (i = 0; i < n; i++)
#pragma omp task

bool xnew_state = alloca(sizeof(bool)xn);
memcpy (new_state , state , sizeof (bool)xn);
new_state[j] = i;
if (ok(j+1,new_state)){
search(n, j+1,new_state);
}
}

#pragma omp taskwait

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 109/120

Part VI

Programming using a hybrid
MPI1/OpenMP approach

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 110/120

Outline

@ MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 111/120

MPI+OpenMP programming

Outline

@ MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 112/120

MPI+OpenMP programming
Alternatives

MPI + computational kernels in OpenMP

Use OpenMP directives to exploit parallelism between communication
phases

@ OpenMP parallel will end before new communication calls

MPI inside OpenMP constructs
Call MPI from within for-loops, or tasks
@ MPI needs to support multi-threaded mode

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 113/120

MPI+OpenMP programming

Compiling MPI+OpenMP

MPI compiler driver gets the proper OpenMP option
@ mpicc -openmp

@ mpicc -fopenmp

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 114/120

Coffee time! :-)

Xavier Martorell (BSC) allel Programming Workshop November 26-30, 2012 115/120

Part VII

Practical: heat diffusion

®

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 116 /120

Outline

@ MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 117 /120

MPI+OpenMP Heat diffusion

Outline

@ MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 118/120

MPI+OpenMP Heat diffusion

Before you start

Enter the MP1+OpenMP directory to do the following exercises.)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 119/120

MPI+OpenMP Heat diffusion

Description of the Heat Diffusion app Hands-on

The file solver.c implements the computation of the Heat diffusion.
@ Use MPI to distribute the work across nodes

©Q Annotate the jacobi, redblack, and gauss functions with OpenMP
tasks

© Execute the application with different numbers of
nodes/processors, and compare the results

@

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 120/120

	IPR NOTICE 12-13
	Day4
	OpenMP fundamentals, parallel regions
	OpenMP Overview
	The OpenMP model
	Writing OpenMP programs
	Creating Threads
	Data-sharing attributes

	Worksharing constructs
	The worksharing concept
	Loop worksharing

	Basic Synchronizations
	Thread barriers
	Exclusive access

	Practical: heat diffusion
	Heat diffusion

	Task Parallelism in OpenMP
	OpenMP tasks
	Task synchronization
	The single construct
	Task clauses
	Common tasking problems

	Programming using a hybrid MPI/OpenMP approach
	MPI+OpenMP programming

	Practical: heat diffusion
	MPI+OpenMP Heat diffusion

