
Parallel Programming Course 2012 ‐ 2013

PATC @ BSC
1

INTELLECTUAL PROPERTY RIGHTS
NOTICE:

• The User may only download, make and retain a copy of
the materials for his/her use for non‐commercial and
research purposes.

• The User may not commercially use the material, unless
has been granted prior written consent by the Licensor to
do so; and cannot remove, obscure or modify copyright
notices, text acknowledging or other means of
identification or disclaimers as they appear.

• For further details, please contact BSC‐CNS patc@bsc.es

PRACE TRAINING COURSE
under

PRACE Advance Training Centre at
BSC

BSC‐CNS http://www.bsc.es/

PRACE project http://www.prace‐ri.eu/

PRACE Training Portal http://www.training.prace‐ri.eu/

PATC @ BSC Training Program

http://www.bsc.es/marenostrum‐support‐services/hpc‐
trainings/prace‐trainings

Session 5: Parallel
Programming with OpenMP

Xavier Martorell

Barcelona Supercomputing Center

Agenda

Agenda

10:00 - 11:00 OpenMP fundamentals, parallel regions
11:00 - 11:30 Worksharing constructs
11:30 - 12:00 Break
12:00 - 12:15 Synchronization mechanisms in OpenMP
12:15 - 13:00 Practical: heat diffusion
13:00 - 14:00 Lunch
14:00 - 14:30 Tasking in OpenMP
14:30 - 15:30 Programming using a hybrid MPI/OpenMP approach
15:30 - 16:00 Break
16:00 - 17:00 Practical: heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 2 / 120

Part I

OpenMP fundamentals, parallel regions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 3 / 120

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 4 / 120

OpenMP Overview

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 5 / 120

OpenMP Overview

What is OpenMP?

It’s an API extension to the C, C++ and Fortran languages to write
parallel programs for shared memory machines

Current version is 3.0 (May 2008)
Supported by most compiler vendors

Intel,IBM,PGI,Sun,Cray,Fujitsu,HP,GCC,...

Maintained by the Architecture Review Board (ARB), a consortium
of industry and academia

http://www.openmp.org

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 6 / 120

OpenMP Overview

A bit of history
O

pe
nM

P
Fo

rt
ra

n
1.

0

1997

O
pe

nM
P

C
/C

++
1.

0

1998

O
pe

nM
P

Fo
rt

ra
n

1.
1

1999

O
pe

nM
P

Fo
rt

ra
n

2.
0

2000

O
pe

nM
P

C
/C

++
2.

0
2002

O
pe

nM
P

2.
5

2005

O
pe

nM
P

3.
0

2008

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 7 / 120

OpenMP Overview

Advantages of OpenMP

Mature standard and implementations
Standardizes practice of the last 20 years

Good performance and scalability
Portable across architectures
Incremental parallelization
Maintains sequential version
(mostly) High level language

Some people may say a medium level language :-)

Supports both task and data parallelism
Communication is implicit

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 8 / 120

OpenMP Overview

Disadvantages of OpenMP

Communication is implicit
Flat memory model
Incremental parallelization creates false sense of glory/failure
No support for accelerators
No error recovery capabilities
Difficult to compose
Lacks high-level algorithms and structures
Does not run on clusters

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 9 / 120

The OpenMP model

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 10 / 120

The OpenMP model

OpenMP at a glance

OpenMP components

CPU CPU CPU CPU CPU CPU SMP

OS Threading Libraries

OpenMP Runtime Library ICVs

OpenMP Exec

Compiler

Constructs

OpenMP API Environment
Variables

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 11 / 120

The OpenMP model

Execution model

Fork-join model
OpenMP uses a fork-join model

The master thread spawns a team of threads that joins at the end of
the parallel region
Threads in the same team can collaborate to do work

Parallel Region Parallel Region

Nested Parallel Region

Master Thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 12 / 120

The OpenMP model

Memory model

OpenMP defines a relaxed memory model
Threads can see different values for the same variable
Memory consistency is only guaranteed at specific points
Luckily, the default points are usually enough

Variables can be shared or private to each thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 13 / 120

Writing OpenMP programs

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 14 / 120

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 15 / 120

Writing OpenMP programs

OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l cons t ruc t [c lauses]

where sentinel is one of:
!$OMP or C$OMP or *$OMP in fixed format
!$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp cons t ruc t [c lauses]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 15 / 120

We’ll be using C/C++ syntax through this tutorial

Writing OpenMP programs

Headers/Macros

C/C++ only
omp.h contains the API prototypes and data types definitions
The _OPENMP is defined by OpenMP enabled compiler

Allows conditional compilation of OpenMP

Fortran only
The omp_lib module contains the subroutine and function
definitions

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 16 / 120

Writing OpenMP programs

Structured Block

Definition
Most directives apply to a structured block:

Block of one or more statements
One entry point, one exit point

No branching in or out allowed

Terminating the program is allowed

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 17 / 120

Creating Threads

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 18 / 120

Creating Threads

The parallel construct

Directive

#pragma omp parallel [c lauses]
s t r u c t u r e d block

where clauses can be:
num_threads(expression)

if(expression)

shared(var-list)
private(var-list)
firstprivate(var-list)
default(none|shared| private | firstprivate)
reduction(var-list)
copyin(var-list)

Coming shortly!

Only in Fortran

We’ll see it later

Not today

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 19 / 120

Creating Threads

The parallel construct

Specifying the number of threads
The number of threads is controlled by an internal control variable
(ICV) called nthreads-var.
When a parallel construct is found a parallel region with a
maximum of nthreads-var is created

Parallel constructs can be nested creating nested parallelism
The nthreads-var can be modified through

the omp_set_num_threads API called
the OMP_NUM_THREADS environment variable

Additionally, the num_threads clause causes the implementation
to ignore the ICV and use the value of the clause for that region.

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 20 / 120

Creating Threads

The parallel construct

Avoiding parallel regions
Sometimes we only want to run in parallel under certain conditions

E.g., enough input data, not running already in parallel, ...

The if clause allows to specify an expression. When evaluates to
false the parallel construct will only use 1 thread

Note that still creates a new team and data environment

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 21 / 120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

An unknown number of threads here. Use OMP_NUM_THREADS

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

A team of two threads here.

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 120

Creating Threads

Putting it together

Example

void main () {
#pragma omp parallel

. . .
omp_set_num_threads (2) ;
#pragma omp parallel

. . .
#pragma omp parallel num_threads (random()%4+1) if (0)

. . .
}

A team of 1 thread here.

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 22 / 120

Creating Threads

API calls

Other useful routines
int omp_get_num_threads() Returns the number of threads in the cur-

rent team
int omp_get_thread_num() Returns the id of the thread in the current

team
int omp_get_num_procs() Returns the number of processors in the

machine
int omp_get_max_threads() Returns the maximum number of threads

that will be used in the next parallel region
double omp_get_wtime() Returns the number of seconds since an

arbitrary point in the past

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 23 / 120

Data-sharing attributes

Outline

OpenMP Overview

The OpenMP model

Writing OpenMP programs

Creating Threads

Data-sharing attributes

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 24 / 120

Data-sharing attributes

Data environment

A number of clauses are related to building the data environment that
the construct will use when executing.

shared

private

firstprivate

default

threadprivate

lastprivate
reduction
copyin
copyprivate

We’ll see them later

Out of our scope today

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 25 / 120

Data-sharing attributes

Data-sharing attributes

Shared
When a variable is marked as shared, the variable inside the
construct is the same as the one outside the construct.

In a parallel construct this means all threads see the same
variable

but not necessarily the same value
Usually need some kind of synchronization to update them
correctly

OpenMP has consistency points at synchronizations

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 26 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel shared (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel shared (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 2 or 3

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 27 / 120

Data-sharing attributes

Data-sharing attributes

Private
When a variable is marked as private, the variable inside the
construct is a new variable of the same type with an undefined value.

In a parallel construct this means all threads have a different
variable
Can be accessed without any kind of synchronization

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 28 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Can print anything

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel private (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 29 / 120

Data-sharing attributes

Data-sharing attributes

Firstprivate
When a variable is marked as firstprivate, the variable inside the
construct is a new variable of the same type but it is initialized to the
original variable value.

In a parallel construct this means all threads have a different
variable with the same initial value
Can be accessed without any kind of synchronization

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 30 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ;

Prints 2 (twice)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x =1;
#pragma omp parallel firstprivate (x) num_threads (2)
{

x++;
p r i n t f ("%d\n" , x) ;

}
p r i n t f ("%d\n" , x) ; Prints 1

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 31 / 120

Data-sharing attributes

Data-sharing attributes

What is the default?
Static/global storage is shared
Heap-allocated storage is shared
Stack-allocated storage inside the construct is private
Others

If there is a default clause, what the clause says
none means that the compiler will issue an error if the attribute is not
explicitly set by the programmer

Otherwise, depends on the construct
For the parallel region the default is shared

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 32 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

x is shared

y is private

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33 / 120

Data-sharing attributes

Data-sharing attributes

Example

i n t x , y ;
#pragma omp parallel private (y)
{

x =
y =
#pragma omp parallel private (x)
{

x =
y =

}
}

x is private

y is shared

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 33 / 120

Data-sharing attributes

Threadprivate storage

The threadprivate construct

#pragma omp t h r e a d p r i v a t e (var− l i s t)

Can be applied to:
Global variables
Static variables
Class-static members

Allows to create a per-thread copy of “global” variables.
threadprivate storage persist across parallel regions if the
number of threads is the same

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 34 / 120

Threadprivate persistence across nested regions is complex

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 120

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 120

Data-sharing attributes

Threaprivate storage

Example

char∗ foo ()
{

s t a t i c char b u f f e r [BUF_SIZE] ;
#pragma omp t h r e a d p r i v a t e (b u f f e r)

. . .

return b u f f e r ;
}

Creates one static
copy of buffer per

thread

Now foo can be called by
multiple threads at the same

time

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 35 / 120

Part II

Worksharing constructs

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 36 / 120

Outline

The worksharing concept

Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 37 / 120

The worksharing concept

Outline

The worksharing concept

Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 38 / 120

The worksharing concept

Worksharings

Worksharing constructs divide the execution of a code region among
the threads of a team

Threads cooperate to do some work
Better way to split work than using thread-ids
Lower overhead than using tasks

But, less flexible

In OpenMP, there are four worksharing constructs:
single
loop worksharing
section
workshare

We’ll see them later

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 39 / 120

Restriction: worksharings cannot be nested

Loop worksharing

Outline

The worksharing concept

Loop worksharing

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 40 / 120

Loop worksharing

Loop parallelism

The for construct

#pragma omp for [c lauses]
for (i n i t −expr ; t es t−expr ; inc−expr)

where clauses can be:
private
firstprivate
lastprivate(variable-list)
reduction(operator:variable-list)
schedule(schedule-kind)
nowait
collapse(n)
ordered We’ll see it later

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 41 / 120

Loop worksharing

The for construct

How it works?
The iterations of the loop(s) associated to the construct are divided
among the threads of the team.

Loop iterations must be independent
Loops must follow a form that allows to compute the number of
iterations
Valid data types for inductions variables are: integer types,
pointers and random access iterators (in C++)

The induction variable(s) are automatically privatized

The default data-sharing attribute is shared

It can be merged with the parallel construct:
#pragma omp parallel for

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 42 / 120

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized
Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 120

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

New created threads cooperate to exe-
cute all the iterations of the loop

The i variable is automatically privatized
Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 120

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized

Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 120

Loop worksharing

The for construct

Example

void foo (i n t ∗m, i n t N, i n t M)
{

i n t i ;
#pragma omp parallel for private (j)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
m[i] [j] = 0 ;

}

The i variable is automatically privatized

Must be explicitly privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 43 / 120

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types!= cannot be used in the test expression

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 / 120

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types

!= cannot be used in the test expression

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 / 120

Loop worksharing

The for construct

Example

void foo (s td : : vector < int > &v)
{
#pragma omp parallel for
for (s td : : vector < int > : : i t e r a t o r i t = v . begin () ;

i t < v . end () ;
i t ++)

∗ i t = 0 ;
}

random access iterators
(and pointers) are valid

types

!= cannot be used in the test expression

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 44 / 120

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

v [i] = x ;
x += dx ;

}

Each iteration x depends on the
previous one. Can’t be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 45 / 120

Loop worksharing

Removing dependences

Example

x = 0;
for (i = 0 ; i < n ; i ++)
{

x = i ∗ dx ;
v [i] = x ;

}

But x can be rewritten in terms of i .
Now it can be parallelized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 46 / 120

Loop worksharing

The lastprivate clause

When a variable is declared lastprivate, a private copy is
generated for each thread. Then the value of the variable in the last
iteration of the loop is copied back to the original variable.

A variable can be both firstprivate and lastprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 47 / 120

Loop worksharing

The reduction clause

A very common pattern is where all threads accumulate some values
into a single variable

E.g., n += v[i], our pi program, ...
Using critical or atomic is not good enough

Besides being error prone and cumbersome

Instead we can use the reduction clause for basic types.
Valid operators are: +,-,*,|,||,&,&&,^
The compiler creates a private copy that is properly initialized
At the end of the region, the compiler ensures that the shared
variable is properly (and safely) updated.

We can also specify reduction variables in the parallel construct.

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 48 / 120

Loop worksharing

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction (+ :sum)
{

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

}
return sum;

}

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49 / 120

Loop worksharing

The reduction clause

Example

i n t vector_sum (i n t n , i n t v [n])
{

i n t i , sum = 0;
#pragma omp parallel for reduction (+ :sum)
{

for (i = 0 ; i < n ; i ++)
sum += v [i] ;

}
return sum;

}

Private copy initialized here to the identity value

Shared variable updated here with the partial values of each thread

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 49 / 120

Loop worksharing

The schedule clause

The schedule clause determines which iterations are executed by
each thread.

If no schedule clause is present then is implementation defined
There are several possible options as schedule:

STATIC

STATIC,chunk

DYNAMIC[,chunk]

GUIDED[,chunk]

AUTO

RUNTIME

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 50 / 120

Loop worksharing

The schedule clause

Static schedule
The iteration space is broken in chunks of approximately size
N/num − threads. Then these chunks are assigned to the threads in a
Round-Robin fashion.

Static,N schedule (Interleaved)
The iteration space is broken in chunks of size N. Then these chunks
are assigned to the threads in a Round-Robin fashion.

Characteristics of static schedules
Low overhead
Good locality (usually)
Can have load imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 51 / 120

Loop worksharing

The schedule clause

Dynamic,N schedule
Threads dynamically grab chunks of N iterations until all iterations
have been executed. If no chunk is specified, N = 1.

Guided,N schedule
Variant of dynamic. The size of the chunks deceases as the threads
grab iterations, but it is at least of size N. If no chunk is specified,
N = 1.

Characteristics of dynamic schedules
Higher overhead
Not very good locality (usually)
Can solve imbalance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 52 / 120

Loop worksharing

The schedule clause

Auto schedule
In this case, the implementation is allowed to do whatever it wishes.

Do not expect much of it as of now

Runtime schedule
The decision is delayed until the program is run through the
sched-nvar ICV. It can be set with:

The OMP_SCHEDULE environment variable
The omp_set_schedule() API call

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 53 / 120

Loop worksharing

The nowait clause

When a worksharing has a nowait clause then the implicit barrier
at the end of the loop is removed.

This allows to overlap the execution of non-dependent
loops/tasks/worksharings

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 54 / 120

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = 0 ;

First and second loop are indepen-
dent so we can overlap them

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 55 / 120

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = 0 ;

On a side note, you would be bet-
ter by fusing the loops in this case

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 55 / 120

Loop worksharing

The nowait clause

Example

#pragma omp for nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for
for (i = 0 ; i < n ; i ++)

a [i] = v [i]∗ v [i] ;

First and second loop are depen-
dent!. No guarantees that the pre-
vious iteration is finished

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 56 / 120

Loop worksharing

The nowait clause

Exception: static schedules
If the two (or more) loops have the same static schedule and all
have the same number of iterations.

Example

#pragma omp for schedule (stat ic , 2) nowait
for (i = 0 ; i < n ; i ++)

v [i] = 0 ;
#pragma omp for schedule (stat ic , 2)
for (i = 0 ; i < n ; i ++)

a [i] = v [i]∗ v [i] ;

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 57 / 120

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops.
Loops must be perfectly nested
The nest must traverse a rectangular iteration space

Example

#pragma omp for collapse (2)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
foo (i , j) ;

i and j loops are folded and itera-
tions distributed among all threads.
Both i and j are privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 / 120

Loop worksharing

The collapse clause

Allows to distribute work from a set of n nested loops.
Loops must be perfectly nested
The nest must traverse a rectangular iteration space

Example

#pragma omp for collapse (2)
for (i = 0 ; i < N; i ++)

for (j = 0 ; j < M; j ++)
foo (i , j) ;

i and j loops are folded and itera-
tions distributed among all threads.
Both i and j are privatized

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 58 / 120

Break

Coffee time! :-)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 59 / 120

Part III

Basic Synchronizations

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 60 / 120

Outline

Thread barriers

Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 61 / 120

Why synchronization?

Mechanisms
Threads need to synchronize to impose some ordering in the
sequence of actions of the threads. OpenMP provides different
synchronization mechanisms:

barrier

critical

atomic

taskwait
ordered
locks

We’ll see them later

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 62 / 120

Thread barriers

Outline

Thread barriers

Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 63 / 120

Thread barriers

Thread Barrier

The barrier construct

#pragma omp barrier

Threads cannot proceed past a barrier point until all threads reach
the barrier AND all previously generated work is completed
Some constructs have an implicit barrier at the end

E.g., the parallel construct

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 64 / 120

Thread barriers

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65 / 120

Thread barriers

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65 / 120

Thread barriers

Barrier

Example

#pragma omp parallel
{

foo () ;
#pragma omp barrier

bar () ;
}

Forces all foo occurrences too
happen before all bar occurrences

Implicit barrier at the end of the parallel region

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 65 / 120

Exclusive access

Outline

Thread barriers

Exclusive access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 66 / 120

Exclusive access

Exclusive access

The critical construct

#pragma omp critical [(name)]
s t r u c t u r e d block

Provides a region of mutual exclusion where only one thread can
be working at any given time.
By default all critical regions are the same, but you can provide
them with names

Only those with the same name synchronize

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 67 / 120

Exclusive access

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 / 120

Exclusive access

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 / 120

Exclusive access

Critical construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 68 / 120

Exclusive access

Critical construct

Example

i n t x=1 ,y =0;
#pragma omp parallel num_threads (4)
{
#pragma omp critical (x)

x++;
#pragma omp critical (y)

y++;
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69 / 120

Exclusive access

Critical construct

Example

i n t x=1 ,y =0;
#pragma omp parallel num_threads (4)
{
#pragma omp critical (x)

x++;
#pragma omp critical (y)

y++;
}

Different names: One thread can
update x while another updates y

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 69 / 120

Exclusive access

Exclusive access

The atomic construct

#pragma omp atomic
expression

Provides an special mechanism of mutual exclusion to do read &
update operations
Only supports simple read & update expressions

E.g., x += 1, x = x - foo()
Only protects the read & update part

foo() not protected

Usually much more efficient than a critical construct
Not compatible with critical

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 70 / 120

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71 / 120

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71 / 120

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Only one thread at a time updates x here

Prints 3!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 71 / 120

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72 / 120

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ;

Different threads can update x at
the same time!

Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72 / 120

Exclusive access

Atomic construct

Example

i n t x =1;
#pragma omp parallel num_threads (2)
{
#pragma omp critical

x++;
#pragma omp atomic

x++;
}
p r i n t f ("%d\n" , x) ; Prints 3,4 or 5 :(

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 72 / 120

Part IV

Practical: heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 73 / 120

Outline

Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 74 / 120

Heat diffusion

Outline

Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 75 / 120

Heat diffusion

Before you start

Enter the OpenMP directory to do the following exercises.

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 76 / 120

Heat diffusion

Description of the Heat Diffusion app Hands-on

Parallel loops
The file solver.c implements the computation of the Heat diffusion

1 Annotate the jacobi, redblack, and gauss functions with OpenMP
2 Execute the application with different numbers of processors, and

compare the results

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 77 / 120

Break

Bon appétit!*

*Disclaimer: actual food may differ
from the image! :-)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 78 / 120

Part V

Task Parallelism in OpenMP

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 79 / 120

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 80 / 120

OpenMP tasks

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 81 / 120

OpenMP tasks

Task parallelism in OpenMP

Task parallelism model

Team Task pool

Parallelism is extracted from “several” pieces of code
Allows to parallelize very unstructured parallelism

Unbounded loops, recursive functions, ...

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 82 / 120

OpenMP tasks

What is a task in OpenMP ?

Tasks are work units whose execution may be deferred
they can also be executed immediately

Tasks are composed of:
code to execute
a data environment

Initialized at creation time

internal control variables (ICVs)

Threads of the team cooperate to execute them

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 83 / 120

OpenMP tasks

Creating tasks

The task construct

#pragma omp task [c lauses]
s t r u c t u r e d block

Where clauses can be:
shared
private
firstprivate

Values are captured at creation time

default
if(expression)

untied

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 84 / 120

OpenMP tasks

When are task created?

Parallel regions create tasks
One implicit task is created and assigned to each thread

So all task-concepts have sense inside the parallel region

Each thread that encounters a task construct
Packages the code and data
Creates a new explicit task

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 85 / 120

OpenMP tasks

Default task data-sharing attributes
When there are no clauses ...

If no default clause
Implicit rules apply

e.g., global variables are shared
Otherwise...

firstprivate
shared attribute is lexically inherited

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 86 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a =
b =
c =
d =
e =

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b =
c =
d =
e =

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c =
d =
e =

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d =
e =

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d = firstprivate
e =

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d = firstprivate
e = private

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

OpenMP tasks

Task default data-sharing attributes
In practice...

Example

i n t a ;
void foo () {

i n t b , c ;
#pragma omp parallel shared (b)
#pragma omp parallel private (b)
{

i n t d ;
#pragma omp task
{

i n t e ;

a = shared
b = firstprivate
c = shared
d = firstprivate
e = private

} } }

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 87 / 120

Tip: default(none) is your friend if you do not see it clearly

OpenMP tasks

List traversal

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l −> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

}
e is firstprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 88 / 120

Task synchronization

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 89 / 120

Task synchronization

Task synchronization

There are two main constructs to synchronize tasks:
barrier

Remember: all previous work (including tasks) must be completed

taskwait

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 90 / 120

Task synchronization

Waiting for children

The taskwait construct

#pragma omp taskwait

Suspends the current task until all children tasks are completed
Just direct children, not descendants

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 91 / 120

Task synchronization

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l −> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}
All tasks guaranteed to be completed here

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 92 / 120

Task synchronization

Taskwait

Example

void t r a v e r s e _ l i s t (L i s t l)
{

Element e ;
for (e = l −> f i r s t ; e ; e = e−>next)

#pragma omp task
process (e) ;

#pragma omp taskwait

}

All tasks guaranteed to be completed here

Now we need some threads
to execute the tasks

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 92 / 120

Task synchronization

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ;

This will generate multiple traversalsWe need a way to have a single
thread execute traverse_list

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 93 / 120

Task synchronization

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ; This will generate multiple traversals

We need a way to have a single
thread execute traverse_list

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 93 / 120

Task synchronization

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
t r a v e r s e _ l i s t (l) ;

This will generate multiple traversals

We need a way to have a single
thread execute traverse_list

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 93 / 120

The single construct

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 94 / 120

The single construct

Giving work to just one thread

The single construct

#pragma omp single [c lauses]
s t r u c t u r e d block

where clauses can be:
private
firstprivate
nowait
copyprivate

Only one thread of the team executes the structured block
There is an implicit barrier at the end

We’ll see it later
Not today

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 95 / 120

The single construct

The single construct

Example

i n t main (i n t argc , char ∗∗argv)
{

#pragma omp parallel
{

#pragma omp single
{

p r i n t f ("Hello world!\n") ;
}

}
}

This program outputs just
one “Hello world”

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 96 / 120

The single construct

The single construct

Example

i n t main (i n t argc , char ∗∗argv)
{

#pragma omp parallel
{

#pragma omp single
{

p r i n t f ("Hello world!\n") ;
}

}
}

This program outputs just
one “Hello world”

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 96 / 120

The single construct

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma single

t r a v e r s e _ l i s t (l) ;

One thread creates the tasks of the traversalAll threads cooperate to execute them

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 97 / 120

The single construct

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma single

t r a v e r s e _ l i s t (l) ; One thread creates the tasks of the traversal

All threads cooperate to execute them

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 97 / 120

The single construct

List traversal
Completing the picture

Example

L i s t l

#pragma omp parallel
#pragma single

t r a v e r s e _ l i s t (l) ;

One thread creates the tasks of the traversal

All threads cooperate to execute them

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 97 / 120

Task clauses

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 98 / 120

Task clauses

Task scheduling

How it works?
Tasks are tied by default

Tied tasks are executed always by the same thread
Not necessarily the creator

Tied tasks have scheduling restrictions
Deterministic scheduling points (creation, synchronization, ...)

Tasks can be suspended/resumed at these points

Another constraint to avoid deadlock problems

Tied tasks may run into performance problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 99 / 120

Task clauses

The untied clause

A task that has been marked as untied has none of the previous
scheduling restrictions:

Can potentially switch to any thread
Can potentially switch at any moment
Bad mix with thread based features

thread-id, critical regions, threadprivate

Gives the runtime more flexibility to schedule tasks

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 100 / 120

Task clauses

The if clause

If the the expression of an if clause evaluates to false
The encountering task is suspended
The new task is executed immediately

with its own data environment
different task with respect to synchronization

The parent task resumes when the task finishes
Allows implementations to optimize task creation

For very fine grain task you may need to do your own if

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 101 / 120

Common tasking problems

Outline

OpenMP tasks

Task synchronization

The single construct

Task clauses

Common tasking problems

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 102 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)

{
s t a t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s ta t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s ta t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Data scoping
Because it’s an orphaned
task all variables are
firstprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s ta t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Data scoping
Because it’s an orphaned
task all variables are
firstprivate

State is not captured
Just the pointer is captured
not the pointed data

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

s ta t e [j] = i ;
i f (ok (j +1 , s t a t e)) {

search (n , j +1 , s t a t e) ;
}

}
}

Problem #1
Incorrectly capturing
pointed data

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 103 / 120

Common tasking problems

Problem #1
Incorrectly capturing pointed data

Problem
firstprivate does not allow to capture data through pointers

Solutions
1 Capture it manually
2 Copy it to an array and capture the array with firstprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 104 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 105 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}
}

Caution!
Will new_state still be valid
by the time memcpy is
executed?

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 105 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}
}

Problem #2
Data can go out of scope!

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 105 / 120

Common tasking problems

Problem #2
Out-of-scope data

Problem
Stack-allocated parent data can become invalid before being used by
child tasks

Only if not captured with firstprivate

Solutions
1 Use firstprivate when possible
2 Allocate it in the heap

Not always easy (we also need to free it)
3 Put additional synchronizations

May reduce the available parallelism

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 106 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 107 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Shared variable needs protected access

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 107 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
s o l u t i o n s ++ ;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Solutions
Use critical

Use atomic

Use threadprivate

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 107 / 120

Common tasking problems

Reductions for tasks

Example

i n t s o l u t i o n s =0;
i n t mysolutions=0;
#pragma omp t h r e a d p r i v a t e (mysolutions)

void s ta r t_sea rch ()
{
#pragma omp parallel
{

#pragma omp single
{

bool i n i t i a l _ s t a t e [n] ;
search (n ,0 , i n i t i a l _ s t a t e) ;

}
#pragma omp atomic

s o l u t i o n s += mysolutions ;
}

}

Use a separate counter for each thread

Accumulate them at the end

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 108 / 120

Common tasking problems

Search problem

Example

void search (i n t n , i n t j , bool ∗s ta te)
{

i n t i , res ;

i f (n == j) {
/∗ good so lu t i on , count i t ∗ /
mysolutions++;
return ;

}

/∗ t r y each poss ib le s o l u t i o n ∗ /
for (i = 0 ; i < n ; i ++)
#pragma omp task
{

bool ∗new_state = a l l o c a (sizeof (bool)∗n) ;
memcpy(new_state , s ta te , sizeof (bool)∗n) ;
new_state [j] = i ;
i f (ok (j +1 , new_state)) {

search (n , j +1 , new_state) ;
}

}

#pragma omp taskwait
}

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 109 / 120

Part VI

Programming using a hybrid
MPI/OpenMP approach

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 110 / 120

Outline

MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 111 / 120

MPI+OpenMP programming

Outline

MPI+OpenMP programming

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 112 / 120

MPI+OpenMP programming

Alternatives

MPI + computational kernels in OpenMP
Use OpenMP directives to exploit parallelism between communication
phases

OpenMP parallel will end before new communication calls

MPI inside OpenMP constructs
Call MPI from within for-loops, or tasks

MPI needs to support multi-threaded mode

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 113 / 120

MPI+OpenMP programming

Compiling MPI+OpenMP

MPI compiler driver gets the proper OpenMP option
mpicc -openmp
mpicc -fopenmp

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 114 / 120

Break

Coffee time! :-)

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 115 / 120

Part VII

Practical: heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 116 / 120

Outline

MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 117 / 120

MPI+OpenMP Heat diffusion

Outline

MPI+OpenMP Heat diffusion

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 118 / 120

MPI+OpenMP Heat diffusion

Before you start

Enter the MPI+OpenMP directory to do the following exercises.

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 119 / 120

MPI+OpenMP Heat diffusion

Description of the Heat Diffusion app Hands-on

Parallel loops
The file solver.c implements the computation of the Heat diffusion.

1 Use MPI to distribute the work across nodes
2 Annotate the jacobi, redblack, and gauss functions with OpenMP

tasks
3 Execute the application with different numbers of

nodes/processors, and compare the results

Xavier Martorell (BSC) PATC Parallel Programming Workshop November 26-30, 2012 120 / 120

	IPR NOTICE 12-13
	Day4
	OpenMP fundamentals, parallel regions
	OpenMP Overview
	The OpenMP model
	Writing OpenMP programs
	Creating Threads
	Data-sharing attributes

	Worksharing constructs
	The worksharing concept
	Loop worksharing

	Basic Synchronizations
	Thread barriers
	Exclusive access

	Practical: heat diffusion
	Heat diffusion

	Task Parallelism in OpenMP
	OpenMP tasks
	Task synchronization
	The single construct
	Task clauses
	Common tasking problems

	Programming using a hybrid MPI/OpenMP approach
	MPI+OpenMP programming

	Practical: heat diffusion
	MPI+OpenMP Heat diffusion

