HeMem:
Scalable Tiered Memory
Management for Big Data
Applications and Real NVM

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter

@ TEXAS B8 Microsoft W

UNIVERSITY of
WASHINGTON

DRAM + NVM tiered memory

“

XEON'
PLATINUM DRAM

inside”

Memory Bus
NVM

DRAM NVM
8X capacity

Storage

2x latency
Asymmetric read/write bandwidth
High overhead for small accesses

Hardware tiered memory

Example: Intel Optane Memory Mode

Application
@ @ @ @ No OS support needed
Low overhead
Hardware Tiered Memory X No visibility into apps
X Limited to simple
management techniques
{ DRAM NVM

\ /

Existing software tiered memory

Application

N

OS/Library Tiered Memory

Examples: HeteroOS [ISCA 17],
Nimble Page Management
[ASPLOS ‘19]

Insights into applications
Supports complex policies

Evaluated only on emulated NVM:
X Does not scale to NVM capacity
X No support for asymmetric
read/write bandwidth
X Limited flexibility

Time [ms]

Why not access/dirty bits?

BASE —+—HUGE —<— GIGA

10000
1000
100

0.1 1 10

Mapped memory size [TB]

100

Not scalable

Takes seconds to scan large
memories with base pages
Overhead of TLB shootdowns
to clear bits

HeMem:

Scalable software tiered memory management system designed for
real NVM

* Design principles:

* Asynchronous memory access sampling with CPU performance counters
* Asynchronous memory migration with DMA offload

* Focus on asymmetric NVM bandwidth

» Data scalability awareness

* Flexibility

PEBS memory access sampling

PEBS: processor event-based sampling
- Supported in modern Intel processors
Processor records samples of load/store virtual memory address
Records are stored in a memory buffer
- We measure DRAM loads, NVM loads, and all stores
Instead of using page table access/dirty bits
. Sampling 0.02% of all memory accesses provides sufficient fidelity

Asynchronous hot/cold classification

EEEEERETI . DRAM =—=

* PEBS buffer:
| Sample,
Batch —=< Sample, :

. ™
«
* -
. .

Sample 0.02% of
memory accesses

CPU
Counters

- (-0~

t

HeMem PEBS thread

NVM —=<

(-0~

t

- . Hot memory page
- . Cold memory page

Asynchronous memory migration

- (-0
o (- - -

DRAM —=

HeMem
policy thread

__--l' DMAReq: |
Di _y Src:VA,, 2MB |
rc! >N pst: VA 2MB !
NVM == st-' Ds I
i L o — — —_— o 1
L____\._l-_\vl
A YA A

Optimize for real NVM

Keep small objects in DRAM

o Avoid the small random reads from NVM that suffer overheads
o Small, ephemeral objects remain in DRAM

Limit writes to NVM to avoid write bandwidth bottleneck
o Migrate and keep frequently written pages to DRAM

I DRAM, sequential I NVM, sequential

@@ DRAM, random I NVM, random
50

S
o

W
o

N
o

Throughput (GB/s)

=
o

o

1024 256 1024
Read Block Size (Bytes) Write Block Size (Bytes)

Data Scalability Awareness

. Tracking hot/cold memory is expensive with lots of memory

- Only manage objects that are long-lived and likely to grow
- Allow Linux to handle everything else (program text, kernel objects...)

- Smaller objects are more likely to be short-lived and can be in DRAM

GAP ‘ mongoDB

Flexible user space mechanisms

HeMem is implemented as a user-level library

- Can be modified to better suit applications

- Can more closely integrate with managed runtimes to further optimize
« Garbage collection

Userfaultfd for handling of page and write-protection faults
Intercepts memory allocation calls to learn size of objects

. Works with unmodified applications

Implementation

HeMem library implemented with ~4100 lines of C code

Relies on a custom Linux kernel with support for /dev/dax
- Added ~1300 lines to linux kernel

Both DRAM and NVM exposed as /dev/dax files

DRAM /dev/dax reserved at startup with memmap command line argument

Uses PEBS via the Linux perf interface
+ MEM LOAD L3 MISS RETIRED.LOCAL DRAM for DAM loads
+ MEM LOAD RETIRED.LOCAL PMM for NVM loads
+ MEM INST RETIRED.ALL STORES for stores

Evaluation

Evaluation setup

. Cascade Lake-SP w/ 24 cores, 192 GB DRAM, 768 GB NVM

- All DIMMs populated, leveraging all 6 memory channels

. Comparisons:

. Intel Memory Mode
 Linux nimble tiered memory management [ASPLOS ‘19]

GUPS

0.12

0.08

0.04

Hot set identification

GUPS microbenchmark with hot set (512 GB working set)
8 byte accesses, non-contiguous hot set

I

[| I | [
HeMem

MM
NVM =

Nimble -
2X

100 150 DRAM 200 250
Hot set size (GB)

GUPS

0.1

2.9 0
af=Fols
ONBO®

Dynamic hot set identification

GUPS with a 512 GB working set and a 16 GB hot set
At time t=150, shift hot set over by 4 GB

HeMem - PEBS MM HeMem - PT Async
| l 1
L | | 1)
0 50 100 150 200

250

FlexKVS key-value store throughput

4KB value size, 90% GET, 10% SET,
20% hot keys accessed 90% of time

HeMem MM B Nimble NVM s
1.2
@ 1y :
wn
o : _
s 0.8
S 0.6 -
o
o
g’ i I | R p— _
o
= 0.2+ .
0

128GB 700GB

FlexKVS key-value store priority latency

1 prioritized server with 16GB working set
1 non-prioritized server with 500GB working set

Priority Regular
S S0p 99p 99.9p | S0p 99p 99.9p
HeMem 36 239 341 | 146 318 409
MM 127 278 342 | 156 310 380
% (47) 16 0|6 -2 3

GAPbs execution time

Betweenness Centrality algorithm on graph with 2% vertices

120

10

80

60

Time (s)

40

20

| I I I I I I

MM
Nimble |
HeMem - PT Async —%—
HeMem - PEBS
{ HeMem with PEBS makes 10x fewer writes to NVM J 1
- 1.3X QIl oX
hat B =/=/ \:_ i e]
| | | 1 I | |
2 4 6 8 10 12 14 16

lteration

Summary

* Tiered memory systems need to support real NVM
Need to scale to large capacities
Need to support unique NVM performance features

e HeMem: redesign of tiered memory management with real NVM
- Sampling-based memory access monitoring without page tables
- Asynchronous memory migration in batches with DMA offload
- Accurately distinguishes hot from cold memory

« Up to 1.6x GAPbs speedup, 2x GUPS, 10x fewer NVM writes

Source code: https://bitbucket.org/ajaustin/hemem/src/sosp-submission/

https://bitbucket.org/ajaustin/hemem/src/sosp-submission/

