
An Ecosystem of Tools
for Broad

Heterogeneous
Memory Usage

27 June, 2022 Marc Jordà

Overview & Motivation

• To efficiently exploit heterogeneous memory:
• Bring them as first-class citizens
• Move from hierarchical to explicitly managed

• Application’s data distribution?
• OS? Heuristics? On-the-fly monitoring? Hardware-assisted? Historic data? User hints?
• Need ecosystem to assist users/developers: tools

• Profilers, libraries, runtime systems

2

Overview & Motivation

• Heterogeneous Memory Systems
• KNL: DRAM + MCDRAM (↑ BW, ↑ Lat.) R.I.P.

• Byte-addressable NVRAM DIMMs (↓ BW, ↑ Lat., persistent)
• Intel® Optane™ Persistent Memory (PMem)

• Goal: Assess optimal data distribution
• Maximize performance

• Minimize energy

• …

3

D
R

A
M

D
R

A
M

SSD
s

O
p

tan
e

D
IM

M
s

Systems w/ Optane DIMMs

• Two levels of memory
• Main memory (DRAM)

• Processor has direct access to all of main memory

• Regular DRAM latency/bandwidth

• Intel® Optane™ PMem
• Very high capacity + persistency

• Higher latency, but much better than SSDs

4

Processors

DRAM

Optane
DIMMs

Optane PMem Modes

• App Direct Mode (Heterogeneous Memory)
• DRAM and Optane DIMMs are both available
• More overall memory available
• Software managed (applications need to handle themselves)

• Memory Mode (Deep Memory)
• DRAM as cache for Optane DIMMs
• Only Optane DIMMs address space
• Done in hardware (applications and OS don’t need to be modified)

5

Processor DRAM
Optane
DIMMs

Processor

DRAM

Optane
DIMMs

Framework

Our Framework

Steps

 Profiling (Extrae & Paramedir)

– Collects allocation´s address, size, and allocation point callstack (our object ID)

– Sampling of precise profiling events (PEBS) for LLC load and L1 store misses, which include the accessed address

 Analysis (Hmem Advisor)

– Computes per-object cost using heuristics based on profiling data to assign each object to a memory tier

– Greedy relaxation of the 0/1 multiple knapsack problem + optional fine-tuning heuristics (e.g. BW-aware)

 Execution with data placement

– Execution of the original binary with the FlexMalloc library, which interposes memory allocation functions to redirect

each allocation to the corresponding memory tier

7

H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. C. Hoppe, and J. Labarta
“Automating the application data placement in hybrid memory systems”
IEEE Cluster 2017

Initial framework work:

Compiler
Toolchain

Memory
Profiler

Profile
Analyzer

Source
Code

Executable
Object

Execution
Input

Runtime
Allocator

Profile
Data

Object
Distribution

1

2
3

4

5

67

8

Extrae

Hmem AdvisorFlexMalloc

Paramedir
 Based on offline profiling + user-level interposition

 Manages memory at the dynamic allocation granularity

Experimental Evaluation

 Hardware
– Intel Xeon Platinum 8260L CPU @ 2.30GHz,

HT disabled

– 16 GB of DRAM

– Two Optane configurations

• PMem6: 6x 512 GB Optane™ PMem

• PMem2: 2x 512 GB Optane™ PMem

 Software stack
– Fedora 27 (kernel 4.18.8-100.fc27.x86_64)

– Intel Compiler Suite 2019u3

– Intel MPI

8

 Hmem Advisor parameters

– DRAM limit: 4, 8, 12 GB

– Profiling data: Loads only, loads+stores

 Comparison with

– Memory Mode

– Experimental Kernel-level page migration
(tiering-0.7 kernel)

– ProfDP

Some Results
Mini apps
 Comparison with memory-mode and an experimental

kernel-level page migration approach

 With 12GB, in all PMem-6 and most Pmem-2 cases, our
framework performs better than MM and KPM

– In some of them even using 4x less DRAM

 Similar to ProfDP performance

Full apps
 LAMMPS

– Ld: 4% overhead vs. MM

– Ld+St: 3% overhead

 OpenFOAM
– Ld: 3% speedup

– Ld+St: 6.2% speedup

 More complex memory access patterns -> harder to
capture object relevance in the cost heuristics

 We plan to analyse more applications in the future

9

Miniapps performance results

Ongoing & Future work

• Applications:
• Try out ecoHMEM with more HPC applications (DEEP-SEA project, …)

• TensorFlow

• Automatic application code modification
• Alternative to Flexmalloc´s runtime-interposition approach

• Source-to-source compiler to modify app’s allocation points according to Hmem Advisor output

• Integration with Kernel-level page migration approaches
• Initial placement from ecoHMEM

ecoHMEM 1.0 Released

• Download tarball from BSC SW repository:
• https://www.bsc.es/discover-bsc/organisation/scientific-structure/accelerators-and-communications-

hpc/team-software

• Source code currently available from EPEEC’s Project repository:
• https://github.com/epeec/ecoHMEM

• Flexible Memory Allocation Tool also available:
• https://github.com/intel/flexmalloc

https://www.bsc.es/discover-bsc/organisation/scientific-structure/accelerators-and-communications-hpc/team-software
https://github.com/epeec/ecoHMEM
https://github.com/intel/flexmalloc

Acknowledgements

• European Commission’s EuroHPC project DEEP-SEA under grant agreement 955606

• Intel-BSC Exascale Laboratory SoW 5.1

• European Union’s H2020 Marie Sklodowska-Curie grant agreement No. 749516

• European Union’s H2020 Project EPEEC under grant agreement No. 801051

• The Spanish Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación

12

Thank you

marc.jorda@bsc.es

