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MOTIVATION

The fat-tree is the dominating topology for InfiniBand networks, but the
proposed dragonfly topology has been suggested as an alternative. In
that context we would like to answer the following questions:

O Is the dragonfly a viable alternative to the fat-tree?

O How do they compare in the fundamental properties blocking, cost
and scalability?

O What about traffic patterns?
O A comparison on equal terms with regards to CBB.

O When should you choose which?



Wh y t h e ®  The range of traffic patterns considered is important
d f | ®  Uniform/random versus well-defined/shift/MPI collectives

Where is the crossing point for costs/performance for the
dragonfly and fat tree?
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APPROACH

We aim to establish the lower and upper performance bound for
the (dragonfly) topology independent of any routing algorithm.

The study consists of three parts:

O Worst case analysis for the CBB ratio of the dragonfly and the
fat-tree, giving a lower bound on performance.

O Permutation traffic analysis using linear programming, giving
an upper bound on performance.

O Cost-scalability analysis by generating all possible topology
sizes and apply a cost model to evaluate cost-efficiency.
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THE FAT-TREE

O Most common topology for InfiniBand
based computers

O Can be routed deadlock free without
additional resources such as virtual
lanes

O Fault-tolerant through its path
diversity

i
.

O Full bisection bandwidth for arbitrary
permutations

O Scalable, also with respect to cost

O Performance suffers due to static
routing, but adaptivity is supported



THE FAT-TREE IMPLEMENTED
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O Recently proposed by John Kim et al. in [1].

O Caused discussion in the HPC community about is suitability for IB and as an
exascale topology.

O The dragonfly is a hierarchical topology with the following properties:

O Several groups are connected together using all to all links, i.e. each
group has at least one link directly to each other group.

O The topology inside each group can be any topology. The
recommendation in [1] is the flattened butterfly.

O

Focus on reducing the number of long links and network diameter.

O Requires non-minimal global adaptive routing and advanced congestion
look ahead for efficient operation.

O CBB ratio = 2 for its standard implementation

[1] John Kim et al. "Technology-Driven, Highly-Scalable Dragonfly Topology” in proceedings of the
35th
International Symposium on Computer Architecture, 2008.
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(e]e]0](e]0)Y,

a * h links to other groups

i E—

BER

The recommendation in [1] is to keep: a3 2p3 2h
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THE DRAGONFLY
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FBFLY GROUP

* Asingle flattened butterfly group with 8 terminals and 8
external connections.

* Fully connected, but requires also non-minimal adaptive
routing for path diversity and load balancing.
« 2D flattened butterfly requires more internal routing.



NON-MINIMAL HOPS

[ source ]

[ intermediate ]

[ destination ]

Dragonfly with a=4, p=2, and h=2. Can make non-minimal
hops in the source (s), intermediate (i), and destination (d)

group.



CBB EQUATIONS

 Global CBB ratio
CBBglobal —

2ap
ah + 1

 Local CBB ratio

CBBlocal
c(s) *p +ux*h *min(CBBgopqr, 1.0)

"a
u = min(1.0,c(i) + c(d))

— 7 %



3 EQUATIONS

The worst case occurs when the probabllity for making a non-minimal
hop is one in all three groups - ¢(s) =1, c(1) =1, c(d) =1

CBBlocal

1 % D + 1+ h x min(CBBglobal, 10)
"a
For a standard dragonfly

2ap
CBBglobal — ah n 1 "’2(198)

= ) x

l*p+1xh*x1 2(p+h
CBBiocar = 2 * ] 0 = (pa )=2




CBB EQUATIONS

Using an LP solver to optimally place the paths
for 10 000 permutations yields

c(s) =0.74, c(i1) =0.15, c(d) = 0.74
for random permutations and
c(s) =0.56, c(1) =0.48, c(d) = 0.58

for group external permutations, 1.e. all
destinations are are outside the group.



CBB EQUATIONS

Example for the uniform traffic case:

c(s) =0.74, c(1) =0.15, c(d) =0.74

For a standard dragonfly

2ap
CBBglobal — ah n 1 "’2(198)

0.74 *p +0.89xh *1
CBBpcqr = 2 * n%

2 (0.74p + 0.89h
_ 2( pa ) 163
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CBB = max(CBBycqi, CBBglobal)



CHANNEL USAGE

Channel load Path length distribution
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(below) permutations on a dragonfly with flattened butterfly
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Minimal local routing leads to increased maximum channel load
on the local channels (the increased global channel load is a

function of the LP constraint‘



SCALABILITY AND COST

We compare the following four topologies:

O Two dragonflies with 1-d and 2-d flattened butterfly
groups, respectively

O A 3- and 4-level fat-tree.

O We looked at how the blocking (CBB) and cost of
these topologies develop as the size increases.

O Load is derived from the worst case, the random
permutations and the group external cases
described earlier.



SCALA

ILITY AND COST

The cost of the topology Is defined as:

cost = #switches X switch cost
+ #short_links X 2m X cost_per_meter_S
+ #long_links X avg_length X cost per meter |

http://lwww.kernelsoftware.com/products/catalog/mellanox.html
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SCALABILITY AND COST
CBB =1

Cost/Terminals vs cluster size, 48-port switches, CBB target=1
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For CBB=1 the 3- and 4-tier fat-trees are more cost efficient
than the dragonfly.



SCALABILITY AND GOST
CBB =2

Cost/Terminals vs cluster size, 48-port switches, CBB target=2
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For CBB=2 the dragonfly comes into its own, but depending on
how the fat tree Is designed.



SCALABILITY AND COST
CBB =3
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For CBB=3 the table has turned in favour of the dragonfly for
any topology size, even when slimming everything.



OTHER METRICS C
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The fat trees have a much higher nonblocking efficiency in
terms of cables per terminal and terminals per switch



Cables/Terminals
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OTHER METRICS C
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With increasing CBB ratio the cost improvement of the dragonfly
over the fat tree comes to a large extent from the reduction of
the number of long links



OTHER METRICS CBB = 2
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Topology
performance
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THE CROSSING POINT

Cost/Terminals vs cluster size, 36-port switches
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THE CROSSING POINT

Cost/Terminals vs cluster size, 36-port switches
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THE CROSSING POINT

Cost/Terminals vs cluster size, 36-port switches
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THE CROSSING POINT

Cost/Terminals vs cluster size, 36-port switches
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CONCLUSION

Key results:

O Comparing the dragonfly topology with different group topologies to the regular fat tree
topology shows that the dragonfly is the superior choice for benign traffic patterns.

The dragonfly is better able to exploit higher CBB ratios to improve cost-efficiency

O The fat tree is the superior choice for more adverse traffic patterns, such as MPI
collectives (at least with deterministic routing).

O The crossing point is somewhere around 75% of the traffic crossing the bisection (or
possibly lower when considering relative topology performance).

Remember:
O The dragonfly requires support for non-minimal adaptive routing and congestion look
ahead for optimal behavior, this is not supported by any existing off-the-shelf hardware, at

least not with sufficient to routing performance.

O The dragonfly requires multiple virtual channels for deadlock avoidance




QUESTIONS?




