

OCHOA

Supercomputers & Biomedical research: High Performance Computational Biomechanics

Mariano Vázquez

Barcelona Supercomputing Center Centro Nacional de Supercomputación Spain

BSC-CNS Research Departments

Computer Science

Performance tools
Computer architectures
Programming models

Earth Science

Air quality

Life Science

Genomics Proteomics Computer Applications in Science and Engineering CASE

CASE Department - Application lines

Environment

Energy

Aerospace

Trains and Automotive

Oil and Gas

Artificial Societies

High Energy Physics

Materials Sciences

Biomechanics

BSC-CNS is the only supercomputing center with +60 researchers devoted to HPC-based Biomedical Research:

Bioinformatics (45 Life Science Department)

Biomechanics (15 - 20 CASE Department)

Organ Systems vs. Levels of Organizations Extracted from S.R. Thomas et al., VPH Exemplar Project Strategy Document. Deliverable 9, VPH NoE. 2008

Drugs from the lab to the patients

A finished new drug: 12 to 15 years to be obtained, can cost over 1 BEuros

The idea of a target can come from academia, clinical research or the commercial sector

It may take several years to get a supporting volume of background for that target to be considered in the drug discovery programmes

Then suitable molecules which possess the necessary characteristics are screened to make the drugs.

From Principles of early drug discovery. Br J Pharmacol. 2011 March, 162(6):1239-1249.

Our goal: Speed up all the process, reduce costs and improve success rate.

Drugs from the lab to the patients

Why could a drug fail in the clinic?

They do not work

They are not safe.

Molecular interactions are not the only set of variables in a physiological system.

Reasons for fail or success:

Overall interaction of various components

Dynamical responses

Non-directly related mechanisms

Coupling with a larger system

Understanding biological systems

Biological systems are extremely complex

Strong variability

High degree of uncertainty in the Physiological models

Scarce experimental dada

Costly experiments

Test

Improve modeling

Predict behavior

Keywords

Drug action

Drug delivery

Treatment planning

Medical training

Design: prosthesis, stents, valves, bio-materials, experimental and manufacturing kits...

Study surgical procedures and treatments

...

Targets

Biomedical research: know better and deeper, improve diagnose and treatment

Pharma industry: reduce time and costs of "from-design-to-market" cycle

Medical devices manufacturers: design better devices

The research program

CASE Department: Biomechanics at organ level

Multi-scale & multi-physics problems where HPC is a must

Parallelization on supercomputers (regular use of thousands of cores)

Simulate complex biomedical problems

Deep commitment of MDs in all projects

Strong collaboration links with MDs, physiologists, clinical image researchers

A Computational Man: the best possible "dummy" for biomedical research

First, create the dummy. Then, adapt it to patients.

Biomechanical Systems

Medical doctors:

Healing is the final objective

Diagnose and treatment planning

Understanding biological systems Physiological models

They provide the main motivation and insight to the problem

Computational scientists:

Developing computational tools to run simulations

Provide the required simulation capacity

Develop the Physiological models

Deal with medical image processing

Design data acquisition tools

Alya Red HPC-based Biomechanical Simulations

Cardiac computational models
Respiratory system
Cerebral aneurisms rupture risk
Long skeletal muscles
Biomaterials and tissue engineering

The Alya System

Multi-physics modular code for High Performance Computational Mechanics Born in 2004

Designed from scratch to solve multiphysics problems with high parallel efficiency

Numerical solution of PDE's

Variational methods are preferred (FEM, FVM)

Hybrid meshes, non-conforming meshes

Explicit and Implicit formulations

Coupling between multi-physics (loose or strong)

Advanced meshing issues

Parallelization by MPI and OpenMP
Automatic mesh partition using Metis
Portability is a must
Porting to new architectures: MICs, GPUs, ...

HPC Simulation Tools: Alya

Benchmark

Aneurism geometry provided by R. Cebral Uniform refinement up to 1.6B tetrahedra

Incompressible flow

Implicit formulation

Algebraic Fractional Step: BCGStab + Deflated CG

Alya Red HPC-based Biomechanical Simulations

Cardiac computational models

Respiratory system
Cerebral aneurisms rupture risk
Long skeletal muscles
Biomaterials and tissue engineering

Cardiac Computational Model

Muscle pumping action of the heart

The Cardiovascular In-Silico Experimental Laboratory

Multiphysics - multiscale

Complex geometries

Very expensive computational modelling

HPC-based

As comprehensive as possible

Cardiac Computational Model

Muscle pumping action of the heart

The Cardiovascular In-Silico Experimental Laboratory

Multiphysics - multiscale

Complex geometries

Very expensive computational modelling

HPC-based

As comprehensive as possible

The goals:

A computational scenario to implement models and analyze their behavior under different conditions

Study healthy hearts, pathologies, treatments, drugs action

Adapt the mean model to patients

Cardiac Computational Model

Francesc Carreras
Unitat Imatge Cardiaca
Htal. de Sant Pau (Spain)

Manel Ballester
Univ. de Lleida (Spain)

José Guerra Htal. de Sant Pau (Spain) Debora Gil, Ferrán Poveda and Agnés
Borràs
Centro de Visión por Computador
Universitat Autonoma de Barcelona (Spain)

Pablo Blanco, Lab. Nac. de Cálculo Científico (Brasil)

Antoine Jerusalem, University of Oxford (UK)

Dan Einstein, Pacific Northwest National Lab (USA)

Pablo Lamata and David Nordsletten, King's College London (UK) Barcelona

Cardiac Computational Model

Electrical Propagation

Electrophysiology:

Linear anisotropic (fibers) diffusion + non-linear source terms

Volume

Electro-mechanical coupling, Ca+ is the key

Mechanical Deformation

ALE + Immersed

Boundaries

Services

Blood Flow

Incompressible Flow

Mechanical deformation:

Large deformations + non-linear material models

Scalability: Electro - Mechanical problem

Marenostrum III - BSC

Alya Red HPC-based Biomechanical Simulations

Cardiac computational models

Respiratory system

Cerebral aneurisms rupture risk

Long skeletal muscles

Biomaterials and tissue engineering

Computational Respiratory System

Respiratory system

European PRACE project: The Computational Respiratory System In collaboration with Imperial College London - Jackson State Univ.

Transitional flow

30 million CPU hours allotted in Jugene and Curie Heavy postprocess

Thursday, September 12, 13

The Computational Dummy

A Computational Man: the best possible "dummy" for biomedical research First, create the dummy. Then, adapt it to patients.

Case I: Perform simulations on the dummies and offer the data-base for analysis

Case II: Perform simulations on the dummies for biomedical design

Case III: Perform personalized simulations on patients for diagnose and treatment

Computational Respiratory System Respiratory system

Respiratory system

VELOC Magnito

Vertical section of the Nose Cavity

356 M elements (tetrahedra + prisms)

Massive particle tracking

Scenario:

High definition CFD simulations (tens to hundreds million elements)

Complex geometries, as complete and comprehensive as possible

Up to several million Lagrangian particles tracked, labelled to be identified

Trajectories computed on the fly, not as postprocess

Hundreds of processors for each run

Several runs: gender, age, Physical condition; all run at different regimes

Run the simulations

Create a data base and analyze the results

How could we identify and track the particles efficiently?

Computational Respiratory System

Particle tracking:

Particle deposition

Computational Respiratory System Slice 3 Slice 1 Particle tracking: slice 4 Particle crossing sections Slice 2 Slice 5 Slice 6 Slice7 Slice 8 number of particules crossing slices over the time 4000 slice1 slice2 3500 slice3 number of particules 3000 slice4 slice5 slice6 slice7 2500 2000 slice8 1500 1000 500 $0.05 \ 0.1 \ 0.15 \ 0.2 \ 0.25 \ 0.3 \ 0.35 \ 0.4 \ 0.45 \ 0.5$ Time(s)

Computational Respiratory System

Example: Track back all the particles found at time t at this box

Particles can be labelled by species or initial / final situation

Database is created with files containing, at each time step, particle position, particle id, subdomain id (posptrocess done with HDF5), etc.

Improve the dummies:

Run the cases of the respiratory system, assessing the mesh grain Improve the Physical models: humidity, boundary conditions, etc Improve mesh mapping from healthy geometries to impaired ones Improve geometries fusion

Integrate postprocess in a "doctors friendly environment"

FSI in a full heart, studying specially parallelization issues

Drug (blockers) effect

Develop an atria fiber model

Develop a mapper for fiber fields from DTI

Integrate Alya with ADAN ("EU-Brazil CC" project)

Contact problem for prostheses to help diastole in impaired hearts

Regenerating cardiac stem cells clustering due to stress concentration

OCHOA

Supercomputers & Biomedical research: High Performance Computational Biomechanics

Mariano Vázquez

Barcelona Supercomputing Center Centro Nacional de Supercomputación Spain