
Richard Graham

MPI 3.0 And Beyond

© 2013 Mellanox Technologies 2

Contributing Organizations

 Argonne National Laboratory

 Bull

 Cisco Systems, Inc

 Cray Inc.

 CSCS

 ETH Zurich

 Fujitsu Ltd.

 German Research School for Simulation
Sciences

 The HDF Group

 Hewlett-Packard

 International Business Machines

 IBM India Private Ltd

 Indiana University

 Institut National de Recherche en Informatique
et Automatique (INRIA)

 Institute for Advanced Science &

Engineering Corporation

 Intel Corporation

 Lawrence Berkeley National Laboratory

 Lawrence Livermore National Laboratory

 Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

 NEC Corporation

 National Oceanic and Atmospheric

Administration, Global Systems Division

 NVIDIA Corporation

 Oak Ridge National Laboratory

 The Ohio State University

© 2013 Mellanox Technologies 3

Contributing Organizations

 Argonne National Laboratory

 Bull

 Cisco Systems, Inc

 Cray Inc.

 CSCS

 ETH Zurich

 Fujitsu Ltd.

 German Research School for Simulation
Sciences

 The HDF Group

 Hewlett-Packard

 International Business Machines

 IBM India Private Ltd

 Indiana University

 Institut National de Recherche en Informatique
et Automatique (INRIA)

 Institute for Advanced Science &

Engineering Corporation

 Intel Corporation

 Lawrence Berkeley National Laboratory

 Lawrence Livermore National Laboratory

 Los Alamos National Laboratory

Mellanox Technologies, Inc.

Microsoft Corporation

 NEC Corporation

 National Oceanic and Atmospheric

Administration, Global Systems Division

 NVIDIA Corporation

 Oak Ridge National Laboratory

 The Ohio State University

© 2013 Mellanox Technologies 4

Contributing Organizations – Cont’d

 Oracle America

 Platf

 RIKEN AICS

 RunTime Computing Solutions, LLC

 Sandia National Laboratories

 Technical University of Chemnitz

 Tokyo Institute of Technology

 University of Alabama at Birmingham

 University of Chicago

 University of Houston

 University of Illinois at Urbana-Champaign

 University of Stuttgart, High Performance

Computing Center Stuttgart (HLRS)

 University of Tennessee, Knoxville

 University of Tokyoorm Computing

© 2013 Mellanox Technologies 5

Outline

 MPI 3.0 Goals

 MPI 3.0 major additions
• Nonblocking collectives

• MPI Tool Interface

• Noncollective communicator creation

• RMA enhancements

• New Fortran bindings

• Neigborhood collectives

• Enhanced Datatype support

• Large data counts

• Matched probe

• Topology Aware Communicator Creation
 What did not make it into MPI 3.0

 What was removed from MPI

 What was deprecated from MPI

 Expected Implementation Timelines

 What next ?

© 2013 Mellanox Technologies 6

MPI 3.0 - Scope

Additions to the standard that are needed for better platform and application

support. These are to be consistent with MPI being a library providing process
group management and data exchange. This includes, but is not limited to,
issues associated with scalability (performance and robustness), multi-core
support, cluster support, and application support.

Backwards compatibility may be maintained -
Routines may be deprecated or deleted

© 2013 Mellanox Technologies 7 © MELLANOX TECHNOLOGIES 7

Nonblocking Collectives

© 2013 Mellanox Technologies 8

Nonblocking Collective Operations

Idea

• Collective communication initiation and completion separated

• Offers opportunity to overlap computation and communication

• Each blocking collective operation has a corresponding nonblocking operation

• May have multiple outstanding collective communications on the same

communicator

• Ordered initialization

© 2013 Mellanox Technologies 9 © MELLANOX TECHNOLOGIES 9

Neighborhood Collectives

© 2013 Mellanox Technologies 10

Sparse Collective Operations on Process Topologies 21

 MPI process topologies (Cartesian and (distributed) graph) usable for communication

• MPI_NEIGHBOR_ALLGATHER(V)

• MPI_NEIGHBOR_ALLTOALL(V,W)

• Also nonblocking variants

 If the topology is the full graph, then neighbor routine is identical to full collective communication

routine

• Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

 Allow for optimized communication scheduling and scalable resource binding

© 2013 Mellanox Technologies 11 © MELLANOX TECHNOLOGIES 11

MPI Tool Interface

© 2013 Mellanox Technologies 12

New MPI Tools Chapter (Chapter 14)

 Replaces the existing Profiling Interface Chapter

 Two subsections:

• MPI Profiling Interface, aka. PMPI or MPI interpositioning interface

- Unchanged capabilities to MPI 2.2

- Minor extensions and clarifications to work with new Fortran bindings

• MPI Tool Information Interface, aka. the MPI_T interface

- Access to internal, potentially implementation specific information

- Two types of information:

 Control: typically used for configuration information

 Performance: typically used to report MPI internal performance data

- “PAPI-like” interface for software counters within MPI

© 2013 Mellanox Technologies 13

Overview of MPI_T Functionality

Goal: provide tools with access to MPI internal information
• MPI implementation agnostic: tools query available information
• Access to configuration/control and performance variables

Two phase approach
• Tool/Users queries all existing variables by name
• Once variable has been found, allocate handle for access
• With handle, variable contents can be read (and possibly written)

Additional features/properties:
• MPI_T can be used before MPI_Init / after MPI_Finalize
• Optional variable grouping and access to semantic information

Examples for Control Vars.
 Parameters like Eager Limit

 Startup control

 Buffer sizes and management

Examples of Performance Vars.
 Number of packets sent

 Time spent blocking

 Memory allocated

© 2013 Mellanox Technologies 14

Some of MPI_T’s Concepts

Query API for all MPI_T variables / 2 phase approach
• Setup: Query all variables and select from them
• Measurement: allocate handles and read variables

• Other features and properties

- Ability to access variables before MPI_Init and after MPI_Finalize

- Optional scoping of variables to individual MPI objects, e.g., communicator

- Optional categorization of variables

Return Var.
Information

MPI Implementation with MPI_T

User Requesting a Performance Variable from MPI_T

Query All
Variables

Measured Interval

Start
Counter

Stop
Counter

Counter
Value

© 2013 Mellanox Technologies 15 © MELLANOX TECHNOLOGIES 15

Noncollective Communicator Creation

© 2013 Mellanox Technologies 16

Group-Collective Communicator Creation

MPI-2: Comm. creation is collective

MPI-3: New group-collective creation
• Collective only on members of new comm.

1. Avoid unnecessary synchronization
• Enable asynchronous multi-level parallelism

2. Reduce overhead
• Lower overhead when creating small communicators

3. Recover from failures
• Failed processes in parent communicator can’t participate

4. Enable compatibility with Global Arrays
• In the past: GA collectives implemented on top of MPI Send/Recv

© 2013 Mellanox Technologies 17 © MELLANOX TECHNOLOGIES 17

RMA Enhancements

© 2013 Mellanox Technologies 18

MPI-3 RMA

 Major Extension to RMA

• New capabilities

• Backward compatibility to MPI 2.2

 Major Extensions

• New ways to create MPI Windows

• New read-modify-write operations

• New Request-based operations

• New synchronization operations

• Additional memory model for cache-coherent systems

• Other extensions to simplify use

© 2013 Mellanox Technologies 19

New Ways to Create MPI_Win

 MPI_Win_allocate

• Allocate memory at creation; permits coordinated allocation (e.g., symmetric allocation for scalability)

 MPI_Win_create_dynamic

• Attach (and detach) memory after creation; permits more dynamic use of MPI RMA

 MPI_Win_allocate_shared

• Allocate shared memory (where supported); permits direct (load/store) use of shared memory within MPI-only

programs

© 2013 Mellanox Technologies 20

New Read-Modify-Write Operations

 MPI_Get_accumulate – Extends MPI_Accumulate to also return value

 MPI_Fetch_and_op, MPI_Compare_and_swap – Atomic, single word updates; intended to provide

higher performance than general MPI_Get_accumulate

 Now possible to build O(1) mutex; perform mutex-free updates

© 2013 Mellanox Technologies 21

New Request-Based Operations

 MPI_Rput, MPI_Rget, MPI_Raccumulate, MPI_Rget_accumulate

• Provide MPI request; can use any MPI request test or completion operation (e.g., MPI_Waitany)

• Only valid within passive-target epoch

- E.g., between MPI_Win_lock/MPI_Win_unlock

• Provides one way to complete MPI RMA operations within a passive target epoch

© 2013 Mellanox Technologies 22

New Synchronization Operations

 Permitted only within passive target epoch

 Flush

• MPI_Win_flush, MPI_Win_flush_all completes all pending RMA operations at origin and target

• MPI_Win_flush_local, MPI_Win_flush_local_all completes all pending RMA operations at origin

 Sync

• Synchronizes public and private copies of win (refers to MPI memory model and subtle issues of memory

consistency)

 Request operations (the “R” versions) on previous slide

• Permit completion of specific RMA operations

© 2013 Mellanox Technologies 23

New “Unified” Memory Model

 MPI 2 RMA Memory model does not require cache coherence; matched fastest systems at the time.

Now called the “Separate” model, reflecting the description of public and private copies

 MPI 3 adds new “Unified” Memory model, reflecting the fact that the public and private copies are

the same memory

 Users can query which is supported (new MPI_WIN_MODEL attribute on an MPI window)

© 2013 Mellanox Technologies 24

Other MPI RMA Extensions

 Some behavior, such as conflicting accesses, now have undefined behavior rather than erroneous

• Behavior of correct MPI 2.2 programs unchanged; simplifies use of MPI as a target for other RMA programming

models that allow conflicting accesses

 Accumulate operations ordered by default

• No “right” choice – some algorithms much easier if RMA operations ordered; some hardware much faster if

ordering not required.

• Info key “accumulate_ordering” (on window create) can request relaxation of ordering

 New MPI_Win_lock_all/MPI_Win_unlock_all for passive target epoch for all processes in Win.

© 2013 Mellanox Technologies 25 © MELLANOX TECHNOLOGIES 25

New Fortran Bindings

© 2013 Mellanox Technologies 26

Three methods of Fortran support

 USE mpi_f08 26

• This is the only Fortran support method that is consistent with the Fortran standard (Fortran 2008 + TR 29113
and later).

• This method is highly recommended for all MPI applications.

• Mandatory compile-time argument checking & unique MPI handle types.

• Convenient migration path.

 USE mpi
• This Fortran support method is inconsistent with the Fortran standard, and its use is therefore not

recommended.

• It exists only for backwards compatibility.

• Mandatory compile-time argument checking (but all handles match with INTEGER). 39

 INCLUDE ‘mpif.h’
• The use of the include file mpif.h is strongly discouraged starting with MPI-3.0. 40

• Does not guarantees compile-time argument checking.

• Does not solve the optimization problems with nonblocking calls,

• and is therefore inconsistent with the Fortran standard.

• It exists only for backwards compatibility with legacy MPI applications.

new

new

© 2013 Mellanox Technologies 27

The mpi_f08 Module

 Example:

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) BIND(C)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf 28

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm 27

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror 38

MPI_Wait(request, status, ierror) BIND(C)

TYPE(MPI_Request), INTENT(INOUT) :: request 30

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror 29

Mainly for implementer’s
reasons.

Not relevant for users.

Fortran compatible buffer
declaration allows correct

compiler optimizations

Unique handle types allow
best compile-time argument

checking

OPTIONAL ierror:

MPI routine can be called
without ierror argument

Status is now a
Fortran structure, i.e.,
a Fortran derived type

INTENT  Compiler-based
optimizations & checking

new

© 2013 Mellanox Technologies 28

Other enhancements

 Unused ierror

INCLUDE ‘mpif.h’

! wrong call:

CALL MPI_SEND(…., MPI_COMM_WORLD)

!  terrible implications because ierror=0 is written somewhere to the memory

 With the new module 29

USE mpi_f08

! Correct call, because ierror is optional:

CALL MPI_SEND(…., MPI_COMM_WORLD)

new

© 2013 Mellanox Technologies 29

Other enhancements, continued

 With the mpi & mpi_f08 module:

• Positional and keyword-based argument lists 33

- CALL MPI_SEND(sndbuf, 5, MPI_REAL, right, 33, MPI_COMM_WORLD)

- CALL MPI_SEND(buf=sndbuf, count=5, datatype=MPI_REAL,

 dest=right, tag=33, comm=MPI_COMM_WORLD)

• Remark: Some keywords are changed since MPI-2.2 33

- For consistency reasons, or

- To prohibit conflicts with Fortran keywords, e.g., type, function.

The keywords are defined in the language bindings.
Same keywords for both modules.

new

© 2013 Mellanox Technologies 30

Major enhancement with a full MPI-3.0 implementation

The following features require Fortran 2003 + TR 29113
• Subarrays may be passed to nonblocking routines 28

- This feature is available if the LOGICAL compile-time constant

MPI_SUBARRAYS_SUPPORTED == .TRUE.

• Correct handling of buffers passed to nonblocking routines37

- if the application has declared the buffer as ASYNCHRONOUS within the

scope from which the nonblocking MPI routine and its MPI_Wait/Test is called,

- and the LOGICAL compile-time constant

MPI_ASYNC_PROTECTS_NONBLOCKING == .TRUE.

• These features must be available in MPI-3.0 if the target compiler is

Fortran 2003+TR 29113 compliant.

- For the mpi module and mpif.h, it is a question of the quality of the MPI library.

new

new

© 2013 Mellanox Technologies 31

Status of reference implementation

• An initial implementation of the MPI 3.0 Fortran bindings are available in Open MPI

• A full implementation will not be available until compilers implement new Fortran syntax added specifically to

support MPI

- need ASYNCHRONOUS attribute for nonblocking routines

- need TYPE(*), DIMENSION(..) syntax to support subarrays

 e.g. MPI_Irecv(Array(3:13:2), ...)

© 2013 Mellanox Technologies 32 © MELLANOX TECHNOLOGIES 32

Enhanced Datatype Support

© 2013 Mellanox Technologies 33

Datatype Chapter

 Full support for MPI_Aint, MPI_Offset and MPI_Count. These types are now allowed in reduction

operations (ticket #187).

 Support for large counts. New versions of MPI_Get_elements, MPI_Get_count, MPI_Set_elements,

MPI_Type_size that take an MPI_Count type instead of an int for the count parameter (postfixed by

_X) (ticket #265).

 Full support for C++ types in both Fortran and C)(ticket #340).

 New datatype creating function MPI_Type_create_hindexed_block similar to

MPI_Type_create_indexed_block introduced in 2.2 (ticket #280).

© 2013 Mellanox Technologies 34 © MELLANOX TECHNOLOGIES 34

Large Counts

© 2013 Mellanox Technologies 35

Large Counts

 MPI-2.2

• All counts are int / INTEGER

• Producing longer messages through derived datatypes may cause problems

 MPI-3.0

• New type to store long counts:

- MPI_Count / INTEGER(KIND=MPI_COUNT_KIND)
• Additional routines to handle “long” derived datatypes:

- MPI_Type_size_x, MPI_Type_get_extent_x, MPI_Type_get_true_extent_x
• “long” count information within a status:

- MPI_Get_elements_x, MPI_Status_set_elements_x
• Communication routines are not changed !!!

• Well-defined overflow-behavior in existing MPI-2.2 query routines:

- count in MPI_GET_COUNT, MPI_GET_ELEMENTS, and

size in MPI_PACK_SIZE and MPI_TYPE_SIZE

is set to MPI_UNDEFINED when that argument would overflow.

© 2013 Mellanox Technologies 36 © MELLANOX TECHNOLOGIES 36

Matched Probe

© 2013 Mellanox Technologies 37

Thread-safe probe: MPI_(I)MPROBE & MPI_(I)MRECV 11

 MPI_PROBE & MPI_RECV together are not thread-safe:

• Within one MPI process, thread A may call MPI_PROBE

• Another tread B may steal the probed message

• Thread A calls MPI_RECV, but may not receive the probed message

 New thread-safe interface:

• MPI_IMPROBE(source, tag, comm, flag, message, status) or

• MPI_MPROBE(source, tag, comm, message, status)

 together with

• MPI_MRECV(buf, count, datatype, message, status) or

• MPI_IMRECV(buf, count, datatype, message, request)

Message handle,
e.g., stored in a thread-local

variable

© 2013 Mellanox Technologies 38 © MELLANOX TECHNOLOGIES 38

Topology Aware Communicator Creation

© 2013 Mellanox Technologies 39

Topology-aware communicator creation

 Allows you to create a communicator whose processes can create a shared memory region

• MPI_Comm_split_type(comm, comm_type, key, info, split_comm)

• More generally: it splits a communicator into subcommunicators

split_comm of a certain type:

- MPI_COMM_TYPE_SHARED: shared memory capability

- Other implementation specific types are possible: rack, switch, etc.

© 2013 Mellanox Technologies 40 © MELLANOX TECHNOLOGIES 40

Removed Functionality

© 2013 Mellanox Technologies 41

Removed Functionality

 Current state
• Deprecated in MPI 2.2

• Technical aspects

• Supports MPI namespace

• Support for exception handling

• Not what most C++ programmers expect

• Special C++ types are supported through
additional MPI predefined datatypes

• MPI_CXX_BOOL bool

• MPI_CXX_FLOAT_COMPLEX std::complex<float>

• MPI_CXX_DOUBLE_COMPLEX std::complex<double>

• MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

 Removed MPI-1.1 functionality (deprecated since MPI-2.0):

• Routines: MPI_ADDRESS, MPI_ERRHANDLER_CREATE / GET / SET, MPI_TYPE_EXTENT / HINDEXED /
HVECTOR / STRUCT / LB / UB

• Datatypes: MPI_LB / UB

• Constants MPI_COMBINER_ HINDEXED/HVECTOR/STRUCT _INTEGER

• Removing deprecated functions from the examples and definition of MPI_TYPE_GET_EXTENT

© 2013 Mellanox Technologies 42 © MELLANOX TECHNOLOGIES 42

Deprecated Functionality

© 2013 Mellanox Technologies 43 © MELLANOX TECHNOLOGIES 43

Did Not Make It In

© 2013 Mellanox Technologies 44

Major Functionality

 Immediate versions of nonblocking file I/O operations

 Fault Tolerance

 Helper Threads

 Clarification on multiple MPI processes in same address space

© 2013 Mellanox Technologies 45 © MELLANOX TECHNOLOGIES 45

Expected Implementation Timelines
What next ?

© 2013 Mellanox Technologies 46

Status of MPI-3 Implementations

MPICH MVAPICH Cray TH-MPI IBM
Open

MPI
Fujitsu SGI-MPT

NB collectives ✔ ✔ ✔ ✔ Spring 2014 ✔
Open MPI

+ rel Delta ✔

Neighborhood

collectives
✔ ✔ ✔ ✔ Spring 2014

Open MPI

+ rel Delta

Spring

2014

RMA ✔ ✔ ✔ ✔ Spring 2014
Open MPI +

rel Delta Fall 2013

MPI shared

memory
✔ ✔ ✔ ✔ Spring 2014 Fall 2013

Tools Interface SC ‘13 Spring 2014 ✔ Fall 2013

Non-collective

comm. create
✔ ✔ ✔ ✔ Spring 2014 ✔

F08 Bindings

(Needs fixes to

MPI-3)

(Spring

2014)

(Sep.

2014)

(Spring

2014)
(Spring 2014) (✔)

(Spring

2014)

New Datatypes ✔ ✔ ✔ ✔ Spring 2014 ✔ ✔

Large Counts ✔ ✔ ✔ ✔ Spring 2014 ✔
Spring

2014

Matched Probe ✔ ✔ ✔ ✔ Spring 2014 ✔ ✔

© 2013 Mellanox Technologies 47

Current MPI-Forum Activities – MPI next (3.1/4.0/?)

 Fault tolerance

 Better threading support

 Cleanup from MPI-3: As implementations are maturing, small (and not so small) items are

showing up that need addressing in the standard

© 2013 Mellanox Technologies 48

Thank You

