
1

Introduction to Parallel Computing
Architectures

Ramón Beivide

Universidad de Cantabria

2

Outline

• Parallel Computers

• Basic Parallel Architectures

• Some Paradigmatic Examples

• Interconnection Networks

• A More Detailed Example: IBM BlueGene

• ExaScale Computers

• Conclusions and Questions

3

Motivation
• Some (many) applications require more computational power

than the offered by a single microprocessor.

• Any multiprocessor solution should achieve high performance at
a sustainable cost (price).

• A Parallel Computer can be simply seen as a “collection of
communicating processors”

• Examples:

• CPUs multi-core

• GPUs

• Symmetric multiprocessors

• CC-NUMA multiprocessors

• Supercomputers

4

Basic Parallel Architectures (1 of 3)

CPU1

…

M I/O

Bus

CM1

CPUn

CMn

L/S L/S

Interconnection Network

CPU1 CPUn
…

M1 Mn…

L/S L/S

Shared variables and architectures with shared memory (UMA)

Programs share a single address space
Tasks share data
Each processor can access the global address space
Primitives for synchronization and exclusive access

Natural extension of the sequential programming model

5

Basic Parallel Architectures (2 of 3)

L/S: load/store
S/R: send/receive

ATU: Address
Translation Unit

Interconnection Network

…M1 Mn

S/R

ATU

S/R

CPU1 CPUn…

L/SL/S

L/S L/S
ATU

Ancient and modern systems: KSM, Convex (HP), SGI,…, Alpha EV7, AMD
Opteron (no additional hard), Itanium (aditional hard), Nehalem Xeon+QPI

Single and shared virtual address space

Shared Virtual Memory with physically local memory (NUMA)

Easy programming model with shared variables
Allows porting of applications
Updated old concepts (Cmmp, CM*)

6

Basic Parallel Architectures (3 of 3)

M1

CPU1

Mn

CPUn
…

L/S

S/R

L/S

S/R

Interconnection Network

Message-passing and architectures with local memory (MPPS and Clusters)

Each task has its private data
Task communicate data under agreement
Communication is through message passing
Very close to LAN Networks

Ancient and modern systems: Transputers, Hypercubes,
Paragon, SP2, NOWs, MareNostrum, BlueGene, Jaguar,…

Send / Receive

Load / Store

7

Outline

• Parallel Computers

• Basic Parallel Architectures

• Some Paradigmatic Examples

• Interconnection Networks

• A More Detailed Example: IBM BlueGene

• ExaScale Computers

• Conclusions and Questions

8

Example: Multicore CPUs and GPUs
• Eager bandwidth nodes

• Intel:

• 48-core x86 Intel processor

–1.3 billion transistors and
is built on 45nm CMOS

–24 dual-core tiles,
arranged in a two
dimensional 6-by-4 layout

• Nvidia

• 512-core Fermi GPU

Intel Single-chip Cloud Computer

9

Example: Tilera

 Tilera offers 32- -64
and 100-core
version general
purpose processors
(albeit non-x86)

10

Example: CC-NUMA
 SGI Origin 2000

128 Processor System

11

Example: MPP
• IBM BlueGene

12

Outline

• Parallel Computers

• Basic Parallel Architectures

• Some Paradigmatic Examples

• Interconnection Networks

• A More Detailed Example: IBM BlueGene

• ExaScale Computers

• Conclusions and Questions

13

Interconnection Networks (INs)
• INs are designed to transport:

• Scalar Variables: Scalar Operand Networks (SON, Raw, Trips)
• Cache Lines: Remote Loads and Stores (CC-NUMA and

Multi/Many-core CMPs)

• MPI Messages: Supercomputers (Clusters and MPPs)

• TCP/IP packets (LAN, MAN, WAN)

• INs used at several levels:
• On Chip
• Stacked (3D) Inter Chip
• On Board

• Intra Cabinet (board-to-board)

• Inter Cabinet (cabinet-to-cabinet)

• Local, Campus, Metropolitan,…,World-wide
• INs have a great impact on the performance and cost of parallel (and

distributed) applications and architectures.

14

Network Parameters

• Cost: NICs, links, switches, transceivers.

• Performance:

–Latency (small messages, collectives,…)

–Throughput or Bandwidth (medium to large
messages)

• Packaging

• Energy consumption

• Fault-tolerance including ECC

• Partitioning and task allocation

15

INs Classification

• Centralized: Crossbar

• Direct Interconnection Networks.

• Switching elements are part of the compute nodes.

• Generally implemented using ad-hoc technologies.

• Tori, Hypercubes, Dragonfly and other hierarchical
networks.

• Indirect Interconnection Networks.

• Only a subset of switching elements are connected to
the compute nodes, by means of NICs.

• Commonly implemented using off-the-shelf technologies
(InfiniBand, Myrinet, Convergent Ethernet)

• Folded Clos (Fat tree), Multi-trees.

16

Network Topology
• Centralized Switched Networks

• Crossbar network

– Crosspoint switch complexity increases quadratically with the
number of crossbar input/output ports, N, i.e., grows as O(N2)

– Has the property of being non-blocking

7

6

5

4

3

2

1

0

76543210

7

6

5

4

3

2

1

0

76543210

17

Network Topology

• Bidirectional MINs

• Increase modularity

• Reduce hop count

• Fat tree network
– Nodes at tree

leaves

– Switches at tree
vertices

– Total link bandwidth
 is constant across
all tree levels, with
full bisection
bandwidth

Folded Clos = Folded Benes = Fat tree network

• Indirect Networks

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Network
Bisection

18

Network Topology
• Myrinet-2000 Clos Network for 128 Hosts

• Backplane of the M3-
E128 Switch
• M3-SW16-8F fiber line
card (8 ports)

http://myri.com

19

Network Topology
• Myrinet-2000 Clos Network Extended to 512 Hosts

http://myri.com

20

Network Topology
• Direct Networks

2D

to
ru

s
 of 16 nodes

h
yp

ercu
b

e
 of 16 nodes (16 =

 2
4

, so n =
 4)

2D

m
esh

 or grid of 16 nodes

Network
Bisection

≤ full bisection bandwidth!

21

Outline

• Parallel Computers

• Basic Parallel Architectures

• Some Paradigmatic Examples

• Interconnection Networks

• A More Detailed Example: IBM BlueGene

• ExaScale Computers

• Conclusions and Questions

22

A more detailed example: IBM BlueGene

• Blue Gene/L 3D Torus Network

• 360 TFLOPS (peak)

• 2,500 square feet

• Connects 65,536 dual-processor nodes and 1,024
I/O nodes

–One processor for computation, other for
communication

23

IBM BlueGene
• Blue Gene/L 3D Torus Network

Chip (node)
2 processors
2.8/5.6 GF/s

512MB

Compute Card
2 chips, 1x2x1
5.6/11.2 GF/s

1.0 GB

Node Card
32 chips, 4x4x2

16 compute, 0-2 I/O cards
90/180 GF/s

16 GB

System
64 Racks,
64x32x32

180/360 TF/s
32 TB

Rack
32 Node cards

2.8/5.6 TF/s
512 GB

Node distribution: Two nodes on a 2 x 1 x 1 compute card, 16 compute cards + 2 I/O cards
on a 4 x 4 x 2 node board, 16 node boards on an 8 x 8 x 8 midplane, 2 midplanes

on a 1,024 node rack, 8.6 meters maximum physical link length

www.ibm.com

24

IBM BlueGene torus
• Blue Gene/L 3D Torus Network

• Main network: 32 x 32 x 64 3-D torus
– Each node connects to six other nodes

– Full routing in hardware

• Links and Bandwidth
– 12 bit-serial links per node (6 in, 6 out)

– Torus clock speed runs at 1/4th of processor rate

– Each link is 1.4 Gb/s at target 700-MHz clock rate (175 MB/s)

– High internal switch connectivity to keep all links busy
• External switch input links: 6 at 175 MB/s each (1,050 MB/s aggregate)
• External switch output links: 6 at 175 MB/s each (1,050 MB/s aggregate)
• Internal datapath crossbar input links: 12 at 175 MB/s each
• Internal datapath crossbar output links: 6 at 175 MB/s each
• Switch injection links: 7 at 175 MBps each (2 cores, each with 4 FIFOs)
• Switch reception links: 12 at 175 MBps each (2 cores, each with 7 FIFOs)

25

BlueGene Router

• Blue Gene/L 3D Torus Network

Crossbar
(19x6,

byte-wide)

End Node Injection

7

End Node Reception

2
(each)

2
(each)

Link +X

Link -X

Link +Y

Input

Input

Input

Input

Input

Input

2

2

2

2

2

2

Output

Output

Output

Output

Output

Output

Link -Y

Link +Z

Link -Z

Blue Gene/L Switch

Injection: 8 FIFOs
2 x (1 high priority + 3)

Reception: 14 FIFOs
2 x (1 high-priority + 6)

Input Port: 4 VCs
2 adaptive, 1 bubble,

1 high-priority

1 for high-priority
and 1 for normal packets

Extracted from “Blue Gene/L Torus Interconnection Network,” N. R. Adiga, et al., IBM J. Res. & Dev.,
Vol. 49, No. 2/3, pp. 265-276, March/May 2005.

1 shared high-priority
and 3 each for two cores

26

Inter mid-planes
switches and links

operating in normal
“pass-thru” mode

Inter mid-planes
switches and links
operating in fault
“bypass” mode

BlueGene Fault-tolerance
• Blue Gene/L Torus Network

• Fault tolerance

– Static fault model with checkpointing

– Additional links boards at each rack
• Each rack can be connected with neighbor racks
• Internal switches allow skiping one plane (512 nodes)

Topology
remains
the same

M0,1 M1,1 M2,1

M0,0 M1,0 M2,0

x direction

z
di

re
ct

io
n

M0,0

Mid-planes
(512 nodes)

27

IBM BlueGene

• Blue Gene/L 3D Torus Network

• Routing

–Fully-adaptive deadlock-free routing based on
bubble flow control

• DOR and bubble mechanism are used for escape path

–Hint (direction) bits at the header
• “100100” indicates the packet must be forwarded in X+ and Y-

• Neighbor coordinate registers at each node
– A node cancels hint bit for next hop based on these registers

–A bit in the header allows for broadcast

–Dead nodes or links avoided with appropiate hint
bits

28

BG/L rack, cabled

Y Cables

X Cables

Z Cables

Adaptive Bubble Routing

ATC-UC Research Group

29

Examples of Interconnection Networks

• Blue Gene/L 3D Torus Network

• Flow control

–Credit-based (token) flow-control per VC buffer
• A token represents a 32-byte chunk

–Bubble rules are applied to the escape VC
• Tokens for one full-sized packet is required for a packet in the

escape VC (bubble) to advance

• Tokens for two full-sized packets are required for
– A packet entering the escape VC or
– A packet turning into a new direction
– An adaptive VC packet enters the escape VC

• Dimension-ordered routing on the escape VC

30

Bubble Switching

• Bubble switching is a combination of a restricted
injection flow control mechanism and traditional
routing schemes.

• The Bubble Flow Control (BFC) is a deadlock
avoidance method proposed by our group (valid for
k-ary n-cube networks, but no only).

• The idea: “To maintain a buffer space (a bubble) for
at least one packet for any set of physical channels
that are involved in any possible static dependency
cycle”.

31

Bubble History

• The genesis of the idea: meters in freeways;..; Roscoe (1987).

• From 1990 our group is applying this idea to interconnection
networks.

• In 1993 the PhD thesis of A. Arruabarrena shows the first
important performance results for torus networks and VCT.

• In 1997, DEC was interested in the solution presented in a
HiPC97 paper.

• The adaptive version, as the one presented in ICPP99 (JPDC-
2001) was adopted by IBM as the solution for routing packets in
the IBM Blue Gene/L.

32

Deadlocks in k-ary n-cubes

4-ary 2-cube

33

Most common approaches
employed

Usually to avoid deadlock is necessary to sacrifice performance or
increase resources. Common approaches:

• Reduce routing flexibility

• Dimension Order Routing (DOR) is enough for meshes

• Up*/down* in tree networks

• Supplying additional resources

• Virtual Channels to avoid cyclic dependencies: Dally’s
approach for k-ary n-cubes an other networks

• Non minimal routing

• Chaos routing,

• ….

34

Bubble Flow Control
• Does not exhaust resources in any potential deadlock situation

(static cyclic dependencies).

• Is a method that restricts the injection of packets

• A packet can be injected only if after the injection there is
room at least for one* packet.

• Decision taken with local available information

35

BFC
• BFC avoids packet deadlocks in a k-ary n-cube network

without using virtual channels.

• Restrictions:

• Dimension Order Routing: A dimension change is
consider as a new injection.

• Virtual Cut Through

X X X X

VCT (Virtual Cut-Through)
VCT
+
Room (local) for 2 packets

injection queue
 or
other dimension

36

Adaptive routing

• Not always is true, but lot of times you can get more
throughput using an adaptive solution..

d

Deterministic Routing (DOR)Deterministic Routing (DOR)

d

Adaptive RoutingAdaptive Routing

37

ABR (Adaptive Bubble Routing)

X X X XX X X X

• Adding a virtual channel we get a completely adaptive
network.

• This new virtual channel can be used without restrictions
(just virtual cut-through).

• The “old” channel is used as an “escape” channel. A packet
can enter in this escape channel if the bubble condition
holds.

38

Adaptive Bubble Routing
• Low cost adaptative routing

• Good performance

• Highly stable behavior

• It overcomes Dally’s+Duato approach (even without take
into account the lower cost)

• Bubble Routing can be applied in other contexts

• Irregular Networks

• Fault-tolerant Networks

• Hierarchical Networks

• Mesh networks and adaptive routing

39

Outline

• Parallel Computers

• Basic Parallel Architectures

• Some Paradigmatic Examples

• Interconnection Networks

• A More Detailed Example: IBM BlueGene

• ExaScale Computers

• Conclusions and Questions

40

ExaScale System

41

ExaScale System

42

ExaScale System

43

ExaScale System

44

Conclusions
• Parallel computing is everywhere

• Good Science and Engineering need supercomputing

• Interconnection networks are pervasive

• A field in continuous change

• How to program these exotic architectures

• How to obtain sustainable performance

• Some of these questions will be answer next

• Any question?

• Thanks

45

Dragonfly (ISCA 2008)
3 levels: Router, Group, System

• h Number of channels within each router
used to connect to other groups

• g Number of groups i the system
• q Queue depth of an out put port
• qvc Queue depth of an individual output VC

• H Hop count
• Outi Router output port i

• N Number of network terminals
• p Number of terminal connected to each

router
• a Number of routers in each group
• k Radix of routers
• k' Effective radix of group (or the virtual

router)

46

Dragonfly

• To balance channel load on load-balanced traffic  a=2p=2h  2:1
ratio (packet traverses 2 local channels for 1 global and 1 terminal
channel)

• Deviations from 2:1 ratio  global channels should remain fully
utilized  a≥2h, 2p≥2h

• Arbitrary networks can be utilized for the inter/intra-group network

47

Dragonfly

• Dragonfly maximum size: N = a∙p∙(ah+1)  exactly 1 connection
between each pair of groups

• Smaller dragonflies  more global connections out of each group
than there are other groups

• Excess global connection distributed over the groups with each pair
of groups connected by at least (ah+1)/g channels

• a, p, h can have any values

48

Dragonfly Routing

• MIN: minimal paths l-g-l
• Valiant: randomized paths l-g-l-g-l

– Routing each packet first to a randomly-selected intermediate group Gi
and then to its final destination d

• Universal Globally-Adaptive Load-balanced (UGAL)
–Chooses between MIN and VAL on a packet-by-packet

basis to load balance the network
–Choice is made using queue length and hop count to

estimate network delay and choose path with minimum
delay

• UGAL-L
– Uses local queue information at the current node

• UGAL-G
– Uses queue information of all the global channels in Gs (represents an ideal but

very difficult to implement)

49

Universal Global Adaptive Routing
(UGAL)

• Delay of a route estimated by the product of path queue
length (Q)

• Routes minimally if:
Qmin × Hmin ≤ Qval × Hval + T

• T: routing threshold constant  added to original UGAL’s
algorithm to balance between benign and adversarial traffic
patterns

50

Dragonfly routing (uniform)

• Evaluation
• Dragonfly of size 1K node: p = 4, h = 4, a = 8
• Benign synthetic traffic: Uniform random

– MIN: sufficient to provide
low latency and high
throughput

– VAL: load-balancing
doubles the load on the
global channels  achieves
half of the network capacity

– UGAL-L and UGAL-G:
approach the throughput of
MIN but with slightly higher
latency near saturation

51

Dragonfly routing (worst case)

• Worst-case traffic pattern: Each node in G i send traffic to a randomly
selected node in Gi+1

– MIN: forwards all traffic
across the single global
channel to group Gi+1 
Throughput limited to 1/(a∙h)

– VAL: Achieves slightly under
50% throughput (maximum
possible with WC traffic)

– UGAL-G similar throughput
as VAL

– UGAL-L limited throughput
&high avg. packet latency at
intermediate node

52

How the decission is made

A packet in R1 is making its adaptive routing decision of routing either minimally through
gc0 or non-minimally through gc7

The routing decision needs to load balance global channels and ideally, the channel
utilization can be obtained from the queues associated with global channels, q0 and q3

However, q0 and q3 queue informations are only available at R0 and R2 and not at R1

In this example, q1 reflects the state of q0 and q2 the state of q3. When either q0 or q3 is
full, the flow control provides backpressure to q1 and q2 as shown with the arrows

53

Dragonfly adaptive routing

• Global channels, not router outputs, need to be balanced

• Each router must pick a global channel using only local
information that depends indirectly on the state of global
channels

• With the dragonfly topology local queues only sense
congestion on global channels via backpressure over the
local channels

• With local channels overprovisioned many packets are
enqueued on the overloaded minimal route before
source router sense congestion  Degradation in
throughput and latency

54

• Four IAR methods:

• Credit Round trip (CRT)

• Progressive Adaptive Routing (PAR)

• Piggyback (PB)

• Reservation (RES)

• Each method decides whether to route a packet
minimally or non-minimally using information not
directly available at the source router

Indirect Adaptive Routing (ISCA 2009)

55

• Steady State Traffic Performance
• UR:

– PB & PAR closely match performance of
MIN

– CRT deviates form ideal performance
earlier but maintains stable

– RES performance comparable to other
methods. Higher latency at low injection
rates due to reservation flit round-trip
latency

• WCn:

– All start with lower latency than VAL and
then converge to VAL’s performance as
load increases

• PB
– Broadcast link information  more accurate routing

decision  lowest latency under load

Some IAR Results

56

• Baseline router

• UGAL route computation implemented on it

• Flit size = 64 bits

• Packet size = 10 flits

• 15 ports, 3 VCs per input port, 256 flits buffer size per
global VC, 32 flits per local VC  264K bits per router

• PB is the most cost-effective IAR method

• PAR has the highest cost because of additional VCs per
input port

Implementation cost

57

Virtual Channels

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20
	Página 21
	Página 22
	Página 23
	Página 24
	Página 25
	Página 26
	Página 27
	Página 28
	Página 29
	Página 30
	Página 31
	Página 32
	Página 33
	Página 34
	Página 35
	Página 36
	Página 37
	Página 38
	Página 39
	Página 40
	Página 41
	Página 42
	Página 43
	Página 44
	Página 45
	Página 46
	Página 47
	Página 48
	Página 49
	Página 50
	Página 51
	Página 52
	Página 53
	Página 54
	Página 55
	Página 56
	Página 57

