COMP Superscalar

User Guide

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

CHAPTER 1 INTRODUCTION
1.1 Whatis COMP Superscalar?

1.2 COMPSs component design
1.2.1. Task Analyzer
1.2.2. Task Scheduler
1.2.3. Job Manager
1.2.4. File Manager

CHAPTER2 PROGRAMMING WITH COMPSS

2.1 Configuration Files
2.1.1. Resources List
2.1.2. ProjectFile
2.1.3. Resources File

2.2 Environment variables

2.3 Develop Java Applications
2.3.1. Reorganizing the code
2.3.2. Task Selection and Interface creation
2.3.3. Compiling and Deploying the Application
2.3.4. Executing the Application on the GRID
2.3.5. Sample Applications

2.4 Develop C/C++ Applications
2.4.1. Task Selection and Interface Creation
2.4.2. Reorganizing the code
2.4.3. Compiling and Deploying the Application
2.4.4. Executing The Application

APPENDIX A EXECUTING THE APPLICATION IN A QUEUE MANAGEMENT SYSTEM:

94 ocwviuta (0] AR A A W W

co o &

13
15

16
16
17
19
24

25

Chapter 1 Introduction

1.1 What is COMP Superscalar?

COMP Superscalar is a new version of GRID Superscalar which aims to easing the
development of Grid applications. COMP Superscalar exploits the inherent
parallelism of applications when running them on the Grid. However, with respect
to its predecessor, COMP Superscalar has three main distinctive features:

* The runtime of COMP Superscalar is formed by a set of components, each
one in charge of a given functionality. This componentised runtime follows
the Grid Component Model (GCM), a component model especially designed
for the Grid whose reference implementation is provided by ProActive.

* COMP Superscalar offers a straightforward programming model that
targets Java and C/C++ applications. The simplicity of this programming
model keeps the Grid transparent to the user, who is able to program his
applications in a Grid-unaware fashion. The user is only required to select
the tasks to be run on the Grid, while the application can remain completely
free of Grid-related calls.

* COMP Superscalar can use a wide range of Grid middlewares thanks to the
JavaGAT API. JavaGAT provides COMP Superscalar with a uniform interface
for job submission and file transfer operations, being able to choose
between different middlewares like Globus, UNICORE or SSH.

1.2 COMPSs component design

The runtime of COMP Superscalar presents a componentised structure that is
based on the Grid Component Model (GCM). Each of the runtime subcomponents
encapsulates a given functionality that contributes to the overall execution of the
application.

An important feature of the GCM-based runtime is that the subcomponents can
easily be deployed and distributed among different hosts, so that the processing of
the application tasks is parallelized and the throughput of the runtime increases.

Task Task Job

Analyser Scheduler Manager
File Manager
File Info File Transfer
Provider Manager

1.2.1.Task Analyzer

It receives incoming tasks from the application and detects their precedence,
building a task dependency graph. Like in GRIDSs, a COMPSs task is a method
invocation, made from the application code, that will be executed on the Grid.

When requested to process a task, this component looks for data dependencies
between the new task and all previous ones. Once a task has all its dependencies
solved, the Task Analyzer sends it to the Task Scheduler.

1.2.2. Task Scheduler

It decides where to execute the dependency-free tasks received from the Task
Analyzer. This decision is made according to a certain scheduling algorithm and
taking into account three information sources: first, the available Grid resources
and their capabilities; second, a set of user-defined task constraints; and third, the
location of the data required by the task. The scheduling strategy could be changed
on demand, thanks to the dynamic and reconfigurable features of GCM.

1.2.3. Job Manager

It is in charge of job submission and monitoring. It receives the scheduled tasks
from the Task Scheduler and delegates the necessary file transfers to the File
Manager. When the transfers for a task are completed, it transforms the task into a
Grid job in order to submit it for execution on the Grid, and then controls the
proper completion of the job. It could implement some fault-tolerance mechanisms
in response to a job failure.

1.2.4. File Manager

It takes care of all the operations where files are involved. It is a composite
component which encompasses the File Information Provider and the File Transfer
Manager components. The former gathers all information related with files: what
kind of file accesses have been done, which versions of each file exist and where
they are located. The latter is the component that actually transfers the files from
one host to another; it also informs the File Information Provider about the new
location of files.

Chapter 2 Programming with COMPSs

2.1 Configuration Files
The following configuration files have to be edited to prior to execution

e resource_list
* project.xml
* resources.xml

2.1.1. Resources List

Resources List file contains the information to access the remote nodes where the
workers have to be deployed (username, hostname and directory where to copy
the files).

user@nodel:~
user@node2:~
user@node3:~

2.1.2.Project File

This file indicates at COMPSs some information about each worker node that will
be used by our application.

It contains information about in which directory we could find the worker binary,
the worker files, the user who executes the application and the limit of
simultaneous tasks that will be executed on each node.

The following example illustrates how have to be coded this information in case to
deal with only two workers (node2 and node3) and one master (node1).

For each worker there must be defined:

* InstallDir: Where the worker will be deployed.

* WorkingDir: Where all temporary files will be created.

* User: Machine user (it needs to have his/her pair of keys created and
exported.)

* Limit of task: Maximum number of task that can run simultaneously, it's
preferable to choose this number equal at number of cores that has the
node.

<Project>

<Worker Name="node2">
<InstallDir>/home/userl/IT_worker/</InstallDir>
<WorkingDir>/home/userl/IT worker/files/</WorkingDir>
<User>userl</User>
<LimitOfTasks>2</LimitOfTasks>

</Worker>

<Worker Name="node3">
<InstallDir>/home/userl/IT_worker/</InstallDir>
<WorkingDir>/home/userl/IT worker/files/</WorkingDir>
<User>userl</User>
<LimitOfTasks>2</LimitOfTasks>

</Worker> </Project>

2.1.3. Resources File

This file contains information about the capabilities of each machine; such
information is used by the COMPSs runtime for scheduling purposes.

The file format follows the Information Modelling approach, which is currently
being standardized by Open Grid Services Architecture WG of the Open Grid
Forum.

The attributes allowed are:

Host: Maximum number of task that will accept simultaneously and queues
length.

Processor: Number of CPUs, their frequency and architecture.

Operative System: Type (Windows or Linux) and the maximum number of
processes per user.

Storage Elements: Global storage size and Access Time.

Memory: Physical and Virtual size or even Time Access.

Installed Software: Software that have to be installed on the node that will
execute this job.

Service: Services that must be running in order to allocate the job on the
node.

Cluster: Cluster identification name where the Grid node is.

FileSystem: FileSystem kind restriction that have to be running on the
worker node.

Network Adaptor: The network adaptor manufacturer name that this node
fits.

Job Policy: The policy that has to accomplish the Job in order to be
executed on the resource.

Access Control Policy: The Access Policy Scheme like Virtual Organization
Membership Service (VOMS).

We can also indicate the requirements for each of the node.

The following picture illustrates an example of resources.xml with one worker.

<ResourceList>
<Resource Name="node2">
<Capabilities>
<Host>
<TaskCount>0</TaskCount>
<Queue>short</Queue>
</Host>
<Processor>
<Architecture>Intel</Architecture>
<Speed>3.6</Speed>
<CPUCount>2</CPUCount>
</Processor>
<0S>
<0SType>Linux</0SType>
<MaxProcessesPerUser>32</MaxProcessesPerUser>
</0S8>
<StorageElement>
<Size>60</Size>
</StorageElement>
<Memory>
<PhysicalSize>0.5</PhysicalSize>
<VirtualSize>8</VirtualSize>
</Memory>
<ApplicationSoftware>
<Software>Xerces</Software>
<Software>Xalan</Software>
</ApplicationSoftware>
<Service/>
<Vvo/>
<Cluster/>
<FileSystem/>
<NetworkAdaptor/>
<JobPolicy/>
<AccessControlPolicy/>
</Capabilities>
<Requirements/>
</Resource>
</ResourceList>

Note: this files are not required in case of batch execution of the COMPSs
application, please refer to Appendix A for more details.

2.2 Environment variables

Some variable has to be set in the user's environment; please ask your system
administrator for the actual values or refer to the installation guide. Assuming a
COMPSs distribution under the /apps/COMPSs directory, the following has to be
executed:

user@node:~ export IT HOME=/apps/COMPSs

user@node:~ export PROACTIVE HOME=

user@node:~ export GAT_ LOCATION=

user@node:~ export CLASSPATH=$CLASSPATH:$IT HOME/lib/IT.jar
user@node:~ export GS HOME=$IT HOME/bindinglib

user@node:~ export PATH=$PATH:$GS_ HOME/bin

user@node:~ export LD LIBRARY PATH=$LD LIBRARY PATH:$GS_HOME/lib

2.3 Develop Java Applications

In this section the steps required in the development of a Java COMPSs application
will be illustrated; a counter sequential application will be used to explain the
porting to COMPSs.

2.3.1. Reorganizing the code
A COMPSs application is composed by two parts:

* Master Application: this is the main code which will be executed on the
Master Node and contains the calls to the user-selected methods

* Worker Tasks: it corresponds to the implementation of the tasks. These
tasks will be run on a remote worker host.

Java interface is used to declare the methods to be executed on the Grid, along with
Java annotations that specify necessary metadata about the tasks. These metadata
can be of three different kinds:

1. For each parameter of each method, its type (currently, we support the file
type, the primitive types and the string type) and its direction (IN, OUT or
INOUT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfil to execute a certain method,
such as the required operating system or storage capacity.

In our example, we divide the code in 3 different files:

- sequential.Simple.Simple.java (Main): it corresponds to the main sequential
code of the application. The user can select any method called from this code to be
run as a remote task.

- worker.Simple.Simplelmpl.java (Worker): it contains the implementation of
the user-selected tasks.

- Simpleltf.java (Java Annotated Interface): it declares the methods selected to be
run as tasks and some metadata about them.

2.3.2. Task Selection and Interface creation

First of all, the user has to select the methods to be run on the Grid as remote tasks.
This is done providing a Java interface which declares such methods, along with
some necessary metadata in the form of Java annotations.

Next we give more details about the task metadata.

Method-level Metadata: for each selected method, we have the following
metadata:

@ClassName: mandatory. It specifies the class that implements the
method.

@MethodConstraints: optional. The user can specify the capabilities that a
resource must have in order to run a method. In particular, he can specify
the following requirements:

Host:
o Queue (hostQueue) : Name of the queue where task will be
submitted.
Processor:
o Number of processors (processorCPUCount): minimum number of
processors .

o Speed (processorSpeed): minimum clock frequency in Ghz.
o Architecture(processorArchitecture): User-defined (Intel, AMD, ppc,

i586, 1386, ...).
Memory:
o Physical Size (memoryPhysicalSize): Amount of GB of Physical
memory.

o Virtual Size (memoryVirtualSize): Amount of GB of Virtual memory.
o Access Time (memoryAccessTime): ns to access to data.
o STR (memorySTR): memory transmission rate in GB/s.
Storage:
o Size (storageElemSize): Amount of GB of Storage element.
o AccessTime (storageElemAccessTime): ns to access to data stored in
the element.
o STR (storageElemSTR): storage element transmission rate in GB/s.
Operating System:
o Type (operatingSystemType) could be Linux or Windows.
Software (appSoftware): Free string to set any kind of Software

“«wn

applications separated by comma “,”.

Parameter-level Metadata (@ParamMetadata): for each parameter of each
method, the user must define:

Direction: Direction.IN, Direction.INOUT or Direction.OUT in Java are
always passed by value.

String: Type.STRING. It can only have IN direction, since Java Strings are
immutable.

File: Type.FILE. It can have any direction (IN, OUT or INOUT). The real Java
type associated with a FILE parameter is a String which contains the path to
the file. However, if the user specifies a parameter as a FILE, COMPSs will
treat it as such.

Other types: although COMPSs does not support objects as task parameters
yet, the user has the possibility to marshal an object into a file and pass it as
a task parameter of FILE type. The object has to be unmarshalled by the
task code.

Type: COMPSs supports the following types for task parameters:

Basic types: Type.BOOLEAN, Type.CHAR, Type.BYTE, Type.SHORT,
Type.INT, Type.LONG, Type.FLOAT, Type.DOUBLE. They can only have IN
direction, since primitive types in Java are always passed by value.

« String: Type.STRING. It can only have IN direction, since Java Strings are
immutable.

« File: Type.FILE. It can have any direction (IN, OUT or INOUT). The real Java
type associated with a FILE parameter is a String which contains the path to
the file. However, if the user specifies a parameter as a FILE, COMPSs will
treat it as such.

» Other types: although COMPSs does not support objects as task parameters
yet, the user has the possibility to marshal an object into a file and pass it as
a task parameter of FILE type. The object has to be unmarshalled by the
task code.

Other restrictions about the task methods:

* Return type: always VOID.
+ Method modifiers: the method has to be STATIC.

In the Simple application example, the method that will be executed on the Grid is
Increment():

« Increment(): Increments the value of a counter stored on a file.

The Increment implementation can be found in worker.Simple.Simplelmpl.class
and needs a single input parameter: a string containing a path to the file
counterFile. Besides, in this example there is a constraint on the operative system
of the node.

package sequential.simple;
import integratedtoolkit.types.annotations.*;
import integratedtoolkit.types.annotations.ParamMetadata.*;

public interface SimpleItf {
@MethodConstraints (operatingSystemType = "Linux")
@ClassName("worker.simple.SimpleImpl")

void increment (

@ParamMetadata(type = Type.FILE, direction = Direction.INOUT)
String file

)i

At the end of the execution this file contains the maximum value of the counter.

Application Code

COMPSs offers to the programmer the possibility of leaving the application
completely unchanged, i.e. no API calls need to be included in the main application
code in order to run the selected tasks on the Grid. COMPSs will be in charge of, on
the fly, replace the invocations to the user-selected methods by the creation of
remote tasks. Moreover, the COMPSs will be automatically started and stopped at
the beginning and at the end of the application, respectively. Regarding the access
to files from the main application code, it will be taken care of by COMPSs as well.

The code below shows the main code of the sequential Simple application. COMPSs
is able to take this sequential code and replace, at execution time, the call to the
Increment() method by the creation of a task.

package sequential.simple;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import worker.simple.SimpleImpl;
public class Simple {
public static void main(String[] args) {

String counterName = "counter.txt";
int initialvalue = 1;

gy Sy My Sy Sy Sy Sy
Creation of the file which will contain the counter variable
__ */
try {

FileOutputStream fos = new FileOutputStream(counterName);
fos.write(initialvalue);
System.out.println("Initial counter value is
fos.close();

}catch(IOException ioe) {
ioce.printStackTrace();

+ initialvalue);

}
2y
Execution of the program
__ */
SimpleImpl.increment (counterName) ;
2y gy gy
Reading from an object stored in a File

__ */
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioce.printStackTrace();

}

}
}

On the worker side we have the following code:

package worker

import
import
import
import

public

tr

java.
java.
java.
java.

io
io
io
io

.simple;

.FileInputStream;
.FileOutputStream;
.IOException;
.FileNotFoundException;

class SimpleImpl {
public static void increment(String counterFile) {

v{

FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();

FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);

fos.close();

}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();

}catch(IOException ioe){

ioce.printStackTrace();

}
}
}

Optional: Including API calls

As explained above, COMPSs does not require the user to modify the main code of
the application. However, COMPSs also offers the possibility to use up to 3 API
methods in the application code. In particular, the API offers methods to start and

stop runtime and to open files to work with them locally:

Using the API gives the programmer more control over the application, more
precisely in two ways: on the one hand, the runtime can be stopped at any point of
the application and optionally restarted again later, which allows the programmer

startIT(): Starts the runtime.

stopIT(boolean): Stops the runtime. The boolean indicates if the runtime

must be terminated (true) or if it will be restarted later (false).

openFile (String OpenMode): Opens a file to work locally with it. This
operation needs the path of the file and the open mode (OpenMode.READ,

OpenMode.WRITE, OpenMode.APPEND).

to execute some parts of the application locally and sequentially.

On the other hand, when working with a file, the access mode can be specified so
that COMPSs could know if another version of that file is going to be generated.

The below code is an example of the inclusion of API calls:

package sequential.simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import worker.simple.SimpleImpl;
public class Simple {

public static void main(String[] args) {

String counterName = "counter.txt";

int initialvalue = 1;
gy Sy My Sy Sy S
Creation of the file which will contain the counter variable
__ */
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialvalue);
System.out.println("Initial counter value is
fos.close();

}catch(IOException ioe) {
ioce.printStackTrace();

+ initialvalue);

// Start IT

IntegratedToolkit it = new IntegratedToolkitImpl();
it.startIT();

// Execution

SimpleImpl.increment (counterName) ;

// Stop IT

it.stopIT(true);

2y gy gy
Reading from an object stored in a File
__ */
try {
FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());

fis.close();
}catch(IOException ioe) {
ioce.printStackTrace();
}
}
}

2.3.3.Compiling and Deploying the Application

Once the code is modified as shown in the previous example, we are able to
compile and execute the application.

In order to get an execution-ready application first of all we have to copy the
application source code in the Master side node. The source code files have to be
structured in $IT_HOME/gridunawareapps/src folder according to the example
of the following table.

In this example case, we could find various applications: Cholesky, Matmul and
Simple.

We have to distribute our application files following the next classification. On
/src/worker we must be able to find all the classes containing the worker code.
Depending on how main program uses COMPSs we can distribute the main
program files in two different directories. If the main program has no calls to AP],
/src/sequential will contain the main program code and the Java Annotated
Interface.

On the other hand, if main program uses the partial loader we should place the
files in /src/api.

In our example, we copied Simple.java and Simpleltf.java files on /src/sequential
and /src/api directory and Simplelmpl.java to /src/worker directory.

[srclapi/ [/src/sequential [src/worker
Simple/ Simple/ Simple/
Simple.java Simple.java Simplelmpl.java

Simpleltf.java

Cholesky/
Cholesky.java
Choleskyiltf.java

Matmul/
Matmul.java
Matmulltf.java

Simpleltf.java

Cholesky/
Cholesky.java
Choleskyltf.java

Matmul/
Matmul.java
Matmulltf.java

Cholesky/
Choleskylmpl.java
CholeskyAppException.java
Block.java

Matmul/
Matmullmpl.java
MatmulAppException.java

Block.java

We can now compile the applications that are inside the directories typing in
$IT_HOME/ path: “ant guapp“. This command will generate all the application
.class files compiling it with javac and then will save all this files in packages inside
the build directory (that could be found in: $IT_HOME/gridunawareapps/build/).

Then automatically generate the .ar file leaving it in lib directory
($IT_HOME/gridunawareapps/lib/).

When the compile part is done, we are ready to deploy the worker application part
to Grid nodes. By typing “ant worker” from the $IT_HOME/ folder, the worker
application part is automatically deployed to the Grid nodes that have been
previously specified on the resources_list file.

Therefore, we finally have the application ready to be executed on the Grid.

2.3.4.Executing the Application on the GRID

Run an application on COMPSs it is a quite simple job. There's a script on
gridunawareapps directory called guapp.sh which let us execute any application in
a simple way.

The script has 6 parameters:

1. mode: We could choose between two modes:

o Sequential: It executes the code on the master in a sequential way without
using the framework toolkit.
o IT: Uses the toolkit, so code will run on master and workers depending on
the configuration previously done.
2. projFile: Absolute file path to the xml file containing the Project File described
above.
3. resFile: Absolute path to the xml file containing the Resources File described
on4.1.2.
4. loader: User can choose two kinds of loader:
o Total: There are no direct calls to the API.
o Partial: There are calls to the API
5. fullAppPath: Packages and class where COMPSs will find the main method of
the application that we want to run.

6. AppParameters: Parameters for the application.

In our example, we have to launch the execution through the next command:

./guapp.sh IT /home/user/COMPSs/xml/projects/project.xml
/home/user/COMPSs/xml/resources/resources.xml total
sequential.simple.Simple

2.3.5.Sample Applications

This section has illustrated the COMPSs programming model by means of a simple
example. More sample applications can be found in the
$IT_HOME /gridunawareapps/src/ folder.

2.4 Develop C/C++ Applications

2.4.1. Task Selection and Interface Creation

The user has to select the methods to be run on the Grid as remote tasks. For that
purpose, he has to provide an interface file which declares such methods, along
with some necessary parameter metadata.

When choosing this tasks, it is important to note that COMPSs has some
restrictions in task DataType parameters.

IN parameters:

COMPSs only supports basic types. To use complex types a parameter marshalling
is needed building a String that contains the path to a File where COMPSs could
find the object.

OUT parameters:
Currently COMPSs only supports File type as OUT parameter of a method.
INOUT parameters:

It works similar to OUT parameters, but in this case the file must exist in order to
read from it.

RETURN type:

RETURN type is always void. If you want to return some object, an OUT parameter
is needed.

COMPSs supports the following basic type parameters:

* Basic types: char, boolean, short, long, longlong, int, float, double, file.
* String: If it is used as an input parameter containing some value we must
use the string type. If it is used as a path to a File it must be set to file type.

In Simple application (that will be used as section example), the function that will
be executed on the Grid is Increment().

Increment needs a single input parameter which is going to be a string containing
a filePath to the counterFile.

There is an INOUT parameter which contains the value of the counter. At the end of
the execution this value contains the maximum value of the counter. We also will
need a file parameter that will be the input/output parameter of increment
method.

The Simple application interface has to be defined as the following way in a text
file named myapplication.idl:

interface INCREMENT {
void increment(inout File filename);

}i

2.4.2.Reorganizing the code
This section covers the development of C/C++ applications with COMPSs.
Dividing the Code:

The sequential application has to be divided in two parts, the Master Code that
contains the calls to the remote methods, and the Worker Code that implements
the remote functions.

Master Code

This part of the application, make calls to the functions that will be executed on the
worker nodes.

Typically, this is composed by the myapplication.cc which is the main code
written by the application developer.

The master code file extension MUST be .cc (C++ code)
Interface Definition File

This file should be present in the master and worker directory during the building
procedure as we have seen in the previous item.

Worker Code
The part of the application that is executed on the worker nodes.

This is composed by the myapplication-functions.c, where the functions defined
in myapplication.idl file are implemented.

Organizing the Code:

In our example, The Simple application, we have to modify some aspects of the old
sequential code in order to fit in COMPSs framework.

In order to achieve it, we need to modify the original sequential application:

#include <time.h>

#include <stdio.h>

#include <errno.h>

#include "GS compss.h" //Added code

#include "Simple.h" //Added code
int main(int argc, char **argv)
{
long int t = time(NULL);
FILE *fp;
char filename[l1l5]="counter.txt";
int initialvalue = 1;

int finalvalue=0;
GS_On(PRJ FILE, RES FILE, MASTER DIR, APPNAME); //Added code

increment(filename);

fp = fopen(filename, "r");

fscanf (fp,"%d",&finalvValue);

printf("Final Counter Value is: %d \n", finalValue);
fclose(fp);

GS_Off(0); //Added code

fp = fopen(filename, "w");

fprintf(fp, "%d", initialvalue);

printf("Initial Counter Value is: %d \n", initialvalue);
fclose(fp);

printf("Total time:\n");
t = time(NULL) - t;

printf("%1li Hours, %1i Minutes, %1i Seconds\n", t / 3600, (t %
3600) / 60, (t % 3600) % 60);

return 0;

}

As shown in the previous Figure, we need to include the GS_compss.h and
Simple.h files.

The Simple.h is automatically generated by COMPSs so Simple.h has to be renamed
as your own application name like appname.h. GS_On(PR]_FILE, RES_FILE,
MASTER_DIR, APPNAME) and GS_Off(0) directives indicates to start and stop the
COMPSs runtime. In the worker, where the functions are actually implemented,
the include has to be added.

#include <stdio.h>
#include <errno.h>
#include "Simple.h" //Added code

void increment(char *filename)

{

int counterValue=0;

FILE *fp;

fp = fopen(filename, "r");
fscanf (fp,"%d",&countervalue);
fclose(fp);

counterValue++;

fp = fopen(filename, "w");
fprintf(fp, "%d", counterValue);
fclose(fp);

}

2.4.3. Compiling and Deploying the Application

This section contains the steps to compile and deploy an example application
called Simple.

Before starting the compilation the user has to create a master and a worker
directory; in this figure example also a files directory is created as working dir.

Actually, the working directory could take any name and could be allocated
according to the user preference. Then, the working directory path specified in
project.xml file have to be changed.

user@loginnode:~> mkdir simple app
user@loginnode:~> cd simple app
user@loginnode:~/simple app> mkdir master
user@loginnode:~/simple app> mkdir worker
user@loginnode:~/simple app>
user@loginnode:~/simple app> cd worker/
user@loginnode:~/simple app/worker> mkdir files
user@loginnode:~/simple app/worker>

Copy the Simple.cc and Simple.idl files in the master directory, and Simple-
functions.c and Simple.idl in the worker directory.

user@loginnode:~> cd simple app/
user@loginnode:~/simple app> 1ls

master project.xml resources.xml worker
user@loginnode:~/simple app> cd master/
user@loginnode:~/simple app/master> 1s
Simple.cc Simple.idl
user@loginnode:~/simple app/master> cd
user@loginnode:~/simple app> cd worker/
user@loginnode:~/simple app/worker> 1s
files Simple-functions.c Simple.idl
user@loginnode:~/simple app/worker>

Compile the master and worker code using the gsbuild command.

The usage of this command is shown in help:

user@loginnode:~/simple app/worker> gsbuild

Usage: gsbuild build <component> <appname> <project path>
<resources_path>

Usage: gsbuild copy <component> <appname>

Usage: gsbuild clean <component> <appname>

Available actions:

copy Setup a compilation environment for the component for
customization.

build Build the selected component.

clean Remove generated binaries.

Available components:

master Build or copy the master part.

worker Build or copy the worker part.

all Build or copy the master and workers parts.

<appname> Corresponds to the name of the application used for source
files

and IDL files.

<projectpath> Corresponds to the path of the project description file.
<resourcespath> Corresponds to the path of the resources description
file.

There are 3 available actions when using the gsbuild command: copy, build and
clean.

Using the copy action of gsbuild:
Compiling the Master:
The gsbuild copy action generates all the files used to compile the application.

This is usually used during the development of the application when editing on
Makefile may be needed.

user@loginnode:~/simple app> gsbuild copy master simple

This will copy all the files needed to compile the master code of the application in
the master directory; then the autogen.sh script has to be executed with the project
and resources xml files as parameters.

user@loginnode:~/simple app>./autogen.sh
/home/user/simple app/project.xml/home/user/simple app/resources.xml

Finally, the master code can be compiled typing:

user@loginnode:~/simple app/master> make

The last two steps have to be executed every time any change is applied to
Makefile.am or configure.in,

Compiling the worker:

user@loginnode:~/simple app> gsbuild copy worker Simple

To compile the worker code the same steps of the master have to be followed with
the only difference that the autogen.sh doesn't require parameters.

user@loginnode:~/simple app/worker>./autogen.sh

If the Makefile.am or configure.ac are edited after the compilation, the autogen.sh
script has to be executed again and the code compiled as well.

There is the possibility to generate all the environment files (master and worker)
using the all option of the copy action :

user@loginnode:~/simple app> gsbuild copy all Simple

user@loginnode:~/simple app> ./autogen.sh

Using the build action of gsbuild:

The build action generates and compiles master and worker in a completely
automatic way.

This command creates the master/worker directory, copies the required files for
the compilation, compiles the code and cleans the directory removing the
intermediate files.

This can be useful if there is no need to modify build files (Makefile, configure, etc)
and/or to separate master and worker source files (and the all option of build
action is used).

user@loginnode:~/simple app> 1ls
project.xml resources.xml Simple.cc Simple-functions.c Simple.idl

Building the Master:

In order to generate the master component only, we need to execute the following
command:

user@loginnode:~/simple app>gsbuild build master simple
\/home/user/simple app/project.xml /home/user/simple app/resources.xml
Building master

Running Autogen with:

Project File: /home/user/simple app/project.xml

Resources File: /home/user/simple app/resources.xml

Note: The project and resources files paths must be absolute.

user@loginnode:~/simple app> 1ls

master project.xml resources.xml Simple.cc Simple-functions.c
Simple.idl

user@loginnode:~/simple app> cd master
user@loginnode:~/simple app/master> 1s

config master.sh Simple Simple.cc Simple.idl

Building the Worker:

In order to build the worker, we have to proceed similarly as the previous master
example:

user@loginnode:~/simple app> 1ls
master project.xml resources.xml Simple.cc Simple-functions.c
Simple.idl

user@loginnode:~/simple app> gsbuild build worker Simple
/home/user/simple app/project.xml /home/user/simple app/resources.xml
Building worker

Running Autogen...

When the compilation process finishes the worker directory should look like the
following picture:

user@loginnode:~/simple app/worker> 1s
config worker.sh Simple-functions.c Simple.idl Simple-worker workerGS
workerGS_script.sh workerGS.sh

There is the possibility to build master and worker code at once using the all
option of the build action:

user@loginnode:~/simple app> 1ls

project.xml resources.xml Simple.cc Simple-functions.c Simple.idl
user@loginnode:~/simple app> gsbuild build all Simple
/home/user/simple app/project.xml /home/user/simple app/resources.xml
Building all:

Building Master...

Running Autogen with:

Project File: /home/user/simple app/project.xml

Resources File: /home/user/simple app/resources.xml

At the end of building process the application directory should look like:

Command successful.

user@loginnode:~/simple app> 1ls
master project.xml resources.xml Simple.cc Simple-functions.c
Simple.idl worker

Using the clean action of gsbuild:

The clean action deletes all the binary files generated by the build process; it can
be used with the master, worker and all options.

2.4.4. Executing The Application

Executing the application in interactive mode:

To execute a C/C++ COMPSs application in interactive mode simply invoke the
myapplication executable:

user@node:~/simple app> cd master
user@node:~/simple app/master> ./simple

The log of the execution can be found in /user/home/it.log.

Appendix A Executing the application in a queue
management system:

The current version of COMPSs only supports the Slurm+MOAB batch processing
system. To execute a COMPSs application the submit_compss.sh script has to be
used; this script is copied in the master directory by the gsbuild command. The
script will automatically create the resources.xml and project.xml files using the
pool of resources assigned by the queue system.

For Java applications the usage of the script is the following:

user@node:~/simple app> ./submit compss.sh NPROCS WALL CLOCK LIMIT
LOADER APPNAME ARGS

Where:

* NPROCS: number of processors to use.

* WALL_CLOCK_LIMIT: the limit of wall clock time. It must be set it to a value
greater than the real execution time for your application and smaller than
the time limits granted to the user.

* LOADER: ‘partial’ or ‘total’ (see 2.3.4).

* APPNAME: fully qualified name of the class implementing the Main() of the
application.

* ARGS: the arguments of the application.

For C/C++ applications:

user@loginnode:~/simple app> ./submit compss.sh NPROCS
WALL CLOCK LIMIT EXECUTABLE ARGS

Where:

* NPROCS: number of processors to use.

* WALL_CLOCK_LIMIT: the limit of wall clock time. It must be set it to a value
greater than the real execution time for your application and smaller than
the time limits granted to the user.

 EXECUTABLE: absolute path of the master binary

* ARGS: the arguments of the application.

This script will generate a slurm_script.sh script that has to be used as input to the
SLURM wrapper command for enqueueing the job.

