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Systems 2013 
Tianhe-2 

2020-2022  Difference 

Today & Exa 

System peak 55 Pflop/s 1 Eflop/s ~20x 

Power 18 MW 
(3 Gflops/W) 

~20 MW 
(50 Gflops/W) 

O(1) 

~15x 

System memory 1.4 PB 
(1.024 PB CPU + .384 PB CoP) 

32 - 64 PB ~50x 

Node performance   3.43 TF/s 
(.4 CPU +3 CoP) 

1.2  or 15TF/s O(1)  

Node concurrency 24 cores CPU + 

171 cores CoP 

O(1k) or 10k ~5x - ~50x 

Node Interconnect BW 6.36 GB/s 200-400GB/s ~40x 

System size (nodes) 16,000 O(100,000) or O(1M) ~6x - ~60x 

Total concurrency 3.12 M 
12.48M threads (4/core) 

O(billion) ~100x 

MTTF Few / day Many / day O(?) 

Exascale System Architecture with a cap of $200M and 20MW, 

(Jack Dongarra – SC13, Denver. Nov 2013 ) 

 

Exascale   Computing Challenge 



Current Key Reports 

 

 Dongarra et al, Applied Mathematics 

Research for Exascale, March 2014. 

 

 ESSI  II , annual report, Sept 2013.  



The End 
 

Needs  

• Novel scientific algorithms that improve performance, 

scalability, resilience and power efficiency 

• Novel mathematical modeling methods leading to 

increased algorithmic scalability 

• Developing Scientific algorithms that can exploit 

extreme concurrency (e.g. 1 billion for exascale by 

2020) 

• Naturally fault tolerant, self-healing or fault oblivious 

scientific algorithms 

• Programming model and system software that support 

algorithm scalability and resilience 



Scalable Algorithms: Motivation/Drivers 

 Bridging the Performance Gap while 

dealing with Hybrid Architectures 

 Increased Scalability  

 Highly fault-tolerant  and fault-resilient 

algorithms 

 Need to calculate with higher precision 

without restart 



Important Properties 

 Efficient Distribution of the compute 

data. 

 Minimum communication/ 

communication reducing algorithms 

 Increased precision is achieved adding 

extra computations (without restart) . 

 Fault-Tolerance achieved through  

adding extra computations  

 



MONTE CARLO METHODS 



Idea of the Monte Carlo method 

 

Wish to estimate the quantity α 

Define a random variable ξ 

Where ξ has the mathematical expectation α 

Take N independent realisations ξi of ξ 

 

– Then  

 

 

– And according to the Law of Large Numbers (LLN) 

 

 



Motivation: MC for Linear Algebra 

 

Many scientific and engineering problems revolve around: 

–  inverting a real n by n matrix (MI) 

• Given A 

• Find A-1 

 

– solving a system of linear algebraic equations (SLAE) 

• Given A and b 

• Solve for x,  Ax = b 

• Or find A−1 and calculate x = A−1b 



Motivation cont. 

 

Traditional direct Methods with dense matrices 

– Gaussian elimination 

– Gauss-Jordan 

– Both take O(n3) steps 

 

Time prohibitive if 

– large problem size 

– timely solution required 

 



Monte Carlo Methods 

 

 

Fast stochastic approximation 

 

Very efficient in finding a quick rough estimation 

– element or row of inverse matrix 

– component of solution vector 

 



Reason for using Monte Carlo 

 

O(NT) steps to find an element of the 

– inverse matrix A 

– solution vector x 

 

Where 

– N Number of Markov Chains 

– T length of Markov Chains 

 

Independent of n - size of matrix or problem 

Algorithms can be efficiently parallelised 

 



Parallel Algorithms 

Multi-tiered process 

 

Using parallel Monte Carlo to find a 

rough inverse of A 

Original algorithm for diagonally 

dominant matrices 

Extension to the general case non-

diagonally dominant matrices  

with ||A|| < 1 

 

Parallel iterative refinement to improve 

accuracy and retrieve final inverse 

 



Parallel Algorithm 

Start with a diagonally dominant matrix ^B 

 

Make the split ^B = D - B1 

– D has only the diagonal elements of ^B 

– B1 includes only off-diagonal elements 

Compute A = D-1B1 

 

If we had started with a matrix B that was not 
diagonally dominant then an additional 
splitting would have been made at the 
beginning, B = ^B - (^B - B), and a recovery 
section would be needed at the end of the 
algorithm to get  
B-1 from ^B-1 

 



Parallel Algorithm cont. 

Matrix Inversion using Markov Chain Monte Carlo 



Parallel Algorithm cont. 

Having used MC for inverting diagonally dominant matrices 

the obvious next extension is to see how this algorithm can be 

extended to invert general matrices. For this, assume the 

general case where ||B|| > 1 and consider the splitting  

 

From this it is then necessary to work back and recover      

from        . 

To do this an iterative process                                            is 

used on  



Refinement Process 

Given a non-singular matrix     , and its inverse        , if we 

define                           then we perform the following steps for 

more accurate inverse computation: 

 

 

Therefore, 

 

 

 

Obviously we have, 



Refinement  Process 

The formula shows that An approaches A     when the 

convergence of the process is very rapid. We can estimate 

the error at step n of this procedure: 

We see from the inequality that as long as the initial approximate 
inversion satisfies  the condition  
the number of correct decimal figures increases with a power 
 



Parallel Algorithm cont. 

 

Almost linear speedup for large enough problem sizes 

 

Minimal inter-process communication necessary 

 

Interleaving and balancing computation and communication 

balanced 

 

For smaller problem sizes need data replication in order to 

obtain good performance 



HYBRID VS. DETERMINISTIC METHODS 



Combination of Monte Carlo and SPAI 

SPAI – SParse Approximate Inverse Preconditioner 

– Computes a sparse approximate inverse M of given matrix A by 

minimizing ∥ AM − I ∥ in the Frobenius norm 

– Explicitly computed and can be used as a preconditioner to an iterative 

method 

– Uses BICGSTAB algorithm to solve systems of linear algebraic 

equations Ax = b 

 

Sparse Monte Carlo Matrix Inverse Algorithm 

– Computes an approximate inverse by using Monte Carlo methods 

– Uses an iterative filter refinement to retrieve the inverse 

 



Monte Carlo and SPAI cont. 

 

 

Idea: using a Monte Carlo computed approximate matrix 

inverse as a pre-conditioner 

 

 

Considering 

– computation time for MC solution 

– Suitability of rough inverse 

– Matrix types that are not invertible via Frobenius norm 

– Time savings, especially for larger problem sizes 

 

 



Experiments 

 

Selected test sets  

– The University of Florida Sparse Matrix Collection 

– Matrix Market 

 

Parameter and setting selection 

– Computation of pre-conditioner to same accuracy 

– Utilized in BiCGSTAB solver 

– RHS generated from input matrix 

 

Monte Carlo approach without refinement filter 

– Rough inverse sufficient for quick convergence in most cases 

 



Monte Carlo and SPAI 

Experiments show significant performance improvement, especially 

using Monte Carlo for larger problem sizes 

– Considering original serial implementation 

– Parallel MSPAI and Monte Carlo showing comparable performance 



MC & SPAI residuals 

Quality comparisons of the pre-conditioners 

– Used to solve System of Linear Algebraic Equations (SLAE) 

– Original input matrix, pre-conditioner, right hand side 

– Solved using BiCGSTAB implementation in SPAI 



Non-Converging case Sparsity 0.5 

 



Sparsity and computation 

 

SPAI computes the Frobenius norm of the input matrix 

– Workload depending on the size of the input matrix 

 

Monte Carlo algorithm uses Markov Chains 

– Independent of the size of the matrix 

– length and number of chains important 

– Original algorithm for dense matrices; extended to support general 

sparse cases 

 

Experiments have been run using various sparsity (10%-90%) 

 



Sparsity and computation cont. 



EXTENSION TO MSPAI 



Residuals for Parsec data set 

Residuals within same order of magnitude 

Non-convergence for some types of matrices using SPAI 

University of Florida 

Sparse Matrix 

Collection 

Parsec data set 

 



Convergence observations 

Non-convergence for some types of matrices using SPAI 

Monte Carlo converges in observed cases 



Si34H36 

97,569 x 97,569 

5,156,379 nonzeros 

Real symmetric 



Si41Ge41H72 

185,639 x 185,639 

15,011,265 nonzeros 

Real symmetric 

 



Si10H16 

17,077 x 17,077 

875,923 nonzeros 

Real symmetric 

 



Appu 

14,000 x 14,000 

1,853,104 nonzeros 

real nonsymmetric 



PSMIGR 3 

3140 x 3140 

543,160 nonzeros 

real nonsymmetric 

non diagonally dominant 



OPTIMIZATION 



Example: Parallel Regularized Multiple-Criteria Linear 
Programming 

 

 

 

 

 

 

 

 

Zhiquan Qi, Vassil Alexandrov,, Yong Shi, Yingjie Tian, Parallel 

Regularized Multiple-Criteria Linear Programming, to appear in 

Procedia Computer Science 2014, Proc. of ITQM, May 2014. 

 

 

 

 

 



Example: Parallel Regularized Multiple-Criteria Linear 
Programming 

 

Convex problem, through the dual: 
 

 

 

 

 

 

 

 

 

Reformulate the problem into global optimization one 
 

 

 

 

 

 

 

 

Parallelize efficiently: 

     - by dividing the variables 

     - by dividing the area to  subareas 
 

Zhiquan Qi, Vassil Alexandrov,, Yong Shi, Yingjie Tian, Parallel Regularized Multiple-Criteria Linear 
Programming, to appear in Procedia Computer Science 2014, Proc. of ITQM, May 2014. 
 

 

 

 

 



ANALYSING LANGUAGES 



Analysing Slavonic Languages 

42 



MULTI-LEVEL, MULTISCALE METHODS 



Example: Tackling multiscale problems using multilevel 
Monte Carlo methods and algorithms 

 

Approach: 

 

Stochastic approximation of the overall problem 

Local refinement with deterministic methods 

 

 

 

 

 

 

 

 

 

 



CONCLUSIONS 



Conclusions 

Properties/Challenges: 

 

Enable minimum communication, achieved through data 

localization and replication.  

Increased precision, is achieved by adding extra 

computations using the obtained solution so far without 

restart.  

Fault-Tolerance, is achieved by adding extra computations 

without restart. 

They are naturally resilient, resilience is achieved by replacing 

the part of the lost or incorrect computations with additional 

computations without restart. 

 



Conclusions 

Scalability at all levels is needed: 

 

Mathematical model level 

Algorithmic level 

Systems level. 

 


