
www.bsc.es

Towards Scalable Mathematical Methods

and Algorithms for Extreme Scale

Computing

Cairns, June, 2014

Vassil Alexandrov (ICREA-BSC)

Overview

Needs and Motivation

Overview - Monte Carlo Hybrid Methods

Parallel Approach

Monte Carlo vs SPAI/MSPAI

Experimental results

Other Examples

Conclusions

Systems 2013
Tianhe-2

2020-2022 Difference

Today & Exa

System peak 55 Pflop/s 1 Eflop/s ~20x

Power 18 MW
(3 Gflops/W)

~20 MW
(50 Gflops/W)

O(1)

~15x

System memory 1.4 PB
(1.024 PB CPU + .384 PB CoP)

32 - 64 PB ~50x

Node performance 3.43 TF/s
(.4 CPU +3 CoP)

1.2 or 15TF/s O(1)

Node concurrency 24 cores CPU +

171 cores CoP

O(1k) or 10k ~5x - ~50x

Node Interconnect BW 6.36 GB/s 200-400GB/s ~40x

System size (nodes) 16,000 O(100,000) or O(1M) ~6x - ~60x

Total concurrency 3.12 M
12.48M threads (4/core)

O(billion) ~100x

MTTF Few / day Many / day O(?)

Exascale System Architecture with a cap of $200M and 20MW,

(Jack Dongarra – SC13, Denver. Nov 2013)

Exascale Computing Challenge

Current Key Reports

 Dongarra et al, Applied Mathematics

Research for Exascale, March 2014.

 ESSI II , annual report, Sept 2013.

The End

Needs

• Novel scientific algorithms that improve performance,

scalability, resilience and power efficiency

• Novel mathematical modeling methods leading to

increased algorithmic scalability

• Developing Scientific algorithms that can exploit

extreme concurrency (e.g. 1 billion for exascale by

2020)

• Naturally fault tolerant, self-healing or fault oblivious

scientific algorithms

• Programming model and system software that support

algorithm scalability and resilience

Scalable Algorithms: Motivation/Drivers

 Bridging the Performance Gap while

dealing with Hybrid Architectures

 Increased Scalability

 Highly fault-tolerant and fault-resilient

algorithms

 Need to calculate with higher precision

without restart

Important Properties

 Efficient Distribution of the compute

data.

 Minimum communication/

communication reducing algorithms

 Increased precision is achieved adding

extra computations (without restart) .

 Fault-Tolerance achieved through

adding extra computations

MONTE CARLO METHODS

Idea of the Monte Carlo method

Wish to estimate the quantity α

Define a random variable ξ

Where ξ has the mathematical expectation α

Take N independent realisations ξi of ξ

– Then

– And according to the Law of Large Numbers (LLN)

Motivation: MC for Linear Algebra

Many scientific and engineering problems revolve around:

– inverting a real n by n matrix (MI)

• Given A

• Find A-1

– solving a system of linear algebraic equations (SLAE)

• Given A and b

• Solve for x, Ax = b

• Or find A−1 and calculate x = A−1b

Motivation cont.

Traditional direct Methods with dense matrices

– Gaussian elimination

– Gauss-Jordan

– Both take O(n3) steps

Time prohibitive if

– large problem size

– timely solution required

Monte Carlo Methods

Fast stochastic approximation

Very efficient in finding a quick rough estimation

– element or row of inverse matrix

– component of solution vector

Reason for using Monte Carlo

O(NT) steps to find an element of the

– inverse matrix A

– solution vector x

Where

– N Number of Markov Chains

– T length of Markov Chains

Independent of n - size of matrix or problem

Algorithms can be efficiently parallelised

Parallel Algorithms

Multi-tiered process

Using parallel Monte Carlo to find a

rough inverse of A

Original algorithm for diagonally

dominant matrices

Extension to the general case non-

diagonally dominant matrices

with ||A|| < 1

Parallel iterative refinement to improve

accuracy and retrieve final inverse

Parallel Algorithm

Start with a diagonally dominant matrix ^B

Make the split ^B = D - B1

– D has only the diagonal elements of ^B

– B1 includes only off-diagonal elements

Compute A = D-1B1

If we had started with a matrix B that was not
diagonally dominant then an additional
splitting would have been made at the
beginning, B = ^B - (^B - B), and a recovery
section would be needed at the end of the
algorithm to get
B-1 from ^B-1

Parallel Algorithm cont.

Matrix Inversion using Markov Chain Monte Carlo

Parallel Algorithm cont.

Having used MC for inverting diagonally dominant matrices

the obvious next extension is to see how this algorithm can be

extended to invert general matrices. For this, assume the

general case where ||B|| > 1 and consider the splitting

From this it is then necessary to work back and recover

from .

To do this an iterative process is

used on

Refinement Process

Given a non-singular matrix , and its inverse , if we

define then we perform the following steps for

more accurate inverse computation:

Therefore,

Obviously we have,

Refinement Process

The formula shows that An approaches A when the

convergence of the process is very rapid. We can estimate

the error at step n of this procedure:

We see from the inequality that as long as the initial approximate
inversion satisfies the condition
the number of correct decimal figures increases with a power

Parallel Algorithm cont.

Almost linear speedup for large enough problem sizes

Minimal inter-process communication necessary

Interleaving and balancing computation and communication

balanced

For smaller problem sizes need data replication in order to

obtain good performance

HYBRID VS. DETERMINISTIC METHODS

Combination of Monte Carlo and SPAI

SPAI – SParse Approximate Inverse Preconditioner

– Computes a sparse approximate inverse M of given matrix A by

minimizing ∥ AM − I ∥ in the Frobenius norm

– Explicitly computed and can be used as a preconditioner to an iterative

method

– Uses BICGSTAB algorithm to solve systems of linear algebraic

equations Ax = b

Sparse Monte Carlo Matrix Inverse Algorithm

– Computes an approximate inverse by using Monte Carlo methods

– Uses an iterative filter refinement to retrieve the inverse

Monte Carlo and SPAI cont.

Idea: using a Monte Carlo computed approximate matrix

inverse as a pre-conditioner

Considering

– computation time for MC solution

– Suitability of rough inverse

– Matrix types that are not invertible via Frobenius norm

– Time savings, especially for larger problem sizes

Experiments

Selected test sets

– The University of Florida Sparse Matrix Collection

– Matrix Market

Parameter and setting selection

– Computation of pre-conditioner to same accuracy

– Utilized in BiCGSTAB solver

– RHS generated from input matrix

Monte Carlo approach without refinement filter

– Rough inverse sufficient for quick convergence in most cases

Monte Carlo and SPAI

Experiments show significant performance improvement, especially

using Monte Carlo for larger problem sizes

– Considering original serial implementation

– Parallel MSPAI and Monte Carlo showing comparable performance

MC & SPAI residuals

Quality comparisons of the pre-conditioners

– Used to solve System of Linear Algebraic Equations (SLAE)

– Original input matrix, pre-conditioner, right hand side

– Solved using BiCGSTAB implementation in SPAI

Non-Converging case Sparsity 0.5

Sparsity and computation

SPAI computes the Frobenius norm of the input matrix

– Workload depending on the size of the input matrix

Monte Carlo algorithm uses Markov Chains

– Independent of the size of the matrix

– length and number of chains important

– Original algorithm for dense matrices; extended to support general

sparse cases

Experiments have been run using various sparsity (10%-90%)

Sparsity and computation cont.

EXTENSION TO MSPAI

Residuals for Parsec data set

Residuals within same order of magnitude

Non-convergence for some types of matrices using SPAI

University of Florida

Sparse Matrix

Collection

Parsec data set

Convergence observations

Non-convergence for some types of matrices using SPAI

Monte Carlo converges in observed cases

Si34H36

97,569 x 97,569

5,156,379 nonzeros

Real symmetric

Si41Ge41H72

185,639 x 185,639

15,011,265 nonzeros

Real symmetric

Si10H16

17,077 x 17,077

875,923 nonzeros

Real symmetric

Appu

14,000 x 14,000

1,853,104 nonzeros

real nonsymmetric

PSMIGR 3

3140 x 3140

543,160 nonzeros

real nonsymmetric

non diagonally dominant

OPTIMIZATION

Example: Parallel Regularized Multiple-Criteria Linear
Programming

Zhiquan Qi, Vassil Alexandrov,, Yong Shi, Yingjie Tian, Parallel

Regularized Multiple-Criteria Linear Programming, to appear in

Procedia Computer Science 2014, Proc. of ITQM, May 2014.

Example: Parallel Regularized Multiple-Criteria Linear
Programming

Convex problem, through the dual:

Reformulate the problem into global optimization one

Parallelize efficiently:

 - by dividing the variables

 - by dividing the area to subareas

Zhiquan Qi, Vassil Alexandrov,, Yong Shi, Yingjie Tian, Parallel Regularized Multiple-Criteria Linear
Programming, to appear in Procedia Computer Science 2014, Proc. of ITQM, May 2014.

ANALYSING LANGUAGES

Analysing Slavonic Languages

42

MULTI-LEVEL, MULTISCALE METHODS

Example: Tackling multiscale problems using multilevel
Monte Carlo methods and algorithms

Approach:

Stochastic approximation of the overall problem

Local refinement with deterministic methods

CONCLUSIONS

Conclusions

Properties/Challenges:

Enable minimum communication, achieved through data

localization and replication.

Increased precision, is achieved by adding extra

computations using the obtained solution so far without

restart.

Fault-Tolerance, is achieved by adding extra computations

without restart.

They are naturally resilient, resilience is achieved by replacing

the part of the lost or incorrect computations with additional

computations without restart.

Conclusions

Scalability at all levels is needed:

Mathematical model level

Algorithmic level

Systems level.

