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The Era of Heterogeneous Hardware
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Hybrid Memory Management is Complex
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E.g., Which / How much / Where / When to move data?

Why do we need more intelligent systems?
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Machine Intelligent Hybrid Memory Management

The Vision.
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Machine Intelligent Hybrid Memory Management
Laying the grounds for the practical integration of ML.
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System Design of Kleio

Kleio is a hybrid memory page scheduler with machine intelligence. [Best Paper Award Finalist at HPDC 2019.]
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necessary amount of machine intelligence to boost application performance.
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The Key(s) to a Practical and Efficient ML-based System Design

Apply ML when and where necessary.
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Small can still mean thousands of pages, because of
Apply ML on a small page subset. Q . . ’
PRYY Pag the massive memory footprints of modern workloads.

‘} Foundations for practical use of ML.
Can we reduce the number of pages via clustering?

Carefully select pages for ML.

L} Application performance boost.
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Insights from the System Design of Coeus

Coeus: Clustering (A)like Patterns for Practical Machine Intelligent Hybrid Memory Management . [CCGrid 2022]
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Which is the Right Granularity?

@ Longer periods result in more pages having identical patterns of page access hotness across time.

@ Longer periods may result in insufficient data movements and impact application performance.
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*Page Reuse Distance = The time gap between two accesses to the same page.
Insight from Cori: Dancing to the Right Beat of Periodic Data Movements over Hybrid Memory Systems. [IPDPS 2021]

Cori is a lightweight tuning solution for hybrid memory page schedulers, that we will use to determine the “right granularity”.
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Scaling ML to More Pages and Improving Performance

Solution
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Reducing Runtime Overheads of ML-based Management

Runtime Overheads
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Coeus enables:

v| Quick page clustering process.

v| Fewer ML models deployed.
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The Key(s) to a Practical and Efficient ML-based System Design

Apply ML when and where necessary.
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Apply ML on a small page subset.

‘} Foundations for practical use of ML.

Carefully select pages for ML.

L} Application performance boost.
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The page selection is not a lightweight process.
Performance modeling and estimations are used to
maximize the effects of ML on application performance.

Can we accelerate the page selection process?
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Page RNN

Insight from Visualizing Pages Selected for ML | o B
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Towards Image-based Page Selection

Research paper under submission.
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3. Page Selection

Our system reduces by 400x the page selection times, from minutes down to seconds.

14/ 16



Computer Vision + Machine Learning for Systems

What can an image-based system pipeline look like?
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E.g., learning memory access patterns. IT'S AWHOLENEW WORLD!
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Future Research Directions

My research lies at the intersection of Machine Learning and Systems.
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Machine Learning (ML)

A

Computer Vision (CV)

ML for Systems

>

E.g., Online practical training, ML for different systems problems.

< Systems for ML {:é):} /(((T\h/\

E.g., Optimize memory management for RNNs / ML workloads.

Operating Systems (OS)
Software

ML + CV for Systems

>

E.g., Image-based pattern recognition and prediction of resource usage.
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