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First, a history lesson…

• 4-way Out-of-Order 
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• High performance 
branch predictor
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• “Hyper”-pipelining
• “Hyper”-threading

Intel Pentium 4
Circa 2001

• Double-pumped ALU
• 126 instructions in flight
• 6-uOps issue/cycle
• SSE Instructions
• 96 (48)-entry Load (Store) 

buffer
• 2*128-entry regfile
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First, a history lesson…

Pentium 4 Core 2 Duo Core i7 (Nehalem)

2001 2006 2008

Outcomes:
– Core counts increasing

• Core complexity stalled (mostly)

– Memory hierarchy system complexity 
increasing

– Interconnect between cores 
increasingly critical

VLSI Trends:
– Continued transistor scaling
– Constrained Power and 

Energy budgets

2014

Core i7 (Haswell)



 

• All is not well:
– Caches don’t help for first access to a particular location

• ( A focus of much of my other work)

– Huge latencies for shared data/synchronization due to coherence

• Interconnect between cores an increasingly critical design component

• Increasing core counts
• Multi-level hierarchies

– Private lower levels
– Large, shared last-level

• Multi-threaded apps
– Data shared via caches
– Synchronization critical

First, a history lesson…

Intel Skylake Xeon XCC (2017)

Era of Chip-multiprocessors (CMPs): Complexity moves from the cores up 
the memory system hierarchy and interconnect.
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Routing Deadlocks

● A Routing Deadlock is a cyclic buffer 
dependency chain that renders forward 
progress impossible. 
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Routing Deadlocks

● A Routing Deadlock is a cyclic buffer dependency chain 
that renders forward progress impossible.
– Renders the chip non-functional.

● Deadlocks are a fundamental problem in both off-chip and 
on-chip interconnection networks. 
– Deadlocks are hard to detect during functional verification.

● Manifest after a long use time.
● Depend on : traffic pattern, injection rate, congestion.

● Existing approaches to prevent deadlocks require high 
hardware costs or impose significant performance penalties
– Need a low cost solution for functional correctness !!

Focus of this work is to achieve low-cost, high 
performance deadlock freedom



Outline

● Introduction

● Background: Routing Deadlocks

– Dally’s Theory

– Duato’s Theory

– Flow Control Routing

– Deflection Routing

● SPIN : Synchronized Progress in Interconnection 
Networks

● DRAIN : Deadlock Removal for Arbitrary Irregular 
Networks

● Conclusion



Solution I: Dally’s Theory

● A strict order in acquisition of  links and/or buffers 
ensures a cyclic dependency can never created.       
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Solution I: Dally’s Theory

● A strict order in acquisition of links and/or buffers 
ensures a cyclic dependency can never created.   

● Implementations: Turn model 
[Glass and Ni, ISCA’92]

 

XY routing, Up-Down routing 
[Schroeder et al, ICPP’91]

.

● Limitations:

– Routing Restrictions: Increased Latency, 
Throughput loss, Energy overhead

– Require large no. of VCs for fully adaptive 
routing.
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Solution II: Duato’s Theory

● Adds buffers to create a deadlock free escape path that 
can be used to avoid/recover from deadlocks.

● Implementation: turn restrictions in escape-VC.
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Solution II: Duato’s Theory

● Adds buffers to create a deadlock free escape path 
that can be used to avoid/recover from deadlocks.

● Implementation: Requires an extra “escape” VC in 
each router. Turn restrictions in escape-VC. 

● Limitations:
– Energy and Area overhead of escape VCs.
– Additional routing tables/logic for routing 

within escape-VC.



Other Solutions

● Solution III: Flow Control  

– Restrict injection when no. of empty buffers fall below a 
threshold 

– Implementation: Bubble Flow Control 
[Carrion et al., HIPC’97]

– Limitation:  Implementation Complexity, Throughput Loss.

● Solution IV: Deflection Routing  

– Assign every flit to some output port even if they get misrouted.

– Implementation: BLESS
[Moscibroda and Mutlu, ISCA’09]

 

CHIPPER
[Fallin et al., HPCA’11]

– Limitation:   Livelocks, non-minimal routing
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SPIN : Key Idea
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What if:
We coordinate the 
movement of every 
packet to the next hop 
at a given time ??

Simultaneous 
Synchronized 

Movement 

● Deadlocks are the result of a lack of coordination not a 
lack of resources.

● Simultaneous Synchronized Movement of all 
deadlocked packets in the loop is called a spin.

spin 
complete



SPIN : Key Idea

● Simultaneous Synchronized Movement of all 
deadlocked packets in the loop is called a spin.
– Each spin leads to one hop of forward 

movement for all deadlocked packets.
– One spin may not resolve the deadlock. If so, 

spin can be repeated
– Deadlock is guaranteed to be resolved in a 

finite number of spins [proof in paper, Sec. 
III]



SPIN : Key Idea
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SPIN : Key Idea
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SPIN: Implementation 

● SPIN is a generic deadlock freedom theory that 
can have multiple implementations.

● We choose a recovery approach as 
deadlocks are rare scenarios (See Sec. II-F).

● Our Implementation:
– Detect the Deadlock.
– Coordinate a time for spin.
– Execute the spin.



Example : Detect Deadlocks

● Use counters.

● Placed at every node at design time.
– Optimize by exploiting topology symmetry  (See 

Static Bubble).

● If packet does not leave in threshold time 
(configurable), it indicates a 
potential deadlock. 

● Counter expired?             Send probe to verify 
deadlock.



Example : Probe Msg.
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Example : Probe Msg.

● Probe is a special message that tracks the 
buffer dependency.
– Uses “blocked” links, no extra network 

required

● Probe returns to sender: 
– Cyclic buffer dependence, hence deadlock.

● Next, send a move msg. to convey the spin 
time
– Upon receiving move msg., router sets its 

counter to count to spin cyle.



Example : Move Msg.
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Example : spin
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SPIN Optimization

● Resolving a deadlock may require multiple spins

– After spin, router can resume normal operation. 

– Counter expires again, process repeated.

● Optimization: send probe_move after spin is 
complete.

– probe_move checks if deadlock still exists and 
if so, sets the time for the next spin.

● Details in paper (Sec. IV-B).



Microarchitecture

● No additional links:  Spl. Msgs. use the same links as 
regular flits. 

– Spl. Msgs. have higher priority in link usage over 
regular flits. 

– Links are idle during deadlocks (by definition).

● Bufferless Forwarding:  Spl. Msgs. are not buffered 
anywhere (either forwarded or dropped). 

● Distributed Design:  any router can initiate the 
recovery.

● 4% area overhead compared to traditional mesh router 
in 15nm.



FAvORS Routing 

● SPIN is the first scheme that enables true one-VC fully 
adaptive deadlock-free routing for any topology.

● FAvORS : Fully Adaptive One-vc Routing with SPIN.
– Algorithm has two flavors: 

● Minimal Adaptive
● Non-minimal Adaptive

– Route Selection Metrics:
● Credit turn-around time
● Hop Count

– More details in paper (Sec. V).



Evaluation

Simulator gem5 simulator + Garnet 2.0 Network model 

Topologies 8x8 Mesh 1024 node Off-chip 
Dragon-fly

Link 
Latency

1-cycle Inter-group: 3-cycle
Intra-group: 1-cycle

Traffic Synthetic + 
Multi-threaded (PARSEC)

Synthetic

Network Configuration



Baselines

8x8 Mesh
Design Routing 

Adaptivity
Minimal Theory Deadlock 

Freedom Type

West-first 
Routing

Partial Yes Dally Avoidance

Escape-VC Full Yes Duato Avoidance

Static-Bubble [6] Full Yes Flow-Control Recovery

1024 Node Off-chip Dragon-fly
Design Routing 

Adaptivity
Minimal Theory Deadlock Freedom 

Type
UGAL  [37] Full No Dally Avoidance



Throughput 
1024-node Off-chip Dragon-fly
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Throughput 
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to Static-Bubble 3-VC



Energy Delay

3VC_Duato vs. 
2VC_SPIN Adaptive 

● Runtime effectively 
equivalent

● 2VC_SPIN 18% 
less energy and 
EDP



Summary
● Deadlocks are a fundamental problem in Interconnection 

Networks.
– SPIN is a new deadlock freedom theory
– Simultaneous packet movement for deadlock recovery
– No routing restrictions or escape-VCs required
– Enables true one-VC fully adaptive routing for any 

topology
● Salient Features of our Implementation:

– Scalable: Distributed Deadlock Resolution
– Plug-n-Play: topology agnostic
– 68% higher (Mesh) &  62% higher (dragon-fly) saturation 

throughput.

● Can we do better?



Outline
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● SPIN : Synchronized Progress in Interconnection 
Networks
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DRAIN
● SPIN drawbacks

– Somewhat complicated deadlock detection hardware

– Built around Static Bubble[Ramrakhyani and Krishna,HPCA’17] 

framework
● Difficult to adapt to wear-out induced network 

topology changes

● DRAIN : Deadlock Removal for Arbitrary Irregular 
Networks

– No need for deadlock detection

– Adapt to changing network topology



DRAIN: Key Idea
● DRAIN : Deadlock Removal for Arbitrary Irregular Networks

– No need for deadlock detection
● Pre-emptively SPIN (DRAIN) the whole network

– Deadlocks are rare so spin every >100K cycles 
● Deadlocks will be broken even if packets are mis-routed

– Adapt to changing network topology
● Link/router breaks change network topology to be spun
● Developed algorithm to find minimum set of DRAIN 

paths which cover whole network
● Regen DRAIN paths when link/router breaks
● Route adaptively w/o worry of network deadlock



Conclusion
● Deadlocks are a fundamental problem in Interconnection 

Networks.

– SPIN and DRAIN represent a new approach to deadlock 
freedom

● Deadlocks – not a lack of resources, a lack of 
coordination

● Simultaneous packet movement for deadlock 
recovery

– Low Overheads: No routing restrictions or escape-VCs 
required

– High Performance: Equal or better performance with less 
hardware cost
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