Facilitating the
Programming of
Heterogeneous

Devices using the
HPL Library

Diego Andrade

(diego.andrade®@udc.es)

% .‘\“ UNIVERSIDADE DA CORUNA

About me

» My PH.D thesis versed about predicting the cache
performance of sparse codes

» After that:

» Predicted the cache performance of applications with
application with soft and hard real-time constraints

» Predicted the cache performance of multicore cache
hierarchies with private and shared cache levels

» Lately:

» Providing performance portability on heterogeneous
systems, using:

» OCLoptimizer: a source to source optimization tool built on
top of CLANG

» With HPL

Computing landscape

m Heterogeneous systems are being increasingly adopted
m Large performance and power benefits
= No single device is the best for everything

® Most code is (yet) CPU-only

~——CUBLAS-Zgemm —MKL-Zgemm
450

400

350

300

250
200
150

GFLOPsS

100

50

0 256 512 768 1024 1280 1536 1792
Matrix Size (NxN)

» cuBLAS 4.1 on Tesla M2090, ECC on +Performance may vary based on OS ver. and motherboard config.
* MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Problems of heterogeneity

m More and more different systems

m Greater programming effort

m New software managed hardware features

m Separate memory: communication with host CPU
m Portability can be compromised

m Each vendor/device may have its development
environment. E.g.: CUDA

OpenCL

» Open standard for general-purpose program \

of heterogeneous systems
» Since 2008

» Improves the situation but

» Complex programming interface \
» Many small steps, low level management
» Lacks features (e.g. templates until V2.2)

a

OpenCL

How can we improve this?

» Several libraries have tried to address this \
problem with different degrees of \
» Restrictions on expressivity

» Portability

» Exposure of the underlying hardware or specific
language

» Compiler directives
» Sometimes, problems similar to libraries
» Dependent on compiler technology

Purpose

» Library-based solution to program heterogeneous
systems

» Expressive
Easy to use
Portable

No/minimal need to learn new languages

vV v v v

Good performance

Heterogeneous Programming
Library (HPL)

» C++ library based on two key concepts

» Kernels: functions that are evaluated in parallel by
multiple threads on any device

» Data types to express arrays and scalars that can be used
in kernels and serial code

» Low level code generation at runtime

» Easies specialization, code space search

Download it at: http://hpl.des.udc.es

HPL Description

HPL hardware model

» Serial code runs in the host
» Parallel kernels can be run everywhere
» Processors can only access their device memory

Supports the whole OpenCL me
model

—)

|

Compute Device

Compute unit 7

Private
memory 7
|
BE

Private
memory W

PE M

¢

Local
memory 7

Compute unit N

Private
memory 1

PE 1

Private
memory M

PE M

{

Local
memory N

Global/Constant Memory Data Cache

A

A

A 4

Global Memory

Constant Memory

Compute Device Memory

Kernel evaluation index space

» Global domain required
» Provides unique ID for each parallel thread \
» Optional local domain

» Threads in the same local domain can share local
memory and synchronize with barriers

8 threads globally
group group
(0,0) < > (0,1)

(0,3) | (0,4)
(1,3) | (1,4)

2,3) | (2,4)
(3,3) | (3,4)

Ajleqo|b
speaiy) p

2 threads
locally

group [4 threads locally * group
(1,0) (1,1)

Example: SAXPY (Y=a*X+Y)

void saxpy(Array<float, 1>y, Array<float, 1> x, Float a, Int n)

{

if (idx<n){ ldx: thread
ylidx] = a * x[idx] + y[idx]; global id in
} the first
} dimension
int main()
{

intn=...;//length of the arrays
floata=..;

Array<float, 1> x(n), y(n);

//the vectors are filled in with data (not shown)
int nGlobalThreads = ceil(n / 32.) * 32;

eval(saxpy).global(nGlobalThreads).local(32)(y, x, a, n);

}

Arrays

» Array<type, ndims [,memoryFlag]> definition
of an array that can be used in host code and
kernels

» Examples:
» Array<float, 2> matrixX(100, 100);
» Array<int,1,Local> arrayX(500);
» Array<int,0> scalar;

» memoryFlag: Global, Local, Private or
Constant

» Kernel arguments default to global
memory

» Kernel in-function variables default to
private memory

Kernels

» Anything executable in C++

» Regular functions, functors, etc.

» Single-source heterogeneus computing!

» Written with HPL kernel language
» The arguments are the kernel arguments

» Scalars are passed by value

» Arrays are passed by reference

HPL kernel language

m Control flow structs with underscore:
mif © if_; else = else_; etc.

m for = for_ with commas separating
the arguments

m Predefined variables to identify
threads, get number of threads, etc.

= Functions for mathematical
operations, synchronizations, etc.

Host API: Running kernels

» eval(kernel)(args) parallel evaluation of kernel
on the arguments \

» Default global domain = size of the first
argument

» Can be specified with global(x,y,z)
» Default local domain chosen by library
» Can be specified with local(x,y,z)

» Execution takes place by default in the first
accelerator found in the system, or otherwise
the CPU if it supports OpenCL

» Can be specified with device(d)

» Functions to inspect existing devices and their
properties

Example: Templates for heterog
systems

template<typename T>
void add(Array<T, 2> a, Array<T, 2> b,
Array<T, 2> c) {
alidx][idy] = b[idx][idy] + c[idx][idy];
}

Array<float, 2> av(N,N), bv(N,N), cv(N,N);
Array<int, 2> avi(M,M), bvi(M,M), cvi(M,M);

//We use addv to add floats
eval(addv<float>)(cv, av, bv);

//We use addv to add ints
eval(addv<int>)(cvi, avi, bvi);

Kernel execution semantics

» Kernel evaluations are asynchronous

» Host continues executing in parallel with the
device

» Facilitate overlapped operation host/device
» Easy exploitation of multiple devices
» Synchronization based on the accesses to data

» Arrays are kept consistent across their usages both
in different kernels and in the host

» When a kernel needs data updated by another
one, HPL automatically waits in order to
provide the correct data

» Sequential consistency provided

OpenCL generation

The code is HPL elements Normal C++ can Simple analyses
executed as capture the code be mixed with Sre erforrr): ed
regular C++ of the kernels HPL elements P
() e.g.d: which array; aLe
read, written or bot
Allows to build a ’
L Allows « Enables automated & optimal
T P metaprogramming et o
. J
(~ D

The code generated can
be obtained

Evaluation

OpenCL VS HPL: Programmability -
factorized

% reduction

100

Bl slocs
I effort
[leycl number |f

90

80
70
60
50
40
30
20
10

0

spmv reduction transpose Floyd EP

OpenCL - HPL performance tests !
in Tesla C 2050/C 2070

i Il_ll

Bl creation

I compilation

[1CPU->GPU
[IGPU->CPU
B kernel exec

I CPU

(0]
(@)

o)}
o

1N
(@)

normalized runtime

spmv reduction transpose Floyd EP ShWa

OpenCL - HPL performance tests
in AMD HD6970

Bl creation
Bl compilation
[|CPU->GPU
[|GPU->CPU
I kernel exec

I CPU

reduction transpose

normalized runtime

spmv Floyd EP ShWa

Real world app: Shallow water
simulator with contaminants

Prize from Fujitsu

Shallow water simulator
performance

runtime
N
()]
o
o

Il creation

Il compilation
[ICPU->GPU
[IGPU->CPU
B kernel exec
I CPU

200

300

2xIntel Xeon E5506 2.13 GHz

400

500

600

+ Nvidia Tesla C2050

700

800

runtime

3000

2500

2000

1500

1000

500

Il creation
Il compilation
[ICPU->GPU
[]GPU->CPU
B kernel exec
I CPU

200 300

400 500

600

Intel Core 2 at 2.4GHz

+ AMD HD6970

Autotuning

Meta-programming

» Regular C++ can be interleaved in the kernels

» C++ variables are frozen as constants \
» C++ statements are executed, not captured \
» They do not generate OpenCL code

»But they can control the OpenCL code
generated

» Can manipulate at runtime the generation of
code!

Example: metaprogramming

if(((m*(m+1))/2)*n>C){
Inti, j, k;
for (i =0,i<m,i++)//generate for loops
for (j=0,j<n,j++)
for (k=i k<m; k++)
r[i](j] += a[il[k] * b[K][j];
} else {
for(inti=0;i<m;i++)//generate full unroll
for(intj=0;j<n;j++)
for(intk=1i; k<m; k++)
r[i](j] += a[il[k] * b[K][];

It generates...

for(i =0;i<m;i++)
for(j=0;j<n; j++)
for(k=1i; k<m; k++)
r[i][j] +=alil[k] * bk][j];

Or...

r[0][0] += a[0][0] * b[O][O];
r[0][0] +=a[0][1] * b[1][C];
r[0][0] +=a[0][2] * b[2][O];

Allows control on

» Tiling

» Loop ordering

» Vectorization

» Usage of local memory
» Unroll

» Granularity

> ...

Matrix product adaption using
HPL + Genetic Algorithms

» Matrix product is one of the most widely used
kernels

» We wrote a matrix product with adaptive features
based on HPL run time code generation and
metaprogramming

» Optimization space searched with a genetic
algorithm

» We compared with state of the art adaptive
OpenCL BLAS libraries:

» clBLAS from AMD
» ViennaCL from TU Wien

Results in Intel CPU

350

300

250

GFLOP/s
n
o
S

-
(&)
(@)

B cIBLAS
[]ViennaCL
B HPL+GA

1024 2048 4096 8192
Matrix sizes

2x8-core Intel E5-2660 (2.2 GHz) CPU

Results in Nvidia GPU

I cBLAS
1200 []ViennaCL
B HPL+GA

GFLOP/s

2048 4096 8192

1024
Matrix sizes

NVIDIA Tesla K20m with 2496 cores (705 MHz)

Results in AMD GPU

3000

2500

2000

GFLOP/s
o
o
O

1000

500

B cBLAS
[]ViennaCL
B HPL+GA

1024 2048 4096 8192
Matrix sizes

AMD FirePro S9150 with 2816 cores (900 MHz)

Results in Intel Xeon Phi

450

Il cBLAS
[]ViennaCL

400 B HPL+GA

350

300

GFLOP/s
N
(@)]
(@)

N
o
(@)

150

100

50

1024 2048 4096 8192

Matrix sizes

Intel Xeon Phi 5110P with 60 cores (1.053GHz)

Tuning times

Device Size Total tuning time (s)
GA cIBLAS ViennaCL
CPU 1024 120.57 42947.26 32428.25
2048 339.99 60438.13
4096 1729.80 500775.18
8192 19286.90 4186086.80
Nvidia 1024 242.04 1225.53 18836.30
2048 331.40 38292.62
4096 4429.57 186041.36
8192 17127.50 1394675.71
AMD 1024 1579.74 5425.97 1911.00
2048 2422.34 6221.00
4096 4587.55 60595.37
8192 5792.07 > 3 days
ACC 1024 260.32 86501.20 121891.58
2048 915.69 211610.18
4096 4401.47 1145630.97
8192 31973.30 > 3 days

Conclusions

» HPL facilitates portable high performance
programming of heterogeneous systems -\

» Large programmability improvements \
over OpenCL \

» Typical performance overhead << 5%
» Good support for multi-device execution
» Success at generating optimized kernels
» Under GPL V3 at http://hpl.des.udc.es

Also available

» Easy-to-use multi-device support

» With amenable methods to implement load-balancing
support

Future & Ongoing Work

» Distributed memory systems / clusters
» To be published soon.

» Facilitating code space exploration
» Optimization abstractions

» Increased programmability within kernels

Thank you!

http://hpl.des.udc.es

diego.andrade®@udc.es

