
Facilitating the
Programming of
Heterogeneous

Devices using the
HPL Library

Diego Andrade

(diego.andrade@udc.es)

About me

 My PH.D thesis versed about predicting the cache
performance of sparse codes

 After that:

 Predicted the cache performance of applications with
application with soft and hard real-time constraints

 Predicted the cache performance of multicore cache
hierarchies with private and shared cache levels

 Lately:

 Providing performance portability on heterogeneous
systems, using:

 OCLoptimizer: a source to source optimization tool built on
top of CLANG

 With HPL

2

Computing landscape

 Heterogeneous systems are being increasingly adopted

 Large performance and power benefits

 No single device is the best for everything

 Most code is (yet) CPU-only

3

Problems of heterogeneity

 More and more different systems

 Greater programming effort

 New software managed hardware features

 Separate memory: communication with host CPU

 Portability can be compromised

 Each vendor/device may have its development
environment. E.g.: CUDA

4

OpenCL

 Open standard for general-purpose programming
of heterogeneous systems

 Since 2008

 Improves the situation but

 Complex programming interface

 Many small steps, low level management

 Lacks features (e.g. templates until V2.2)

5

How can we improve this?

 Several libraries have tried to address this
problem with different degrees of

 Restrictions on expressivity

 Portability

 Exposure of the underlying hardware or specific
language

 Compiler directives

 Sometimes, problems similar to libraries

 Dependent on compiler technology

6

Purpose

 Library-based solution to program heterogeneous
systems

 Expressive

 Easy to use

 Portable

 No/minimal need to learn new languages

 Good performance

7

Heterogeneous Programming
Library (HPL)

 C++ library based on two key concepts

 Kernels: functions that are evaluated in parallel by
multiple threads on any device

 Data types to express arrays and scalars that can be used
in kernels and serial code

 Low level code generation at runtime

 Easies specialization, code space search

8

Download it at: http://hpl.des.udc.es

9

HPL Description

HPL hardware model

 Serial code runs in the host

 Parallel kernels can be run everywhere

 Processors can only access their device memory

10

Supports the whole OpenCL memory
model

11

Kernel evaluation index space
 Global domain required

 Provides unique ID for each parallel thread

 Optional local domain

 Threads in the same local domain can share local
memory and synchronize with barriers

12

Example: SAXPY (Y=a*X+Y)

13

void saxpy(Array<float, 1> y, Array<float, 1> x, Float a, Int n)
{

if_(idx < n) {
y[idx] = a * x[idx] + y[idx];

}
}

int main()
{

int n = . . .; // length of the arrays
float a = . . .;

Array<float, 1> x(n), y(n);

//the vectors are filled in with data (not shown)
int nGlobalThreads = ceil(n / 32.) * 32;

eval(saxpy).global(nGlobalThreads).local(32)(y, x, a, n);
}

Idx: thread
global id in

the first
dimension

Arrays

 Array<type, ndims [,memoryFlag]> definition
of an array that can be used in host code and
kernels

 Examples:

 Array<float, 2> matrixX(100, 100);

 Array<int,1,Local> arrayX(500);

 Array<int,0> scalar;

 memoryFlag: Global, Local, Private or
Constant

 Kernel arguments default to global
memory

 Kernel in-function variables default to
private memory

14

Kernels

 Anything executable in C++

 Regular functions, functors, etc.

 Single-source heterogeneus computing!

 Written with HPL kernel language

 The arguments are the kernel arguments

 Scalars are passed by value

 Arrays are passed by reference

15

HPL kernel language

 Control flow structs with underscore:

 if  if_; else  else_; etc.

 for  for_ with commas separating
the arguments

 Predefined variables to identify
threads, get number of threads, etc.

 Functions for mathematical
operations, synchronizations, etc.

16

Host API: Running kernels

 eval(kernel)(args) parallel evaluation of kernel
on the arguments

 Default global domain = size of the first
argument

 Can be specified with global(x,y,z)

 Default local domain chosen by library

 Can be specified with local(x,y,z)

 Execution takes place by default in the first
accelerator found in the system, or otherwise
the CPU if it supports OpenCL

 Can be specified with device(d)

 Functions to inspect existing devices and their
properties

17

Example: Templates for heterogeneous
systems

18

template<typename T>
void add(Array<T, 2> a, Array<T, 2> b,

Array<T, 2> c) {
a[idx][idy] = b[idx][idy] + c[idx][idy];

}

. . .

Array<float, 2> av(N,N), bv(N,N), cv(N,N);
Array<int, 2> avi(M,M), bvi(M,M), cvi(M,M);

//We use addv to add floats
eval(addv<float>)(cv, av, bv);

//We use addv to add ints
eval(addv<int>)(cvi, avi, bvi);

Kernel execution semantics

 Kernel evaluations are asynchronous

 Host continues executing in parallel with the
device

 Facilitate overlapped operation host/device

 Easy exploitation of multiple devices

 Synchronization based on the accesses to data

 Arrays are kept consistent across their usages both
in different kernels and in the host

 When a kernel needs data updated by another
one, HPL automatically waits in order to
provide the correct data

 Sequential consistency provided

OpenCL generation

The code is
executed as
regular C++

HPL elements
capture the code

of the kernels

Allows to build a
representation in

OpenCL C

The code generated can
be obtained

Normal C++ can
be mixed with
HPL elements

Allows
metaprogramming

Simple analyses
are performed

e.g.: which arrays are
read, written or both

•Enables automated & optimal
management of array
transfers

20

21

Evaluation

OpenCL VS HPL: Programmability -
factorized

22

-270 SLOCs
of

initialization
in the baseline

OpenCL – HPL performance tests
in Tesla C 2050/C 2070

23

OpenCL – HPL performance tests
in AMD HD6970

24

Real world app: Shallow water
simulator with contaminants

25

Prize from Fujitsu

Shallow water simulator
performance

26

2xIntel Xeon E5506 2.13 GHz
+ Nvidia Tesla C2050

Intel Core 2 at 2.4GHz
+ AMD HD6970

27

Autotuning

Meta-programming

 Regular C++ can be interleaved in the kernels

 C++ variables are frozen as constants

 C++ statements are executed, not captured

They do not generate OpenCL code

But they can control the OpenCL code
generated

 Can manipulate at runtime the generation of
code!

28

Example: metaprogramming

29

if(((m * (m + 1)) / 2) * n > C) {

Int i, j, k;

for_(i = 0, i < m, i++) //generate for loops

for_(j = 0, j < n, j++)

for_(k = i; k < m; k++)

r[i][j] += a[i][k] * b[k][j];

} else {

for(int i = 0; i < m; i++) //generate full unroll

for(int j = 0; j < n; j++)

for(int k = i; k < m; k++)

r[i][j] += a[i][k] * b[k][j];

}

It generates…

30

for(i = 0; i < m; i++)

for(j = 0; j < n; j++)

for(k = i; k < m; k++)

r[i][j] += a[i][k] * b[k][j];

r[0][0] += a[0][0] * b[0][0];

r[0][0] += a[0][1] * b[1][0];

r[0][0] += a[0][2] * b[2][0];

…

Or…

Allows control on

 Tiling

 Loop ordering

 Vectorization

 Usage of local memory

 Unroll

 Granularity

 …

31

Matrix product adaption using
HPL + Genetic Algorithms

 Matrix product is one of the most widely used
kernels

 We wrote a matrix product with adaptive features
based on HPL run time code generation and
metaprogramming

 Optimization space searched with a genetic
algorithm

 We compared with state of the art adaptive
OpenCL BLAS libraries:

 clBLAS from AMD

 ViennaCL from TU Wien

32

Results in Intel CPU

33
2x8-core Intel E5-2660 (2.2 GHz) CPU

Results in Nvidia GPU

34

NVIDIA Tesla K20m with 2496 cores (705 MHz)

Results in AMD GPU

35AMD FirePro S9150 with 2816 cores (900 MHz)

Results in Intel Xeon Phi

36Intel Xeon Phi 5110P with 60 cores (1.053GHz)

Tuning times

37

Conclusions

 HPL facilitates portable high performance
programming of heterogeneous systems

 Large programmability improvements
over OpenCL

 Typical performance overhead << 5%

 Good support for multi-device execution

 Success at generating optimized kernels

 Under GPL V3 at http://hpl.des.udc.es

38

Future & Ongoing Work

 Distributed memory systems / clusters

 To be published soon.

 Facilitating code space exploration

 Optimization abstractions

 Increased programmability within kernels

39

Also available

 Easy-to-use multi-device support

 With amenable methods to implement load-balancing
support

58

Thank you!
http://hpl.des.udc.es

diego.andrade@udc.es

