Algorithmic and HPC Challenges in Parallel Tensor Computations

Oguz Kaya

INRIA Bordeaux, France

May 3, 2017

メロト メタト メミト メミト 一毛 …

What is a tensor?

- A vector is a 1-dimensional tensor
- A matrix is a 2-dimensional tensor.
- A tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times ... \times I_N}$ has N dimensions.

イロト イ押ト イヨト イヨト

Þ

 2990

We are mostly interested in the case when X is **sparse** and of low rank.

Tensor Decompositions

- Generalization of matrix decompositions to higher dimensions
- **Provide low-rank representation** of high dimensional data
- CP Decomposition
	- Provides a **rank-R representation** of a tensor with **R rank-1 terms** summed.
	- Minimum R yielding an equality is called the rank of \mathcal{X} .
- **Goal:** Compute CP decomposition efficiently for a sparse **X** [.](#page-1-0)

 QQ

- Recommender systems
- **•** Analyzing web links
- Link prediction in temporal graphs
- **·** Data compression
- Signal processing, quantum chemistry, etc.

 \blacksquare

Þ

1 [Introduction](#page-1-0)

2 [CP Decomposition and MTTKRP](#page-4-0)

[Distributed CP](#page-11-0)

4 [Shared Memory CP](#page-34-0)

[Conclusion](#page-60-0)

メロト メタト メモト メモト 一番 QQ

- **A***,* **B***,* **C** are initialized (randomly or using HOSVD).
- Algorithm iteratively updates **A***,* **B***,* **C** until convergence.
- $\mathbf{A} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$ is called **matricized tensor-times Khatri-Rao product (MTTKR[P\)](#page-4-0)**.

- **A***,* **B***,* **C** are initialized (randomly or using HOSVD).
- Algorithm iteratively updates **A***,* **B***,* **C** until convergence.
- $\mathbf{A} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$ is called

matricized tensor-times Khatri-Rao product (MTTKR[P\)](#page-5-0). QQQ ∢母 $\leftarrow \equiv$ 医间面的 G.

4/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

- **A***,* **B***,* **C** are initialized (randomly or using HOSVD).
- Algorithm iteratively updates **A***,* **B***,* **C** until convergence.
- \bullet $\mathbf{A} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$ is called **matricized tensor-times Khatri-Rao product (MTTKR[P\)](#page-6-0)**. 2990 4/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

until no improvement or max iterations achieved

- **A***,* **B***,* **C** are initialized (randomly or using HOSVD).
- Algorithm iteratively updates **A***,* **B***,* **C** until convergence.
- \bullet $\mathbf{A} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$ is called **matricized tensor-times Khatri-Rao product (MTTKR[P\)](#page-7-0)**.

- **A***,* **B***,* **C** are initialized (randomly or using HOSVD).
- Algorithm iteratively updates **A***,* **B***,* **C** until convergence.
- $\mathbf{A} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$ is called

matricized tensor-times Khatri-Rao product (MTTKR[P\)](#page-8-0). QQQ ∢母 $\leftarrow \equiv$ 医间面的 G.

4/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

[Introduction](#page-1-0) [CP Decomposition and MTTKRP](#page-4-0) [Distributed CP](#page-11-0) [Shared Memory CP](#page-34-0) [Conclusion](#page-60-0) M TTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Matricized Tensor-Times Khatri-Rao Product (MTTKRP)

- $\mathbf{\hat{A}} = \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B}), \ \mathbf{\hat{A}} \in \mathbb{R}^{I \times F}$
- Each xi*,*j*,*^k ∈ **X** multiplies vectors $\mathbf{B}(j,:)$ and $\mathbf{C}(k,:)$, then updates $\mathbf{A}(i, :)$.
- How to parallelize?

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

÷,

1 [Introduction](#page-1-0)

2 [CP Decomposition and MTTKRP](#page-4-0)

3 [Distributed CP](#page-11-0)

4 [Shared Memory CP](#page-34-0)

[Conclusion](#page-60-0)

メロト メタト メモト メモト 一番 QQ

Parallel MTTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Consider a process p (blue).

- \bullet $\mathcal X$ is partitioned; process has the subtensor \mathcal{X}_p .
- **A**, **B**, and **C** are partitioned; process p has I_p , J_p , and K_p rows of **A**, **B**, and **C**.

イロト イ母ト イヨト イヨト

Þ

Parallel MTTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Consider a process p (blue).

- \bullet $x_{i_1,i_1,k_1} \in \mathcal{X}_p$ generates a local result; no communication.
- \bullet $x_{i_2,i_2,k_2} \in \mathcal{X}_p$ generates a non-local result; communication needed (**fold**).
- \bullet 2R ops per nonzero. (for N-dims, $(N-1)R$).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Þ

Parallel MTTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Consider a process p (blue).

- \bullet $x_{i_1,i_1,k_1} \in \mathcal{X}_p$ generates a local result; no communication.
- \bullet $x_{i_2,i_2,k_2} \in \mathcal{X}_p$ generates a non-local result; communication needed (**fold**).
- \bullet 2R ops per nonzero. (for N-dims, $(N-1)R$).

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

÷,

Parallel GEMM ($A \leftarrow \hat{A}H_A$ **)**

Consider a process p (blue).

- $A^T A$, $B^T B$, $C^T C \in \mathbb{R}^{R \times R}$ available at each process.
- $\mathsf{H}_A \leftarrow (\mathsf{B}^\mathcal{T} \mathsf{B} \ast \mathsf{C}^\mathcal{T} \mathsf{C})^\dagger$ computed locally.
- Row-parallel $A \leftarrow \hat{A}H_A$ with I_p rows, $O(I_p R^2)$ ops.

イロト イ母ト イヨト イヨト

Þ

Post-communication (expand)

- Consider a process p (blue).
	- \bullet **A**(i_2 , :) needs to be received (to later compute **Bˆ** and **Cˆ**).

メロメ メタメ メミメ メミメ

÷,

Post-communication (expand)

- Consider a process p (blue).
	- \bullet **A**(i_2 , :) needs to be received (to later compute **Bˆ** and **Cˆ**).

メロトメ 御 トメ ミトメ ミト

÷,

Post-communication (expand)

- Consider a process p (blue).
	- \bullet **A**(i_2 , :) needs to be received (to later compute **Bˆ** and **Cˆ**).

メロメ メタメ メミメ メミメ

÷,

Post-communication (expand)

- Consider a process p (blue).
	- \bullet **A**(i_2 , :) needs to be received (to later compute **Bˆ** and **Cˆ**).

メロメ メタメ メミメ メミメ

÷,

Post-communication (expand)

Consider a process p (blue).

 \bullet **A**(i_2 , :) needs to be received (to later compute **Bˆ** and **Cˆ**).

メロメ メタメ メミメ メミメ

Þ

Partitioning - Computation

Consider a process p (blue).

- \bullet Each nonzero incurs $(N-1)R$ ops in MTTKRP.
- Each matrix row incurs R^2 ops in GEMM and SYRK.
- **Goal:** Balance $|\mathcal{X}_p|$, I_p , J_p , K_p among all processes.

Þ

Partitioning - Communication

Consider a process p (blue).

- Each non-owned row "touched" by an owned nonzero incurs a communication.
- Multiple "touches" do not increase the communication volume.

メロメ メタメ メミメ メミメ

Þ

Consider a process p (blue).

- Stores $|\mathcal{X}_p|$ nonzeros.
- Stores I_p rows of **A**.
- **Communicated rows are also** stored!
- **Goal:** Balance $|\mathcal{X}_p|$, I_p , J_p , K_p , and **communication volume**!

イロト イ母ト イヨト イヨト

Þ

 QQ

Hypergraph Partitioning - Fine-Grain Model

Fine-grain hypergraph involves:

- Unit vertex per nonzero
- Unit vertex per matrix row
- Hyperedge per matrix row, connected to matrix row's vertex and all nonzeros' that "touch" that row.
- **Goal:** Balance **each** vertex type, **minimize** the **cutsize**.

$$
\mathcal{X} = \{(1,2,3), (2,3,1), (3,1,2)\} \in \mathbb{R}^{3 \times 3 \times 3}.
$$

COLLE

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

 $\begin{array}{ccc}\nCP & Decomposition and MITKRP & \text{Distributed CP} & \text{Shard Memory CP} & \text{Conclusion} \\
000 & 000000000000000000 & 0000000000 & \text{OOSO00000} & \text{OOSO000000} \\
000 & 000 & 0000000000 & 000000000 & \text{OOSO0000000} & \text{OOSO0000000} & \text{OOSO00000000} & \text{OOSO000000000} & \text{OOSO0000000000} & \$ $\begin{array}{ccc}\nCP & Decomposition and MITKRP & \text{Distributed CP} & \text{Shard Memory CP} & \text{Conclusion} \\
000 & 000000000000000000 & 0000000000 & \text{OOSO00000} & \text{OOSO000000} \\
000 & 000 & 0000000000 & 000000000 & \text{OOSO0000000} & \text{OOSO0000000} & \text{OOSO00000000} & \text{OOSO000000000} & \text{OOSO0000000000} & \$ $\begin{array}{ccc}\nCP & Decomposition and MITKRP & \text{Distributed CP} & \text{Shard Memory CP} & \text{Conclusion} \\
000 & 000000000000000000 & 0000000000 & \text{OOSO00000} & \text{OOSO000000} \\
000 & 000 & 0000000000 & 000000000 & \text{OOSO0000000} & \text{OOSO0000000} & \text{OOSO00000000} & \text{OOSO000000000} & \text{OOSO0000000000} & \$ $\begin{array}{ccc}\nCP & Decomposition and MITKRP & \text{Distributed CP} & \text{Shard Memory CP} & \text{Conclusion} \\
000 & 000000000000000000 & 0000000000 & \text{OOSO00000} & \text{OOSO000000} \\
000 & 000 & 0000000000 & 000000000 & \text{OOSO0000000} & \text{OOSO0000000} & \text{OOSO00000000} & \text{OOSO000000000} & \text{OOSO0000000000} & \$ $\begin{array}{ccc}\nCP & Decomposition and MITKRP & \text{Distributed CP} & \text{Shard Memory CP} & \text{Conclusion} \\
000 & 000000000000000000 & 0000000000 & \text{OOSO00000} & \text{OOSO000000} \\
000 & 000 & 0000000000 & 000000000 & \text{OOSO0000000} & \text{OOSO0000000} & \text{OOSO00000000} & \text{OOSO000000000} & \text{OOSO0000000000} & \$

Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the "holy grail" of performance. Balancing each vertex type balances

- **MTTKRP** load.
- **o** sparse tensor storage.
- **•** matrix storage.
- **o** dense matrix operations.

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

Þ

Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the "holy grail" of performance. Minimizing cutsize minimizes

- total fold and expand communication volume
- total non-local matrix row storage.

Balancing cutsize balances all these instead.

$$
\mathcal{X} = \{(1,2,3), (2,3,1), (3,1,2)\} \in \mathbb{R}^{3 \times 3 \times 3}.
$$

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

Þ

 QQ

Real-world tensors used in the experiments.

メロメ メタメ メミメ メミメー

 \equiv 990

メロトメ 御 トメ 君 トメ 君 トッ 君

18/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

メロトメ 御 トメ 君 トメ 君 トッ 君

19/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

メロメメ 倒す メ きょく きょうき

20/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

メロトメ 御 トメ き トメ き トー き

1 [Introduction](#page-1-0)

2 [CP Decomposition and MTTKRP](#page-4-0)

[Distributed CP](#page-11-0)

4 [Shared Memory CP](#page-34-0)

[Conclusion](#page-60-0)

★ ロン → 御 ン → 장 → → 대평 > → (평) > 2990

0000000000000000

 QQ

Tensor-Times-Vector Multiplication (TTV)

- Reduces dimensionality by one
- Performed in a particular dimension.

$$
\bullet\ \mathcal{Y}=\mathcal{X}\times_3\mathbf{c}
$$

•
$$
\mathcal{Y}(i,j) = \mathbf{c}^T \mathcal{X}(i,j,:)
$$

= $\sum_{k=1}^K \mathcal{X}(i,j,k) \mathbf{c}(k)$

- Sparsity of $\mathcal Y$ determined by sparsity of $\mathcal X$, i.e., $nnz(\mathcal{Y}) \leq nnz(\mathcal{X})$
- **Cost:** Θ(nnz(**X**))

4 000 16

Alberta B

Tensor-Times-Vector Multiplication (TTV)

- **a** = $\mathcal{V} \times_{2} \mathbf{b}$
- $\mathbf{a}(i) = \mathbf{b}^\mathsf{T} \mathcal{Y}(i,:)$ $=\sum_{j=1}^J {\cal Y}(i,j) \mathbf{b}(j)$
- TTV equivalent to matrix-vector multiplication
- **c** Cost: $\Theta(\text{nnz}(\mathcal{Y})) = O(\text{nnz}(\mathcal{X}))$

23/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

4 000 16

 \sqrt{m}) \sqrt{m}) \sqrt{m}

Þ

TTV in All-But-One Dimensions

- **a** $\mathcal{X} \times_{2} \mathbf{b} \times_{3} \mathbf{c}$
- $\mathbf{a}(i) = \sum_{j=1}^J\sum_{k=1}^K \mathcal{X}(i,j,k)\mathbf{b}(j)\mathbf{c}(k)$
- $N 1$ TTVs performed together.
- **Cost:** Θ(Nnnz(**^X**)) *^I*

4 000 16

 \sqrt{m}) \sqrt{m}) \sqrt{m}

Þ

Intervals of the Distributed CP and Conclusion [CP Decomposition and MTTKRP](#page-4-0) [Distributed CP](#page-11-0) [Shared Memory CP](#page-34-0) [Conclusion](#page-60-0)
 $\frac{1}{2}$

MTTKRP

- \bullet Column-wise TTV of $\mathcal X$ in all-but-one dimensions
- **a**_r \leftarrow *X* \times ₂ **b**_r \times ₃ **c**_r for $r = 1, ..., R$.
- \bullet Updating a_r takes $N 1$ TTVs.
- $RN(N-1)$ TTVs per iteration in total
- For simplicity, considering $R = 1$ henceforth (MTTKRP with vectors **a***,* **b***,* **c**, etc.)

イロト イ母ト イヨト イヨト

÷,

MTTKRP

- \bullet Column-wise TTV of $\mathcal X$ in all-but-one dimensions
- **a**_r \leftarrow *X* \times ₂ **b**_r \times ₃ **c**_r for $r = 1, ..., R$.
- \bullet Updating a_r takes $N 1$ TTVs.
- $RN(N-1)$ TTVs per iteration in total
- For simplicity, considering $R = 1$ henceforth (MTTKRP with vectors **a***,* **b***,* **c**, etc.)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

÷,

MTTKRP

- **O** Column-wise TTV of X in all-but-one dimensions
- **a**_r \leftarrow *X* \times ₂ **b**_r \times ₃ **c**_r for $r = 1, ..., R$.
- \bullet Updating a_r takes $N 1$ TTVs.
- $RN(N-1)$ TTVs per iteration in total
- For simplicity, considering $R = 1$ henceforth (MTTKRP with vectors **a***,* **b***,* **c**, etc.)

イロト イ母ト イヨト イヨト

÷,

Coordinate Storage (COOR)

$$
\mathbf{a} \leftarrow 0
$$
\n
$$
\mathbf{for} \ x_{i,j,k,l} \in \mathcal{X} \ \mathbf{do}
$$
\n
$$
\mathbf{a}(i) \ +\ = x_{i,j,k,l} \mathbf{b}(j) \mathbf{c}(k) \mathbf{d}(l)
$$

Storage cost: Θ(Nnnz(**X**)) **MTTKRP** cost: $\Theta(N^2nnz(\mathcal{X}))$

イロト イ母ト イヨト イヨト

Þ

 QQ

Compressed Sparse Fiber (CSF, Smith and Karypis, '15)

- Generalization of CSR/CSC
- Exploits index overlaps after TTVs
- Possible to use one representation across all dimensions
- Employed in SPLATT library
- \circ **Storage cost:** $O(Nnnz(\mathcal{X}))$
- **MTTKRP** cost: $O(N^2nnz(\mathcal{X}))$

 $-10⁻¹$

化硼酸 化重氮化重

Dimension Tree (DT)

- **•** Hierarchical storage, partitions dimensions at each level
- **•** Single representation for all dimensions
- Each node corresponds to a set of TTVs
- Leaves correspond to factor matrices \bullet
- **Index compression through leaves**

Þ

Dimension Tree (DT)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

 \equiv

Dimension Tree (DT)

÷.

メロメメ 御 メメ きょく きょう

 $\mathbb{B}^{\mathbb{C}}$. 299

Dimension Tree (DT)

- **•** Each node is computed using its parent.
- \bullet *N* index arrays per level
- \bullet **Storage cost (index):** $O(N \log N \text{nnz}(\mathcal{X}))$ (vs. $O(Nnnz(\mathcal{X}))$ in CSF)
- **O** With post-order traversal of leaves
	- \bullet N TTVs per level
	- \bullet log N value arrays allocated
- **O** Storage cost (value): $O(\log Nnnz(\mathcal{X}))$
- **O** MTTKRP cost: $O(N \log N_{nnz}(\mathcal{X}))$ (vs. $O(N^2nnz(\mathcal{X}))$ in CSF)
- O(N*/* log N) **faster** than CSF.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Þ

 299

Þ

Experiments - Runtime (R = 20**)**

30/ 32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

Þ

 299

Experiments - Memory Usage (R = 20**)**

31/32 [Algorithmic and HPC Challenges in Parallel Tensor Computations](#page-0-0)

1 [Introduction](#page-1-0)

2 [CP Decomposition and MTTKRP](#page-4-0)

[Distributed CP](#page-11-0)

4 [Shared Memory CP](#page-34-0)

メロト メタト メモト メモト 一番 QQ

- Flexible fine-grained parallel algorithm to compute sparse tensor decompositions
- Hypergraph models of computation and communication
- A new tree data structure and computational scheme for sparse tensors
- O(N*/* log N) faster MTTKRP using O(log N)-times more storage
- **5.65x speedup** on 32-D tensors using up to **2.5x more memory**
- Applicable to dense tensors, optimal algorithms in $O(3^D)$ time using $O(2^D)$ space
- All implemented in PACOS and HYPERTENSOR.

 QQ

Contact

Oguz Kaya Post-doctoral Researcher HiePACS Team, INRIA Bordeaux, France oguz.kaya@inria.fr www.oguzkaya.com