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Tensor

What is a tensor?
A vector is a 1-dimensional tensor.
A matrix is a 2-dimensional tensor.
A tensor X ∈ RI1×I2×...×IN has N dimensions.

j = 1, ..., J

i =
 1, ..., I

k = 1, ..
., K

X ∈ RI×J×K

We are mostly interested in the case when X is sparse and of low rank.
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Tensor Decompositions
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Generalization of matrix decompositions to higher dimensions
Provide low-rank representation of high dimensional data
CP Decomposition

Provides a rank-R representation of a tensor with R rank-1 terms summed.
Minimum R yielding an equality is called the rank of X .

Goal: Compute CP decomposition efficiently for a sparse X .
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Applications
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Recommender systems
Analyzing web links
Link prediction in temporal graphs
Data compression
Signal processing, quantum chemistry, etc.
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CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X : A sparse tensor

R: The rank of approximation
Output: CP decomposition [[A, B, C]]

repeat
Â← X(1)(C� B) I Â ∈ RI×R

A← Â MA I MA ∈ RR×R

B̂← X(2)(C� A) I B̂ ∈ RJ×R

B← B̂ MB I MB ∈ RR×R

Ĉ← X(3)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

⊗ B≈

I

J
K I

K
R

R

R

J

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
Â← X(1)(C� B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).
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Ĉ← X(3)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

≈

I

J
K

X
I

K
R

R

R

J

B⊗

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
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Â← X(1)(C� B) I Â ∈ RI×R
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MTTKRP (Â← X(1)(C� B))

Matricized Tensor-Times Khatri-
Rao Product (MTTKRP)

Â = X(1)(C� B), Â ∈ RI×R

Each xi ,j,k ∈ X multiplies
vectors B(j , :) and C(k, :),
then updates Â(i , :).
How to parallelize?

A

X

B

C
i xi,j,k

^

R cols

R cols

k

j

⊗
*

: read/receive

: write/send
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Parallel MTTKRP (Â← X(1)(C� B))

Consider a process p (blue).

X is partitioned; process has the
subtensor X p.

A, B, and C are partitioned;
process p has Ip, Jp, and Kp
rows of A, B, and C.

A

X

B

C
i xi ,j ,k

^

R cols

R cols

⊗

*

1

i2

1
x

1

xxi  ,j  ,k2

*

send comm

⊗

1k
2k

2j 1j
no comm

2 2

1 1

receive comm
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Parallel MTTKRP (Â← X(1)(C� B))

Consider a process p (blue).

xi1,j1,k1 ∈ X p generates a local
result; no communication.

xi2,j2,k2 ∈ X p generates a
non-local result; communication
needed (fold).

2R ops per nonzero.
(for N-dims, (N − 1)R).

A

X

B

C
i xi ,j ,k

^

R cols

R cols
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*

1
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1
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xxi  ,j  ,k2
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send comm
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no comm

2 2

1 1

receive comm
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Parallel GEMM (A← ÂHA)

Consider a process p (blue).

AT A, BT B, CT C ∈ RR×R

available at each process.

HA ← (BT B ∗ CT C)† computed
locally.

Row-parallel A← ÂHA with Ip
rows, O(IpR2) ops.

A^

R

A

R

R

R

HA

IpIp

=
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Post-communication (expand)

Consider a process p (blue).

A(i2, :) needs to be received
(to later compute B̂ and Ĉ).

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi  ,j  ,k2

obsolete row

1k
2k

2j 1j

2 2

1 1

non-owned row
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Partitioning - Computation

Consider a process p (blue).

Each nonzero incurs (N − 1)R
ops in MTTKRP.

Each matrix row incurs R2 ops
in GEMM and SYRK.

Goal: Balance |X p|, Ip, Jp, Kp
among all processes.
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R cols
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Partitioning - Communication

Consider a process p (blue).

Each non-owned row “touched”
by an owned nonzero incurs a
communication.

Multiple “touches” do not
increase the communication
volume.

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x
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xxi  ,j  ,k2

receive comm

1k
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2j 1j
send comm

2 2

1 1

non-owned row
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Partitioning - Memory

Consider a process p (blue).

Stores |X p| nonzeros.

Stores Ip rows of A.

Communicated rows are also
stored!

Goal: Balance |X p|, Ip, Jp, Kp,
and communication volume!
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Hypergraph Partitioning - Fine-Grain Model

Fine-grain hypergraph involves:

Unit vertex per nonzero

Unit vertex per matrix row

Hyperedge per matrix row,
connected to matrix row’s vertex
and all nonzeros’ that “touch”
that row.

Goal: Balance each vertex type,
minimize the cutsize.

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ∈ R3×3×3.
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Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the “holy
grail” of performance.
Balancing each vertex type balances

MTTKRP load.

sparse tensor storage.

matrix storage.

dense matrix operations.

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ∈ R3×3×3.
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Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the “holy
grail” of performance.
Minimizing cutsize minimizes

total fold and expand
communication volume

total non-local matrix row
storage.

Balancing cutsize balances all these in-
stead.

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ∈ R3×3×3.

v1

(1)

v1

(2)

v1

(3)

v1,2,3

(Χ)

v2

(1) v2

(2) v2

(3)

v2,3,1

(Χ)

v

v3

(2)

v3

  (1)

v(Χ)

n2

(1) n2

(2) n2

(3)

n1

(1)

n1

(2)

n1

(3)

n3

(3)

n3

(2)

n3

(1)

3,1,2

3

(3)

15/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations



Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Tensors

Real-world tensors used in the experiments.

Tensor I1 I2 I3 I4 #nonzeros
Delicious 1.4K 532K 17M 2.4M 140M
Flickr 731 319K 28M 1.6M 112M
Netflix 480K 17K 2K - 100M
NELL 3.2M 301 638K - 78M
Amazon 6.6M 2.4M 23K - 1.3B
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Results

8 x 1 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16 256 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Delicious

medium
fine-rd
fine-lb
fine-hp

17/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations



Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

8 x 1 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16 256 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Flickr

medium
fine-rd
fine-lb
fine-hp

18/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations



Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

4 x 1 4 x 16 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Netflix

medium
fine-rd
fine-lb
fine-hp

19/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations



Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results
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Results
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Tensor-Times-Vector Multiplication (TTV)

Reduces dimensionality by one
Performed in a particular dimension.
Y = X ×3 c
Y(i , j) = cT X (i , j , :)

=
∑K

k=1 X (i , j , k)c(k)
Sparsity of Y determined by sparsity of X ,
i.e., nnz(Y) ≤ nnz(X )
Cost: Θ(nnz(X ))

I

J
K

j

j

=I

J

c
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Tensor-Times-Vector Multiplication (TTV)

a = Y ×2 b
a(i) = bT Y(i , :)

=
∑J

j=1 Y(i , j)b(j)
TTV equivalent to matrix-vector
multiplication
Cost: Θ(nnz(Y)) = O(nnz(X ))

=
I

J

i

b

a

i
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TTV in All-But-One Dimensions

a = X ×2 b×3 c
a(i) =

∑J
j=1

∑K
k=1 X (i , j , k)b(j)c(k)

N − 1 TTVs performed together.
Cost: Θ(Nnnz(X ))

I

J
K

=

c b

ii

a
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MTTKRP

Column-wise TTV of X in all-but-one dimensions
ar ← X ×2 br ×3 cr for r = 1, . . . , R.
Updating ar takes N − 1 TTVs.
RN(N − 1) TTVs per iteration in total
For simplicity, considering R = 1
henceforth (MTTKRP with vectors a, b, c, etc.)

A

X

B

C

a1

b1

c1

R

R
R

I I

J
K

J

K
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MTTKRP
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Coordinate Storage (COOR)

a← 0
for xi ,j,k,l ∈ X do

a(i) += xi ,j,k,lb(j)c(k)d(l)

Storage cost: Θ(Nnnz(X ))
MTTKRP cost: Θ(N2nnz(X ))

1

1

2
2
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4

2

3

4
4

4
2

1
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4

3
4

1
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2
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2

1
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3
4

1
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Compressed Sparse Fiber (CSF, Smith and Karypis, ’15)

Generalization of CSR/CSC
Exploits index overlaps after TTVs
Possible to use one representation across
all dimensions
Employed in Splatt library
Storage cost: O(Nnnz(X ))
MTTKRP cost: O(N2nnz(X ))
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Dimension Tree (DT)

Hierarchical storage, partitions dimensions
at each level
Single representation for all dimensions
Each node corresponds to a set of TTVs
Leaves correspond to factor matrices
Index compression through leaves
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Dimension Tree (DT)

Each node is computed using its parent.
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Dimension Tree (DT)

Each node is computed using its parent.
N index arrays per level
Storage cost (index): O(N log Nnnz(X ))
(vs. O(Nnnz(X )) in CSF)

With post-order traversal of leaves

N TTVs per level
log N value arrays allocated

Storage cost (value): O(log Nnnz(X ))
MTTKRP cost: O(N log Nnnz(X ))
(vs. O(N2nnz(X )) in CSF)
O(N/ log N) faster than CSF.
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Experiments - Runtime (R = 20)
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Experiments - Memory Usage (R = 20)
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Conclusion

Flexible fine-grained parallel algorithm to compute sparse tensor decompositions
Hypergraph models of computation and communication
A new tree data structure and computational scheme for sparse tensors
O(N/ log N) faster MTTKRP using O(log N)-times more storage
5.65x speedup on 32-D tensors using up to 2.5x more memory
Applicable to dense tensors, optimal algorithms in O(3D) time using O(2D) space
All implemented in Pacos and HyperTensor.
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