
Algorithmic and HPC Challenges in
Parallel Tensor Computations

Oguz Kaya

INRIA Bordeaux, France

May 3, 2017

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Tensor

What is a tensor?
A vector is a 1-dimensional tensor.
A matrix is a 2-dimensional tensor.
A tensor X ∈ RI1×I2×...×IN has N dimensions.

j = 1, ..., J

i =
 1, ..., I

k = 1, ..
., K

X ∈ RI×J×K

We are mostly interested in the case when X is sparse and of low rank.

1/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Tensor Decompositions

≈
I

J
K A

C

⊗ B≈

I

K
R

R

R

J

a1

⊗

I

K

J
b1

c 1

aR

⊗

I

K

J
bR

c R

+ +. . .

Generalization of matrix decompositions to higher dimensions
Provide low-rank representation of high dimensional data
CP Decomposition

Provides a rank-R representation of a tensor with R rank-1 terms summed.
Minimum R yielding an equality is called the rank of X .

Goal: Compute CP decomposition efficiently for a sparse X .
2/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Applications

≈
I

J
K

⊗≈

I

K
R

R

R

J
⊗

I

K

J
⊗

I

K

+ +. . .

user

product

tim
e

product
 rating

Recommender systems
Analyzing web links
Link prediction in temporal graphs
Data compression
Signal processing, quantum chemistry, etc.

3/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Outline

1 Introduction

2 CP Decomposition and MTTKRP

3 Distributed CP

4 Shared Memory CP

5 Conclusion

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X : A sparse tensor

R: The rank of approximation
Output: CP decomposition [[A, B, C]]

repeat
Â← X(1)(C� B) I Â ∈ RI×R

A← Â MA I MA ∈ RR×R

B̂← X(2)(C� A) I B̂ ∈ RJ×R

B← B̂ MB I MB ∈ RR×R

Ĉ← X(3)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

⊗ B≈

I

J
K I

K
R

R

R

J

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
Â← X(1)(C� B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).

4/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X : A sparse tensor

R: The rank of approximation
Output: CP decomposition [[A, B, C]]

repeat
Â← X(1)(C� B) I Â ∈ RI×R

A← Â MA I MA ∈ RR×R

B̂← X(2)(C� A) I B̂ ∈ RJ×R

B← B̂ MB I MB ∈ RR×R

Ĉ← X(3)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

≈

I

J
K

X
I

K
R

R

R

J

B⊗

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
Â← X(1)(C� B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).

4/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X : A sparse tensor

R: The rank of approximation
Output: CP decomposition [[A, B, C]]

repeat
Â← X(1)(C� B) I Â ∈ RI×R

A← Â MA I MA ∈ RR×R

B̂← X(2)(C� A) I B̂ ∈ RJ×R

B← B̂ MB I MB ∈ RR×R

Ĉ← X(3)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

≈

I

J
K

X
I

K
R

R

R

J

B⊗

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
Â← X(1)(C� B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).

4/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X : A sparse tensor

R: The rank of approximation
Output: CP decomposition [[A, B, C]]

repeat
Â← X(1)(C� B) I Â ∈ RI×R

A← Â MA I MA ∈ RR×R

B̂← X(2)(C� A) I B̂ ∈ RJ×R

B← B̂ MB I MB ∈ RR×R

Ĉ← X(1)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

≈

I

J
K

X
I

K
R

R

R

J

B⊗

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
Â← X(1)(C� B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).

4/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X : A sparse tensor

R: The rank of approximation
Output: CP decomposition [[A, B, C]]

repeat
Â← X(1)(C� B) I Â ∈ RI×R

A← Â MA I MA ∈ RR×R

B̂← X(2)(C� A) I B̂ ∈ RJ×R

B← B̂ MB I MB ∈ RR×R

Ĉ← X(3)(B� A) I Ĉ ∈ RK×R

C← Ĉ MC I MC ∈ RR×R

until no improvement or max iterations achieved

A

C

≈

I

J
K

X
I

K
R

R

R

J

B⊗

A, B, C are initialized (randomly or using HOSVD).
Algorithm iteratively updates A, B, C until convergence.
Â← X(1)(C� B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).

4/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

MTTKRP (Â← X(1)(C� B))

Matricized Tensor-Times Khatri-
Rao Product (MTTKRP)

Â = X(1)(C� B), Â ∈ RI×R

Each xi ,j,k ∈ X multiplies
vectors B(j , :) and C(k, :),
then updates Â(i , :).
How to parallelize?

A

X

B

C
i xi,j,k

^

R cols

R cols

k

j

⊗
*

: read/receive

: write/send

5/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Outline

1 Introduction

2 CP Decomposition and MTTKRP

3 Distributed CP

4 Shared Memory CP

5 Conclusion

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Parallel MTTKRP (Â← X(1)(C� B))

Consider a process p (blue).

X is partitioned; process has the
subtensor X p.

A, B, and C are partitioned;
process p has Ip, Jp, and Kp
rows of A, B, and C.

A

X

B

C
i xi ,j ,k

^

R cols

R cols

⊗

*

1

i2

1
x

1

xxi ,j ,k2

*

send comm

⊗

1k
2k

2j 1j
no comm

2 2

1 1

receive comm

6/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Parallel MTTKRP (Â← X(1)(C� B))

Consider a process p (blue).

xi1,j1,k1 ∈ X p generates a local
result; no communication.

xi2,j2,k2 ∈ X p generates a
non-local result; communication
needed (fold).

2R ops per nonzero.
(for N-dims, (N − 1)R).

A

X

B

C
i xi ,j ,k

^

R cols

R cols

⊗

*

1

i2

1
x

1

xxi ,j ,k2

*

send comm

⊗

1k
2k

2j 1j
no comm

2 2

1 1

receive comm

7/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Parallel MTTKRP (Â← X(1)(C� B))

Consider a process p (blue).

xi1,j1,k1 ∈ X p generates a local
result; no communication.

xi2,j2,k2 ∈ X p generates a
non-local result; communication
needed (fold).

2R ops per nonzero.
(for N-dims, (N − 1)R).

A

X

B

C
i xi ,j ,k

^

R cols

R cols

⊗

*

1

i2

1
x

1

xxi ,j ,k2

*

⊗

1k
2k

2j 1j
no comm

2 2

1 1

receive comm

7/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Parallel GEMM (A← ÂHA)

Consider a process p (blue).

AT A, BT B, CT C ∈ RR×R

available at each process.

HA ← (BT B ∗ CT C)† computed
locally.

Row-parallel A← ÂHA with Ip
rows, O(IpR2) ops.

A^

R

A

R

R

R

HA

IpIp

=

8/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Post-communication (expand)

Consider a process p (blue).

A(i2, :) needs to be received
(to later compute B̂ and Ĉ).

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

obsolete row

1k
2k

2j 1j

2 2

1 1

non-owned row

9/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Post-communication (expand)

Consider a process p (blue).

A(i2, :) needs to be received
(to later compute B̂ and Ĉ).

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

receive comm

1k
2k

2j 1j
send comm

2 2

1 1

non-owned row

9/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Post-communication (expand)

Consider a process p (blue).

A(i2, :) needs to be received
(to later compute B̂ and Ĉ).

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

non-owned row

1k
2k

2j 1j

2 2

1 1

non-owned row

9/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Post-communication (expand)

Consider a process p (blue).

A(i2, :) needs to be received
(to later compute B̂ and Ĉ).

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

non-owned row

1k
2k

2j 1j

2 2

1 1

non-owned row

^

9/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Post-communication (expand)

Consider a process p (blue).

A(i2, :) needs to be received
(to later compute B̂ and Ĉ).

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

non-owned row

1k
2k

2j 1j

2 2

1 1

non-owned row

^

9/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Partitioning - Computation

Consider a process p (blue).

Each nonzero incurs (N − 1)R
ops in MTTKRP.

Each matrix row incurs R2 ops
in GEMM and SYRK.

Goal: Balance |X p|, Ip, Jp, Kp
among all processes.

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

non-owned row

1k
2k

2j 1j

2 2

1 1

non-owned row

10/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Partitioning - Communication

Consider a process p (blue).

Each non-owned row “touched”
by an owned nonzero incurs a
communication.

Multiple “touches” do not
increase the communication
volume.

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

receive comm

1k
2k

2j 1j
send comm

2 2

1 1

non-owned row

11/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Partitioning - Memory

Consider a process p (blue).

Stores |X p| nonzeros.

Stores Ip rows of A.

Communicated rows are also
stored!

Goal: Balance |X p|, Ip, Jp, Kp,
and communication volume!

A

X

B

C
i xi ,j ,k

R cols

R cols

1

i2

1
x

1

xxi ,j ,k2

non-owned row

1k
2k

2j 1j

2 2

1 1

non-owned row

12/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Hypergraph Partitioning - Fine-Grain Model

Fine-grain hypergraph involves:

Unit vertex per nonzero

Unit vertex per matrix row

Hyperedge per matrix row,
connected to matrix row’s vertex
and all nonzeros’ that “touch”
that row.

Goal: Balance each vertex type,
minimize the cutsize.

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ∈ R3×3×3.

v1

(1)

v1

(2)

v1

(3)

v1,2,3

(Χ)

v2

(1) v2

(2) v2

(3)

v2,3,1

(Χ)

v

v3

(2)

v3

 (1)

v(Χ)

n2

(1) n2

(2) n2

(3)

n1

(1)

n1

(2)

n1

(3)

n3

(3)

n3

(2)

n3

(1)

3,1,2

3

(3)

13/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the “holy
grail” of performance.
Balancing each vertex type balances

MTTKRP load.

sparse tensor storage.

matrix storage.

dense matrix operations.

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ∈ R3×3×3.

v1

(1)

v1

(2)

v1

(3)

v1,2,3

(Χ)

v2

(1) v2

(2) v2

(3)

v2,3,1

(Χ)

v

v3

(2)

v3

 (1)

v(Χ)

n2

(1) n2

(2) n2

(3)

n1

(1)

n1

(2)

n1

(3)

n3

(3)

n3

(2)

n3

(1)

3,1,2

3

(3)

14/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the “holy
grail” of performance.
Minimizing cutsize minimizes

total fold and expand
communication volume

total non-local matrix row
storage.

Balancing cutsize balances all these in-
stead.

X = {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ∈ R3×3×3.

v1

(1)

v1

(2)

v1

(3)

v1,2,3

(Χ)

v2

(1) v2

(2) v2

(3)

v2,3,1

(Χ)

v

v3

(2)

v3

 (1)

v(Χ)

n2

(1) n2

(2) n2

(3)

n1

(1)

n1

(2)

n1

(3)

n3

(3)

n3

(2)

n3

(1)

3,1,2

3

(3)

15/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Tensors

Real-world tensors used in the experiments.

Tensor I1 I2 I3 I4 #nonzeros
Delicious 1.4K 532K 17M 2.4M 140M
Flickr 731 319K 28M 1.6M 112M
Netflix 480K 17K 2K - 100M
NELL 3.2M 301 638K - 78M
Amazon 6.6M 2.4M 23K - 1.3B

16/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

8 x 1 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16 256 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Delicious

medium
fine-rd
fine-lb
fine-hp

17/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

8 x 1 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16 256 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Flickr

medium
fine-rd
fine-lb
fine-hp

18/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

4 x 1 4 x 16 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Netflix

medium
fine-rd
fine-lb
fine-hp

19/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

4 x 1 4 x 16 8 x 16 16 x 16 32 x 16 64 x 16 128 x 16
#nodes x #cores

10-1

100

101

102

103

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on NELL

medium
fine-rd
fine-lb
fine-hp

20/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Results

64 x 1 64 x 16 128 x 16 256 x 16
#nodes x #cores

10-1

100

101

102

S
p
e
e
d
u
p

CP-ALS per-iteration speedup on Amazon

medium
fine-rd
fine-lb

21/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Outline

1 Introduction

2 CP Decomposition and MTTKRP

3 Distributed CP

4 Shared Memory CP

5 Conclusion

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Tensor-Times-Vector Multiplication (TTV)

Reduces dimensionality by one
Performed in a particular dimension.
Y = X ×3 c
Y(i , j) = cT X (i , j , :)

=
∑K

k=1 X (i , j , k)c(k)
Sparsity of Y determined by sparsity of X ,
i.e., nnz(Y) ≤ nnz(X)
Cost: Θ(nnz(X))

I

J
K

j

j

=I

J

c

22/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Tensor-Times-Vector Multiplication (TTV)

a = Y ×2 b
a(i) = bT Y(i , :)

=
∑J

j=1 Y(i , j)b(j)
TTV equivalent to matrix-vector
multiplication
Cost: Θ(nnz(Y)) = O(nnz(X))

=
I

J

i

b

a

i

23/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

TTV in All-But-One Dimensions

a = X ×2 b×3 c
a(i) =

∑J
j=1

∑K
k=1 X (i , j , k)b(j)c(k)

N − 1 TTVs performed together.
Cost: Θ(Nnnz(X))

I

J
K

=

c b

ii

a

24/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

MTTKRP

Column-wise TTV of X in all-but-one dimensions
ar ← X ×2 br ×3 cr for r = 1, . . . , R.
Updating ar takes N − 1 TTVs.
RN(N − 1) TTVs per iteration in total
For simplicity, considering R = 1
henceforth (MTTKRP with vectors a, b, c, etc.)

A

X

B

C

a1

b1

c1

R

R
R

I I

J
K

J

K

25/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

MTTKRP

Column-wise TTV of X in all-but-one dimensions
ar ← X ×2 br ×3 cr for r = 1, . . . , R.
Updating ar takes N − 1 TTVs.
RN(N − 1) TTVs per iteration in total
For simplicity, considering R = 1
henceforth (MTTKRP with vectors a, b, c, etc.)

A

X

B

C

R

R
R

I I

J
K

J

K

a2

b2

c2

25/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

MTTKRP

Column-wise TTV of X in all-but-one dimensions
ar ← X ×2 br ×3 cr for r = 1, . . . , R.
Updating ar takes N − 1 TTVs.
RN(N − 1) TTVs per iteration in total
For simplicity, considering R = 1
henceforth (MTTKRP with vectors a, b, c, etc.)

A

X

B

C

R

R
R

I I

J
K

J

K

aR

bR

cR

25/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Coordinate Storage (COOR)

a← 0
for xi ,j,k,l ∈ X do

a(i) += xi ,j,k,lb(j)c(k)d(l)

Storage cost: Θ(Nnnz(X))
MTTKRP cost: Θ(N2nnz(X))

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

26/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Compressed Sparse Fiber (CSF, Smith and Karypis, ’15)

Generalization of CSR/CSC
Exploits index overlaps after TTVs
Possible to use one representation across
all dimensions
Employed in Splatt library
Storage cost: O(Nnnz(X))
MTTKRP cost: O(N2nnz(X))

1

2

3
4

1

2

4

3

2

1

4

3

4

3

1
2

3

2

1

2

1

4
1

27/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Hierarchical storage, partitions dimensions
at each level
Single representation for all dimensions
Each node corresponds to a set of TTVs
Leaves correspond to factor matrices
Index compression through leaves

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

28/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Dimension Tree (DT)

Each node is computed using its parent.
N index arrays per level
Storage cost (index): O(N log Nnnz(X))
(vs. O(Nnnz(X)) in CSF)

With post-order traversal of leaves

N TTVs per level
log N value arrays allocated

Storage cost (value): O(log Nnnz(X))
MTTKRP cost: O(N log Nnnz(X))
(vs. O(N2nnz(X)) in CSF)
O(N/ log N) faster than CSF.

1

1

2
2

2
3

4

2

3

4
4

4
2

1

3

4

3
4

1
1

2

1

2

1
2

3
4

1

1

1

2
3

4

2

3

4
2

1

1

1

2
3

4

3

4

1
1

2

1

2

3
4

1

2

3
4

1

2

3
4

dims = {1,2,3,4}

dims = {1} dims = {2} dims = {3} dims = {4}

1

2

3
4

dims = {1,2} dims = {3,4}

index value

29/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Experiments - Runtime (R = 20)

Netflix NELL Flickr Delicious R4D R8D R16D R32D
tensor

0

1

2

3

4

5

6

D
T

sp
ee

du
p

w
.r.

t.
C

S
F

30/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Experiments - Memory Usage (R = 20)

Netflix NELL Flickr Delicious R4D R8D R16D R32D
tensor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
T

m
em

or
y

us
ag

e
w

.r.
t.

C
S

F

index
buffer

31/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Outline

1 Introduction

2 CP Decomposition and MTTKRP

3 Distributed CP

4 Shared Memory CP

5 Conclusion

Introduction CP Decomposition and MTTKRP Distributed CP Shared Memory CP Conclusion

Conclusion

Flexible fine-grained parallel algorithm to compute sparse tensor decompositions
Hypergraph models of computation and communication
A new tree data structure and computational scheme for sparse tensors
O(N/ log N) faster MTTKRP using O(log N)-times more storage
5.65x speedup on 32-D tensors using up to 2.5x more memory
Applicable to dense tensors, optimal algorithms in O(3D) time using O(2D) space
All implemented in Pacos and HyperTensor.

32/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Contact

Oguz Kaya
Post-doctoral Researcher

HiePACS Team, INRIA Bordeaux, France
oguz.kaya@inria.fr

www.oguzkaya.com

	Introduction
	CP Decomposition and MTTKRP
	Distributed CP
	Shared Memory CP
	Conclusion

