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Introduction
®00

Tensor

What is a tensor?

@ A vector is a 1-dimensional tensor.
@ A matrix is a 2-dimensional tensor. : X

o A tensor X € Rh*kxxIv has N dimensions. S o
j=1 ..,

X e RIXJXK
We are mostly interested in the case when X is sparse and of low rank.
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Tensor Decompositions
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Generalization of matrix decompositions to higher dimensions
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Provide low-rank representation of high dimensional data

CP Decomposition

o Provides a rank-R representation of a tensor with R rank-1 terms summed.
e Minimum R yielding an equality is called the rank of X.

@ Goal: Compute CP decomposition efficiently for a sparse X.
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Applications
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Recommender systems
Analyzing web links
Link prediction in temporal graphs

Data compression

Signal processing, quantum chemistry, etc.
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CP Decomposition and MTTKRP
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CP Decomposition

Algorithm CP-ALS for 3rd order tensors R
Input: X: A sparse tensor ‘@
R: The rank of approximation

Output: CP decomposition [A, B, C] ~ ® R
repeat X

A Xq)(CoB) > AcRIXR ! J
e(—AMA > MAAE RR*R \L I A
B<—X(2)(COA) » BGRJXR J

B« B Mg » Mg e RRxR

€+ X3(BoA) > C e RKXR R

C«+— € Mc » M € RR¥R

until no improvement or max iterations achieved

e A, B,C are initialized (randomly or using HOSVD).
@ Algorithm iteratively updates A, B, C until convergence.

o A« X(;)(C®B) is called
matricized tensor-times Khatri-Rao product (MTTKRP).
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CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X: A sparse tensor
R: The rank of approximation
Output: CP decomposition [A, B, C]
repeat

é(—X(z)(CQA) » EER‘/XR
B+« B Mg » Mg € RR¥R
€+ X3(BoA) > C e RKXR
C«+ € Mc » M € RR¥R

until no improvement or max iterations achieved

e A B, C are initialized (randomly or using HOSVD).
@ Algorithm iteratively updates A, B, C until convergence.
o A+ X(1)(C®B) is called
matricized tensor-times Khatri-Rao product (MTTKRP
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CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X: A sparse tensor

R: The rank of approximation
Output: CP decomposition [A, B, C]

repeat
A+ Xy)(CoB) » AcRI*R
A~ AM, > M, € RF*R
BeBMa e MgeR®R !
€+ X3(BoA) > C e RKXR
C+CMc > Mc e RFR*R

until no improvement or max iterations achieved

e A B, C are initialized (randomly or using HOSVD).
@ Algorithm iteratively updates A, B, C until convergence.
o A+ X(1)(C®B) is called
matricized tensor-times Khatri-Rao product (MTTKRP):
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CP Decomposition
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CP Decomposition

Algorithm CP-ALS for 3rd order tensors
Input: X: A sparse tensor
R: The rank of approximation
Output: CP decomposition [A, B, C]
repeat

é(—X(z)(CQA) » EER‘/XR
B+« B Mg » Mg € RR¥R
€+ X3(BoA) > C e RKXR
C«+ € Mc » M € RR¥R

until no improvement or max iterations achieved

e A B, C are initialized (randomly or using HOSVD).
@ Algorithm iteratively updates A, B, C until convergence.
o A+ X(1)(C®B) is called
matricized tensor-times Khatri-Rao product (MTTKRP
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CP Decomposition and MTTKRP
[l }

MTTKRP (A « X1)(C © B))

[ : read/receive j
Matricized Tensor-Times Khatri- _:wri:‘e//send B }R |
Rao Product (MTTKRP) o
~ I~ IXR 1 kﬂ.--.@’
o A=Xy(CoB), AecR A :
- C :
e Each x;j, € X multiplies i B W s
vectors B(j,:) and C(k, :), X
then updates A(J,:).
@ How to parallelize? NN X
R cols
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Parallel MTTKRP (A < X(;(C ® B))

receive comm

} R cols

Consider a process p (blue).

@ X is partitioned; process has the
subtensor Xp,.

@ A, B, and C are partitioned;
process p has /,, J,, and K,
rows of A, B, and C.

send comm

R cols
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Parallel MTTKRP (A < X(;(C ® B))

Consider a process p (blue).

@ Xj j .k € Xp generates a local
result; no communication.

@ Xj, j.k € Xp generates a

non-local result; communication
needed (fold).

@ 2R ops per nonzero.
(for N-dims, (N — 1)R).

receive comm

} R cols

no comm

rJpr
send comm X

R cols
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Parallel MTTKRP (A < X(;(C ® B))

receive comm

J2 J
Consider a process p (blue). NG
R cols
® Xj .k € Xp generates a local
result; no communication. A
@ X,k € Xp generates a E '
non-local result; communication i S SR S L §
needed (fold). ! o Rigyky
@ 2R ops per nonzero. i2 - P W ____.c:,
(for N-dims, (N —1)R). Xiyy ky
o/ X
R cols
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Distributed CP
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Parallel GEMM (A < AH,)

Consider a process p (blue). A A

e ATA, B'B, CTC e RR*R

available at each process. I Ip R
@ Hy+ (BB % CTC)f computed —

locally. R
@ Row-parallel A AHA with 1,

rows, O(/,R?) ops.

o
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Post-communication (expand)

non-owned row

B 1 } R cols

Consider a process p (blue). C : ;
@ A(iz,:) needs to be received i ---------1---- 'Y
(to later compute B and C). t v iy
i --------- s d
2 \ xiz'fz'kz
\/\/\/ obsolete row X
R cols
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Post-communication (expand)

non-owned row

send comm
B / } R cols

k. <
A k}i/4 -
Consider a process p (blue).

@ A(iz,:) needs to be received [ s [ E 'Y

(to later compute B and €). t ipivky
i, --------- ----9
2 xiz'jz'kz
\/\/\/ receive comm X

R cols
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Post-communication (expand)

non-owned row

B 1 } R cols

Consider a process p (blue). C : ;
@ A(i,:) needs to be received i ---------1---- T
(to later compute B and C). t v X
i — - ----9
§ \ xiz'fz'kz
\/\/\/ non-owned row X
R cols
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Post-communication (expand)

non-owned row

} R cols

Consider a process p (blue). C : ;
@ A(i,:) needs to be received j— T
(to later compute B and C). t v X
i, j— - - - - - - - - - - -0
§ \ xiz'fz'kz
\/\/\/ non-owned row X
R cols
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Post-communication (expand)

non-owned row

B 1 }R cols
k Lo
Consider a process p (blue). A k. SR

@ A(ip,:) needs to be received C D
(to later compute B and C). | | W i T .
' iyiyk,
iy S
? \ Xi iy k,
\/\/\/ non-owned row x
R cols
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Partitioning - Computation

non-owned row
J J
Consider a process p (blue). B 1 }R cols

@ Each nonzero incurs (N — 1)R k I
ops in MTTKRP. A ’gi/

@ Each matrix row incurs R? ops C | E
in GEMM and SYRK. LT TTXC
: iy ky
@ Goal: Balance | X, Ip, Jp, K, . !
i - - .
among all processes. 2 X
\ iy ks
\/\/\/ non-owned row x
R cols
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Distributed CP
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Partitioning - Communication

non-owned row

send comm

R cols

Consider a process p (blue).

@ Each non-owned row “touched”
by an owned nonzero incurs a
communication.

. “ " 1
@ Multiple “touches” do not 1
increase the communication
volume.

xiZ’iZ'kZ

receive comm x

R cols
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Partitioning - Memory

non-owned row

J> J
Consider a process p (blue). B 4 R cols
@ Stores |X,| nonzeros.
@ Stores [, rows of A. A C i T
! 1
! 1
@ Communicated rows are also i Lo
stored! 1 E ik,
e Goal: Balancg |.X:p|, o, Jp, Ko, P e S -t
and communication volume! \ Xi, iy k,
\/\/\/ non-owned row x
R cols
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Hypergraph Partitioning - Fine-Grain Model

Fine-grain hypergraph involves:
@ Unit vertex per nonzero
@ Unit vertex per matrix row

@ Hyperedge per matrix row,
connected to matrix row’s vertex
and all nonzeros’ that “touch”
that row.

@ Goal: Balance each vertex type,
minimize the cutsize.
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Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the “holy
grail” of performance.
Balancing each vertex type balances

@ MTTKRP load.
@ sparse tensor storage.
@ matrix storage.

@ dense matrix operations.
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Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the “holy
grail” of performance.
Minimizing cutsize minimizes

@ total fold and expand
communication volume

@ total non-local matrix row
storage.

Balancing cutsize balances all these in-
stead.
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Tensors

Real-world tensors used in the experiments.

Tensor I b I3 Iy | #nonzeros
Delicious | 1.4K | 532K | 17M | 2.4M 140M
Flickr 731 | 319K | 28M | 1.6M 112M
Netflix 480K 17K 2K - 100M
NELL 3.2M 301 | 638K - 78M
Amazon | 6.6M | 2.4M 23K - 1.3B
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Results

CP-ALS per-iteration speedup on Delicious

medium
fine-rd
fine-lb
fine-hp

-1 L L L L L
108x1 8x16 16 x 16 32x16 64x16 128x16 256x16
#nodes x #cores
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Results

CP-ALS per-iteration speedup on Flickr

medium
fine-rd

fine-lb
fine-hp

10°

-1 L L L L L
108x1 8x16 16 x 16 32x16 64x16 128x16 256x16
#nodes x #cores
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Results

CP-ALS per-iteration speedup on Netflix

10°
= medium
= fine-rd
=== fine-lb
102 || == fine-hp

10°

-1 1 1 1 1 1 1
104x1 4x16 8x16 16x16 32x16 64x16 128 x 16
#nodes x #cores
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Results

CP-ALS per-iteration speedup on NELL

medium
fine-rd

fine-lb
fine-hp

10°

-1 1 1 1 1 1 1
104x1 4x16 8x16 16x16 32x16 64x16 128 x 16
#nodes x #cores
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Results

10 CP-ALS per-iteration speedup on Amazon
T T
= medium
= fine-rd
=== fine-lb
10*
Q
=1
o
[
[
Q
]
10°
1 -1 1 1
64 x1 64 x 16 128 x 16 256 x 16
#nodes x #cores

es in Parallel Tensor Computations
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Tensor-Times-Vector Multiplication (TTV)

@ Reduces dimensionality by one

@ Performed in a particular dimension.

oY =X x3cC ; 7—%

o V(i,j)=cTX(i,j,?) &
= Zl}le X(i7.j7 k)C(k) y = I X
+

@ Sparsity of Y determined by sparsity of X, 7 5
i.e., nnz(Y) < nnz(X)

e Cost: ©(nnz(X))

~
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Tensor-Times-Vector Multiplication (TTV)

a=Yx2b ——|
a(i)=b7Y(i,:)

= Y11 Y(i.)b() i i
TTV equivalent to matrix-vector
multiplication

Cost: ©(nnz(Y)) = O(nnz(X)) J

Il
<
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TTV in All-But-One Dimensions

ea=X X9 b X3 C %
ot a(i) - Z}'jzl Z;f:l X(i,j, k)b(f)c(k) i i

@ N —1 TTVs performed together. Y ¢

o Cost: ©(Nnnz(X)) —%
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MTTKRP

J
@ Column-wise TTV of X in all-but-one dimensions R BE:R
@ a, + X Xab, x3¢, forr=1,...,R. A W
@ Updating a, takes N — 1 TTVs. ¢
@ RN(N — 1) TTVs per iteration in total ! : x
@ For simplicity, considering R =1 = ] K

henceforth (MTTKRP with vectors a, b, c, etc.)
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MTTKRP

J
@ Column-wise TTV of X in all-but-one dimensions R B%fR
@ a, + X Xab, x3¢, forr=1,...,R. A %
@ Updating a, takes N — 1 TTVs. ¢
@ RN(N — 1) TTVs per iteration in total ! : x
@ For simplicity, considering R =1 A ] K

henceforth (MTTKRP with vectors a, b, c, etc.)
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MTTKRP

J
@ Column-wise TTV of X in all-but-one dimensions
° +— X x2b fi 1 R A > :R
ar XoDby XgCrtOr r=1,..., K. K
N
@ Updating a, takes N — 1 TTVs. C
@ RN(N — 1) TTVs per iteration in total | I X
@ For simplicity, considering R =1 K
henceforth (MTTKRP with vectors a, b, c, etc.) R J
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Coordinate Storage (COOR)

a0
for x;j . € X do
a(i) += xijk,/b(j)c(k)d(/)

e Storage cost: ©(Nnnz(X))
@ MTTKRP cost: ©(N?nnz(X))

AITWINININ|RF|E
RIN|IR|RPRPIWIN
NIR|IRP|RlW|A|W
R WINIER|IN|E
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Compressed Sparse Fiber (CSF, Smith and Karypis, '15)

@ Generalization of CSR/CSC E) Ny
@ Exploits index overlaps after TTVs 4 ---~{2]
@ Possible to use one representation across EX phuigiFY

all dimensions %::::%
e Employed in SPLATT library 1--->{4]
e Storage cost: O(Nnnz(X)) 2=~ 1]
© MTTKRP cost: O(N?nnz(X)) X
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Dimension Tree (DT)

@ Hierarchical storage, partitions dimensions
at each level s = (12301

@ Single representation for all dimensions 3

@ Each node corresponds to a set of TTVs dms = (i) dima = Gy

@ Leaves correspond to factor matrices

@ Index compression through leaves E m E E m E
o o o o
Frabrsenid berissend ceEmanbad amEranbrc
dims = {1} dims = {2} dims = {3} dims = {4}
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI i
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT)

x
I dims = {1,2,3,4)

x a
dims = (1.2}

@ Each node is computed using its parent.

E ; E ; E
[ [ [

A= Xbxoxd beXxaxsexd d=Xxaxbre
dims = {1} dims = {2} dims = {3} dims = {4}
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI i
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT

E dims = {1,2,3,4)

@ Each node is computed using its parent. dims = (1)

a beXxa e=Xxiaxibud d=Xxaxbre

dims = {2} dims = {3} dims = {4}
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI i
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent.

x a
dims = (1.2}

E
[
a=2cbxsexd

dims = {1}

]

d=Xxaxbre
dims = (4}

beXxaxsexd

dims = {2}
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI i
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent.

x a
dims = {1,2}
E ; E ; E
[ [ [
A= Xbxoxd beXxaxsexd d=Xxaxbre
dims = {1} dims = {2} dims = {3} dims = {4}
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Dimension Tree (DT)

x
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@ Each node is computed using its parent. ams = (1)
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI :d
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI i
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent.

x a
dims = (1.2}

]

@
2}

E
[
Xorbsexid

dims = {1}

-
dims =
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Dimension Tree (DT)

x
dims = {1,2,3,4)

@ Each node is computed using its parent. ams = (1)
LRI i
& o o
) d,‘vms,:(;) ! hmfns:(z() - dims = {3} ! d’w‘ms”:(:) ‘
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Dimension Tree (DT)

@ Each node is computed using its parent.

N index arrays per level

@ Storage cost (index): O(N log Nnnz(X))
(vs. O(Nnnz(X)) in CSF)

@ With post-order traversal of leaves S § %
o N TTVs per level i s 3
o log N value arrays allocated
@ Storage cost (value): O(log Nnnz(X)) - > h
@ MTTKRP cost: O(N log Nnnz(X)) E E E E
(vs. O(N?nnz(X)) in CSF) gl O P el I e

@ O(N/log N) faster than CSF.
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Experiments - Runtime

w »

DT speedup w.r.t. CSF

N

Netflix NELL Flickr Delicious R4D R8D R16D R32D
tensor
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Experiments - Memory Usage (R = 20)

3.0 T T T T - -

HEl index
25l I buffer | |

2.0} 1

1.5¢ 1

1.0} 1

DT memory usage w.r.t. CSF

0.0

Netflix NELL Flickr Delicious R4D R8D R16D R32D

tensor
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Conclusion

Flexible fine-grained parallel algorithm to compute sparse tensor decompositions
Hypergraph models of computation and communication

A new tree data structure and computational scheme for sparse tensors
O(N/log N) faster MTTKRP using O(log N)-times more storage

5.65x speedup on 32-D tensors using up to 2.5x more memory

Applicable to dense tensors, optimal algorithms in O(3P) time using O(2°) space

All implemented in PACOS and HYPERTENSOR.
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