Algorithmic and HPC Challenges in Parallel Tensor Computations

Oguz Kaya

INRIA Bordeaux, France

May 3, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction ●00	CP Decomposition and MTTKRP	Distributed CP 00000000000000000	Shared Memory CP 0000000000	Conclusion
Tensor				

What is a tensor?

- A vector is a 1-dimensional tensor.
- A matrix is a 2-dimensional tensor.
- A tensor $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{I_1 \times I_2 \times ... \times I_N}$ has N dimensions.

イロト イボト イヨト イヨト

We are mostly interested in the case when \mathcal{X} is sparse and of low rank.

Introduction	CP Deco	omposition and MTTKRP	Distributed CP	Shared Memory CP	Co
○●○	000		00000000000000000	0000000000	oc

Tensor Decompositions

- Generalization of matrix decompositions to higher dimensions
- Provide low-rank representation of high dimensional data
- CP Decomposition
 - Provides a rank-R representation of a tensor with R rank-1 terms summed.
 - Minimum R yielding an equality is called the rank of \mathcal{X} .
- Goal: Compute CP decomposition efficiently for a sparse \mathcal{X} .

nclusion

Application	IS			
Introduction ○○●	CP Decomposition and MTTKRP	Distributed CP 0000000000000000	Shared Memory CP 0000000000	Conclusion

- Recommender systems
- Analyzing web links
- Link prediction in temporal graphs
- Data compression
- Signal processing, quantum chemistry, etc.

< E

- A - E

Outline

Introduction

2 CP Decomposition and MTTKRP

Oistributed CP

4 Shared Memory CP

5 Conclusion

until no improvement or max iterations achieved

- A, B, C are initialized (randomly or using HOSVD).
- Algorithm iteratively updates A, B, C until convergence.
- Â ← X₍₁₎(C ⊙ B) is called matricized tensor-times Khatri-Rao product (MTTKRP).

Introduct 000	tion CP Decomposition and MTTKRP 000	Distributed CP 00000000000000000	Shared Memory CP 0000000000	Conclu 000
CP	Decomposition			
	AlgorithmCP-ALS for 3rd order tensorsInput: \mathcal{X} : A sparse tensor R : The rank of approximationOutput:CP decomposition $\llbracket A, B, C \rrbracket$ repeat $\hat{A} \leftarrow \hat{A} M_A$ $\hat{B} \leftarrow X_{(2)}(C \odot A)$ $B \leftarrow \hat{B} M_B$ $\hat{C} \leftarrow X_{(3)}(B \odot A)$ $C \leftarrow \hat{C} M_C$ $M \in \Pi$	$\hat{\mathbf{A}} \in \mathbb{R}^{I \times R} \qquad I \qquad \mathcal{X}$ $I_{A} \in \mathbb{R}^{R \times R} \qquad J$ $\mathbb{R}^{J \times R} \qquad J$ $\mathbb{R}^{K \times R} \qquad \mathbb{R}^{R \times R}$ $\mathbb{R}^{R \times R}$ eved	$\approx \bigotimes \frac{\mathbf{B}}{\mathbf{B}}$	R

- A, B, C are initialized (randomly or using HOSVD).
- Algorithm iteratively updates $\mathbf{A}, \mathbf{B}, \mathbf{C}$ until convergence.
- $\hat{A} \leftarrow X_{(1)}(C \odot B)$ is called

matricized tensor-times Khatri-Rao product (MTTKRP)

4/ 32

Algorithmic and HPC Challenges in Parallel Tensor Computations

₹ 9Q@

- A, B, C are initialized (randomly or using HOSVD).
- Algorithm iteratively updates A, B, C until convergence.
- Â ← X₍₁₎(C ⊙ B) is called matricized tensor-times Khatri-Rao product (MTTKRP)

4/ 32

Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction 000	CP Decomposition and M 0●0	TTKRP Di	stributed CP	Shared Memory CP 0000000000	Conclus 000
CP Dec	omposition				
Algoi Input R: Outp rep	rithm CP-ALS for 3rd order t: \mathcal{X} : A sparse tensor The rank of approximation point: CP decomposition [A , E point $\hat{\mathbf{A}} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$ $\mathbf{A} \leftarrow \hat{\mathbf{A}} \mathbf{M}_A$ $\hat{\mathbf{B}} \leftarrow \mathbf{X}_{(2)}(\mathbf{C} \odot \mathbf{A})$ $\mathbf{B} \leftarrow \hat{\mathbf{B}} \mathbf{M}_B$ $\hat{\mathbf{C}} \leftarrow \mathbf{X}_{(1)}(\mathbf{B} \odot \mathbf{A})$	tensors $\hat{\mathbf{A}} \in \mathbb{R}^{I \times R}$ $\stackrel{\bullet}{\mapsto} \hat{\mathbf{A}} \in \mathbb{R}^{R \times R}$ $\stackrel{\bullet}{\mapsto} \hat{\mathbf{B}} \in \mathbb{R}^{J \times R}$ $\stackrel{\bullet}{\mapsto} \mathbf{M}_B \in \mathbb{R}^{R \times R}$ $\stackrel{\bullet}{\mapsto} \hat{\mathbf{C}} \in \mathbb{R}^{K}$	I X J	$\approx \bigotimes \mathbf{B}$	R

until no improvement or max iterations achieved

- A, B, C are initialized (randomly or using HOSVD).
- Algorithm iteratively updates $\mathbf{A}, \mathbf{B}, \mathbf{C}$ until convergence.
- $\hat{\mathsf{A}} \leftarrow \mathsf{X}_{(1)}(\mathsf{C} \odot \mathsf{B})$ is called

 $\mathbf{C} \leftarrow \hat{\mathbf{C}} \mathbf{M}_{C}$

matricized tensor-times Khatri-Rao product (MTTKRP)

4/ 32

 \blacktriangleright **M**_C $\in \mathbb{R}^{R \times R}$

Algorithmic and HPC Challenges in Parallel Tensor Computations

< 円

★ 国 ▶ | ★ 国 ▶

э.

Introduct 000	tion CP Decomposition and MTTKRP 000	Distributed CP 00000000000000000	Shared Memory CP 0000000000	Conclu 000
CP	Decomposition			
	AlgorithmCP-ALS for 3rd order tensorsInput: \mathcal{X} : A sparse tensor R : The rank of approximationOutput:CP decomposition $\llbracket A, B, C \rrbracket$ repeat $\hat{A} \leftarrow \hat{A} M_A$ $\hat{B} \leftarrow X_{(2)}(C \odot A)$ $B \leftarrow \hat{B} M_B$ $\hat{C} \leftarrow X_{(3)}(B \odot A)$ $C \leftarrow \hat{C} M_C$ $M \in \Pi$	$\hat{\mathbf{A}} \in \mathbb{R}^{I \times R} \qquad I \qquad \mathcal{X}$ $I_{A} \in \mathbb{R}^{R \times R} \qquad J$ $\mathbb{R}^{J \times R} \qquad J$ $\mathbb{R}^{K \times R} \qquad \mathbb{R}^{R \times R}$ $\mathbb{R}^{R \times R}$ eved	$\approx \bigotimes \frac{\mathbf{B}}{\mathbf{B}}$	R

- A, B, C are initialized (randomly or using HOSVD).
- Algorithm iteratively updates $\mathbf{A}, \mathbf{B}, \mathbf{C}$ until convergence.
- $\hat{A} \leftarrow X_{(1)}(C \odot B)$ is called

matricized tensor-times Khatri-Rao product (MTTKRP)

4/ 32

Algorithmic and HPC Challenges in Parallel Tensor Computations

₹ 9Q@

Introduction 000 CP Decomposition and MTTKRP 000

Distributed CP

Shared Memory CP

Conclusion

$\mathsf{MTTKRP} \ (\mathbf{\hat{A}} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B}))$

Matricized Tensor-Times Khatri-Rao Product (MTTKRP)

- $\mathbf{\hat{A}} = \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$, $\mathbf{\hat{A}} \in \mathbb{R}^{I imes R}$
- Each $x_{i,j,k} \in \mathcal{X}$ multiplies vectors $\mathbf{B}(j,:)$ and $\mathbf{C}(k,:)$, then updates $\hat{\mathbf{A}}(i,:)$.
- How to parallelize?

イロト イボト イヨト イヨト

Introduction

2 CP Decomposition and MTTKRP

Oistributed CP

4 Shared Memory CP

5 Conclusion

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Parallel MTTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Consider a process p (blue).

- X is partitioned; process has the subtensor X_p.
- A, B, and C are partitioned; process p has I_p, J_p, and K_p rows of A, B, and C.

イロト イボト イヨト イヨト

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Parallel MTTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Consider a process p (blue).

- x_{i₁,j₁,k₁} ∈ X_p generates a local result; no communication.
- x_{i2,j2,k2} ∈ X_p generates a non-local result; communication needed (fold).
- 2*R* ops per nonzero.
 (for N-dims, (N − 1)R).

イロト イボト イヨト イヨト

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Parallel MTTKRP $(\hat{A} \leftarrow X_{(1)}(C \odot B))$

Consider a process p (blue).

- x_{i₁,j₁,k₁} ∈ X_p generates a local result; no communication.
- x_{i₂,j₂,k₂} ∈ X_p generates a non-local result; communication needed (fold).
- 2*R* ops per nonzero.
 (for N-dims, (*N*−1)*R*).

イロト イボト イヨト イヨト

Distributed CP

Shared Memory CP

Conclusion

Parallel GEMM ($A \leftarrow \hat{A}H_A$)

Consider a process p (blue).

- $\mathbf{A}^T \mathbf{A}, \mathbf{B}^T \mathbf{B}, \mathbf{C}^T \mathbf{C} \in \mathbb{R}^{R \times R}$ available at each process.
- $\mathbf{H}_A \leftarrow (\mathbf{B}^T \mathbf{B} * \mathbf{C}^T \mathbf{C})^{\dagger}$ computed locally.
- Row-parallel A ← ÂH_A with I_p rows, O(I_pR²) ops.

イロト イボト イヨト イヨト

Introd	
000	

Distributed CP

Shared Memory CP

Conclusion

Post-communication (expand)

Consider a process p (blue).

 A(i₂,:) needs to be received (to later compute B̂ and Ĉ).

・ロト ・日ト ・日ト ・日ト

Introd	
000	

Distributed CP

Shared Memory CP

Conclusion

Post-communication (expand)

Consider a process p (blue).

 A(i₂,:) needs to be received (to later compute B̂ and Ĉ).

・ロト ・日ト ・日ト ・日ト

Introd	
000	

Distributed CP

Shared Memory CP

Conclusion

Post-communication (expand)

- Consider a process p (blue).
 - A(i₂, :) needs to be received (to later compute and Ĉ).

・ロト ・日ト ・日ト ・日ト

Introd	
000	

Distributed CP

Shared Memory CP

Conclusion

Post-communication (expand)

- Consider a process p (blue).
 - A(i₂,:) needs to be received (to later compute B̂ and Ĉ).

・ロト ・日ト ・日ト ・日ト

Introd	
000	

Distributed CP

Shared Memory CP

Conclusion

Post-communication (expand)

Consider a process p (blue).

 A(i₂, :) needs to be received (to later compute B̂ and Ĉ).

イロト イボト イヨト イヨト

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Partitioning - Computation

Consider a process p (blue).

- Each nonzero incurs (N − 1)R ops in MTTKRP.
- Each matrix row incurs R^2 ops in GEMM and SYRK.
- Goal: Balance $|\mathcal{X}_p|$, I_p , J_p , K_p among all processes.

イロト イボト イヨト イヨト

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Partitioning - Communication

Consider a process p (blue).

- Each non-owned row "touched" by an owned nonzero incurs a communication.
- Multiple "touches" do not increase the communication volume.

イロト イボト イヨト イヨト

Introd	uction

Distributed CP

Shared Memory CP

Conclusion

Partitioning - Memory

Consider a process p (blue).

- Stores $|\mathcal{X}_p|$ nonzeros.
- Stores I_p rows of **A**.
- Communicated rows are also stored!
- Goal: Balance $|\mathcal{X}_p|$, I_p , J_p , K_p , and communication volume!

イロト イボト イヨト イヨト

Introduction 000

Distributed CP

Shared Memory CP

Conclusion 000

Hypergraph Partitioning - Fine-Grain Model

Fine-grain hypergraph involves:

- Unit vertex per nonzero
- Unit vertex per matrix row
- Hyperedge per matrix row, connected to matrix row's vertex and all nonzeros' that "touch" that row.
- Goal: Balance each vertex type, minimize the cutsize.

$$oldsymbol{\mathcal{X}} = \{(1,2,3), (2,3,1), (3,1,2)\} \in \mathbb{R}^{3 imes 3 imes 3}$$

(日)

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the "holy grail" of performance. Balancing each vertex type balances

- MTTKRP load.
- sparse tensor storage.
- matrix storage.
- dense matrix operations.

(日)

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

Hypergraph Partitioning - Fine-Grain Model

Hypergraph partitioning is the "holy grail" of performance. Minimizing cutsize minimizes

- total fold and expand communication volume
- total non-local matrix row storage.

Balancing cutsize balances all these instead.

$$oldsymbol{\mathcal{X}} = \{(1,2,3), (2,3,1), (3,1,2)\} \in \mathbb{R}^{3 imes 3 imes 3}$$

(日)

Introduction	CP Decomposition and MTTKRP	Distributed CP	Shared Memory CP	Conclus
000		000000000000000000	0000000000	000

Tensors

Real-world tensors used in the experiments.

Tensor	I_1	I_2	<i>I</i> 3	<i>I</i> 4	#nonzeros
Delicious	1.4K	532K	17M	2.4M	140M
Flickr	731	319K	28M	1.6M	112M
Netflix	480K	17K	2K	-	100M
NELL	3.2M	301	638K	-	78M
Amazon	6.6M	2.4M	23K	-	1.3B

イロト イヨト イヨト イヨト

Ξ.

Introduction 000	CP Decomposition and MTTKRP	Distributed CP 000000000000000000000000000000000000	Shared Memory CP	Conclusion
Results				

Introduction 000	CP Decomposition and MTTKRP	Distributed CP 000000000000000000000000000000000000	Shared Memory CP	Conclusion
Results				

18/32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction 000	CP Decomposition and MTTKRP	Distributed CP 00000000000000000000	Shared Memory CP	Conclusion
Results				

Introduction 000	CP Decomposition and MTTKRP	Distributed CP 00000000000000000000	Shared Memory CP	Conclusion
Results				

20/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction	CP Decomposition and MTTKRP	Distributed CP	Shared Memory CP	Conclusion
000		000000000000000	0000000000	000
Results				

21/32 Algorithmic and HPC Challenges in Parallel Tensor Computations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Outline

Introduction

2 CP Decomposition and MTTKRP

3 Distributed CP

4 Shared Memory CP

5 Conclusion

Introduction	

Distributed CP

Shared Memory CP

Conclusion

Tensor-Times-Vector Multiplication (TTV)

- Reduces dimensionality by one
- Performed in a particular dimension.
- $\boldsymbol{\mathcal{Y}}=\boldsymbol{\mathcal{X}} imes_3$ c
- $\mathbf{\mathcal{Y}}(i,j) = \mathbf{c}^{\mathsf{T}} \mathbf{\mathcal{X}}(i,j,:)$ = $\sum_{k=1}^{\mathsf{K}} \mathbf{\mathcal{X}}(i,j,k) \mathbf{c}(k)$
- Sparsity of ${m {\cal Y}}$ determined by sparsity of ${m {\cal X}}$, i.e., nnz $({m {\cal Y}}) \leq$ nnz $({m {\cal X}})$
- Cost: $\Theta(nnz(\mathcal{X}))$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	

Distributed CP

Shared Memory CP

Conclusion

Tensor-Times-Vector Multiplication (TTV)

- $\mathbf{a} = \boldsymbol{\mathcal{Y}} imes_2 \mathbf{b}$
- $\mathbf{a}(i) = \mathbf{b}^T \boldsymbol{\mathcal{Y}}(i, :)$ = $\sum_{j=1}^J \boldsymbol{\mathcal{Y}}(i, j) \mathbf{b}(j)$
- TTV equivalent to matrix-vector multiplication
- Cost: $\Theta(nnz(\mathcal{Y})) = O(nnz(\mathcal{X}))$

23/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

イロト イボト イヨト イヨト

Introduction 000 CP Decomposition and MTTKRP 000

Distributed CP

Shared Memory CP

Conclusion

TTV in All-But-One Dimensions

- $\mathbf{a} = \mathcal{X} \times_2 \mathbf{b} \times_3 \mathbf{c}$
- $\mathbf{a}(i) = \sum_{j=1}^{J} \sum_{k=1}^{K} \mathcal{X}(i, j, k) \mathbf{b}(j) \mathbf{c}(k)$
- N-1 TTVs performed together.
- Cost: $\Theta(Nnnz(\mathcal{X}))$

イロト イボト イヨト イヨト

24/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction	

Distributed CP 000000000000000000 Shared Memory CP

Conclusion

MTTKRP

- Column-wise TTV of ${\mathcal X}$ in all-but-one dimensions
- $\mathbf{a}_r \leftarrow \mathcal{X} \times_2 \mathbf{b}_r \times_3 \mathbf{c}_r$ for $r = 1, \ldots, R$.
- Updating \mathbf{a}_r takes N 1 TTVs.
- RN(N-1) TTVs per iteration in total
- For simplicity, considering R = 1 henceforth (MTTKRP with vectors a, b, c, etc.)

イロト イボト イヨト イヨト

Introduction	

Distributed CP 000000000000000000 Shared Memory CP

Conclusion

MTTKRP

- Column-wise TTV of ${\mathcal X}$ in all-but-one dimensions
- $\mathbf{a}_r \leftarrow \mathcal{X} \times_2 \mathbf{b}_r \times_3 \mathbf{c}_r$ for $r = 1, \ldots, R$.
- Updating \mathbf{a}_r takes N 1 TTVs.
- RN(N-1) TTVs per iteration in total
- For simplicity, considering *R* = 1 henceforth (MTTKRP with vectors **a**, **b**, **c**, etc.)

イロト イボト イヨト イヨト

Introduction	

Distributed CP 000000000000000000

Shared Memory CP

Conclusion

MTTKRP

- Column-wise TTV of ${\mathcal X}$ in all-but-one dimensions
- $\mathbf{a}_r \leftarrow \mathcal{X} \times_2 \mathbf{b}_r \times_3 \mathbf{c}_r$ for $r = 1, \ldots, R$.
- Updating \mathbf{a}_r takes N 1 TTVs.
- RN(N-1) TTVs per iteration in total
- For simplicity, considering *R* = 1 henceforth (MTTKRP with vectors **a**, **b**, **c**, etc.)

イロト イボト イヨト イヨト

э.

Introduction	

Distributed CP

Shared Memory CP

Conclusion

Coordinate Storage (COOR)

$$\mathbf{a} \leftarrow \mathbf{0}$$

for $x_{i,j,k,l} \in \mathcal{X}$ do
 $\mathbf{a}(i) += x_{i,j,k,l} \mathbf{b}(j) \mathbf{c}(k) \mathbf{d}(k)$

- Storage cost: $\Theta(Nnnz(\mathcal{X}))$
- MTTKRP cost: $\Theta(N^2 \operatorname{nnz}(\mathcal{X}))$

)

1	2	3	1
1	3	4	2
2	4	3	1
2	4	4	2
2	4	1	3
З	2	1	4
4	1	2	1
\mathcal{X}			

・ロト ・日ト ・日ト ・日ト

Introd	

Distributed CP

Shared Memory CP

Conclusion

Compressed Sparse Fiber (CSF, Smith and Karypis, '15)

- $\bullet\,$ Generalization of CSR/CSC
- Exploits index overlaps after TTVs
- Possible to use one representation across all dimensions
- Employed in SpLATT library
- Storage cost: $O(Nnnz(\mathcal{X}))$
- MTTKRP cost: $O(N^2 nnz(\mathcal{X}))$

< ロ > < 同 > < 回 > < 回 >

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

- Hierarchical storage, partitions dimensions at each level
- Single representation for all dimensions
- Each node corresponds to a set of TTVs
- Leaves correspond to factor matrices
- Index compression through leaves

イロト イボト イヨト イヨト

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

A D F A B F A B F A B F

Introd	

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

э.

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

A D F A B F A B F A B F

Introd	ion	

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

A D F A B F A B F A B F

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

A D F A B F A B F A B F

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

A D F A B F A B F A B F

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

A D F A B F A B F A B F

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

Introd		

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

Distributed CP

Shared Memory CP

Conclusion

Dimension Tree (DT)

- Each node is computed using its parent.
- N index arrays per level
- Storage cost (index): O(N log Nnnz(X))
 (vs. O(Nnnz(X)) in CSF)
- With post-order traversal of leaves
 - N TTVs per level
 - $\log N$ value arrays allocated
- Storage cost (value): $O(\log Nnnz(X))$
- MTTKRP cost: O(N log Nnnz(X)) (vs. O(N²nnz(X)) in CSF)
- $O(N/\log N)$ faster than CSF.

・ロト ・四ト ・ヨト

Introd	
000	

Distributed CP

Shared Memory CP

Conclusion

э

Experiments - Runtime (R = 20)

30/ 32 Algorithmic and HPC Challenges in Parallel Tensor Computations

Introduction 000

Distributed CP

Shared Memory CP

Conclusion

э

Experiments - Memory Usage (R = 20)

Outline

Introduction

2 CP Decomposition and MTTKRP

3 Distributed CP

4 Shared Memory CP

Conclusion				
Introduction 000	CP Decomposition and MTTKRP	Distributed CP	Shared Memory CP 0000000000	Conclusion ○●○

- Flexible fine-grained parallel algorithm to compute sparse tensor decompositions
- Hypergraph models of computation and communication
- A new tree data structure and computational scheme for sparse tensors
- $O(N/\log N)$ faster MTTKRP using $O(\log N)$ -times more storage
- 5.65x speedup on 32-D tensors using up to 2.5x more memory
- Applicable to dense tensors, optimal algorithms in $O(3^D)$ time using $O(2^D)$ space
- All implemented in PACOS and HYPERTENSOR.

イヨト イモト イモト

Contact

Oguz Kaya Post-doctoral Researcher HiePACS Team, INRIA Bordeaux, France oguz.kaya@inria.fr www.oguzkaya.com