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Security attacks
Most security attacks exploit buggy systems 
software or poorly written applications codes
Some security attacks result from poor or 
incomplete specifications
Very few security attacks are a consequence 
of buggy hardware
Some very targeted security attacks exploit 
processor side channels
 Caches, branch predictors, …
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Spectre attack
[2018]

Hardware is implemented correctly
Software is implemented correctly
And yet it has been shown that it is possible 
for one process to steal secrets from another 
using side-channels in out-of-order processors  
without passing any values explicitly!
Many similar attacks are possible
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It is impossible to write secure software under 
such conditions!

Hardware fix: Impose strong isolation 
between processes, i.e., secure enclaves 

Intel XGS, 
Sanctum[Costan, Lebedev, Devadas]



RiscyOO: A RISC V OOO Processor
S. Zhang, A. Wright, T. Bourgeat, Arvind 
[MICRO2018]
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A sophisticated OOO processor 
designed for experimentation;
Boots linux, runs on FPGAs, 
synthesizes at 1GHz in 22nm
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No speculation during 
execution causes 3X 

slowdown!

This is like throwing 
the baby out with the 

bath water! 4

A sophisticated OOO processor 
designed for experimentation;
Boots linux, runs on FPGAs, 
synthesizes at 1GHz in 22nm



MI6: Secure Enclaves in RiscyOO
T. Bourgeat, I. Lebedev,, A. Wright, S. Zhang,  
Srini Devadas and Arvind [MICRO2019]
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None of the blocks had to be redesigned but some required 
extra hardware checks.
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Enclave Enclave

Enclave Lifecycle
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MI6 keeps this overall 
lifecycle of enclaves and 
enforces strong isolation 

in all phases

no 
speculation
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Speculation 
allowed

Sanctum[Costan, Lebedev, Devadas]



Isolation during the start 
and exit of enclave

Threats to protect against
 Enclave start: influence from the previous process on 

the same core
 Enclave end: leakage to the next process on the same 

core
Mechanisms to achieve isolation
 Software can reset architectural states, i.e., contents 

of architectural registers and memory
 Still need hardware support to reset microarchitectural 

states because of microarchitectural side channels!
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Isolation during the start 
and exit of enclave

Threats to protect against
 Enclave start: influence from the previous process on 

the same core
 Enclave end: leakage to the next process on the same 

core
Mechanisms to achieve isolation
 Software can reset architectural states, i.e., contents 

of architectural registers and memory
 Still need hardware support to reset microarchitectural 

states because of microarchitectural side channels!

PURGE instruction: ISA extension to reset microarchitectural state
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Semantics of the PURGE 
instruction

After executing a PURGE instruction, the 
microarchitectural states in a core are reset to 
publicly known values. For example:
 The core pipeline is empty
 All buffers (e.g., ROB and LSQ) are empty, and 

pointers to the buffers are reset to a fixed position
 States in branch predictors (e.g., branch history 

table) are reset
 All TLBs are empty
 L1 caches are empty
 …
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Implementation of the 
PURGE instruction

Wait for older instructions to complete, including draining 
store buffer

Squash younger instructions

Wait for wrong-path activities (e.g., memory accesses) to 
complete

Reset microarchitectural states, e.g., flush L1 caches, TLBs, 
branch predictors, etc.

This idea works for both in-order and out-of-order processors
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While an enclave is running
Attacker can try to access memory of the 
enclave
Enclave may accidently (speculatively) access 
memory of the attacker
Through microarchitectural side channels,
 Attacker can influence the execution of instructions 

or their timing in the enclave 
 Enclave can leak its secret inadvertently by affecting 

the execution or the timing of the attacker 
 Prime+Probe of shared cache set
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While an enclave is running

Memory isolation
Check the address of any memory access, 
including speculative accesses, instruction 
fetches, and page walks
 Prevent attacker from issuing memory accesses to 

the address space of enclave


Core 0 
Enclave

Core 1
Attacker

Enclave 
address space

Attacker 
address space

Memory

Mechanism borrowed from Sanctum [Ilia, S. Devadas] 11



While an enclave is running

Memory isolation
Check the address of any memory access, 
including speculative accesses, instruction 
fetches, and page walks
 Prevent attacker from issuing memory accesses to 

the address space of enclave
 Prevent enclave from issuing memory accesses 

outside of the its own address space
Core 0 
Enclave

Core 1
Attacker

Enclave 
address space

Attacker 
address space

Memory

It does not matter 
whether the core is 

speculative/out-of-order 
or not

Mechanism borrowed from Sanctum [Ilia, S. Devadas] 11



While an enclave is running

Block memory side channels
Any microarchitectural resource 
shared by the enclave and the 
attacker can become a side channel
Resources in the core are owned 
exclusively by the enclave but 
everything in the memory system is 
shared
 L2 cache slots
 L2 cache miss status handling 

registers (MSHRs)
 L2 cache internal bandwidth
 DRAM access bandwidth

Shared L2 cache

Core 0 
Enclave

DRAM

Core 1
Attacker

Shared memory system

Microarchitectural isolation: 
Partition every shared resource to isolate 

enclave from attackers
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While an enclave is running

Partition L2 cache slots

Reserve a fixed set of L2 cache sets for an 
enclave
Borrowed the idea from Sanctum
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While an enclave is running

Partition L2 MSHRs
Problem: requests from different cores are 
contending for the limited MSHR entries



Core 0 
Enclave

Core 1 
Attacker

MSHRs

Shared L2 cache

14

Contention



While an enclave is running

Partition L2 MSHRs
Problem: requests from different cores are 
contending for the limited MSHR entries
Solution: divide the MSHR entries equally 
across cores
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While an enclave is running

Partition DRAM access bandwidth
Each missing request in MSHR can generate at most 2 
DRAM requests (writeback + refill)
 No contention if DRAM bandwidth >  2X(# of MSHRs)

In reality, this problem is much harder, because DRAM 
bandwidth and access latency depends on access pattern 
(e.g., random vs. sequential), and DRAM controllers 
rearrange requests
 In MI6, we assume a DRAM model with constant latency 

and bandwidth, so we only need to limit the number of 
MSHRs < DRAM bandwidth / 2
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While an enclave is running

Partitioning L2 internal bandwidth
Problem: messages from different cores are contending 
for accessing the cache arrays



Cache-access 
pipeline

Core 0 downgrade resp
Core 1 downgrade resp

Core 0 upgrade req
Core 1 upgrade req

Process

DRAM resp Req to DRAM

Req/resp to cores

Contention
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While an enclave is running

Partitioning L2 internal bandwidth
Problem: messages from different cores are contending 
for accessing the cache arrays
Solution: use a round-robin arbiter to fairly arbitrate 
access to cache arrays across different cores

Cache-access 
pipeline

Core 0 downgrade resp
Core 1 downgrade resp

Core 0 upgrade req
Core 1 upgrade req

Process

DRAM resp Req to DRAM

Req/resp to cores

Solution
Round-robin arbiter
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How much does this strong 
isolation of processes cost?
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Performance evaluation:

The naïve solution - turning off 
speculation

Strictly less secure than our solution
Overhead: average 205%, maximum 427%
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Not our solution



Performance evaluation:

PURGE instruction
Execute a PURGE instruction whenever the 
processor context is changed 
 exceptions, interrupts, system calls, return from trap 

handling
Overhead: average 5.4%, maximum 10.9%
 Mostly caused by the cold branch-predictor after 

executing PURGE
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Performance evaluation: 

Partitioning L2 cache slots
Cache partitioning is commonly used to achieve quality 
of service
Assuming the partition size is fixed, our partition scheme 
may increase cache conflicts compared to an ideal 
scheme
Overhead: average 7.4%, maximum 21.6%
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Performance evaluation:

Partitioning MSHR and DRAM 
bandwidth

Number of MSHRs is reduced
Associativity of MSHR is reduced in case MSHRs are 
banked
Worst case analysis: 
 16 fully associative  4 Banks x 3 per bank

Overhead: average 3.2%, maximum 8.3%
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Performance evaluation:

Partitioning L2 internal bandwidth
Increased latency in accessing L2 cache arrays
 For 16 cores, increase by 8 cycles on average

Overhead: average 8.5%, maximum 14%
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Performance evaluation 
putting it all together

Overhead: average 16.4%, maximum 34.8%

Much faster and more secure than turning off 
speculative execution (average overhead 205%, 

maximum overhead 427%)
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Conclusion
Speculation is not harmful in itself, if done within 
bounds
The cost of checking at the boundaries is significantly 
less than the cost of turning off speculation
We reduce the performance cost of security from 200% 
to ~20%
PURGE instruction and memory isolations have been 
implemented and tested
Shared state in the L2 cache are a work in progress 
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We can build high performance microprocessors on 
which it is possible to write secure software  


