
MI6: Secure enclaves in a
speculative out-of-order processor

Arvind
Computer Science and Artificial Intellegence Lab
MIT

Barcelona Supercomputer Center
October 15, 2019

1

Security attacks
Most security attacks exploit buggy systems
software or poorly written applications codes
Some security attacks result from poor or
incomplete specifications
Very few security attacks are a consequence
of buggy hardware
Some very targeted security attacks exploit
processor side channels
 Caches, branch predictors, …

2

Spectre attack
[2018]

Hardware is implemented correctly
Software is implemented correctly
And yet it has been shown that it is possible
for one process to steal secrets from another
using side-channels in out-of-order processors
without passing any values explicitly!
Many similar attacks are possible

3

It is impossible to write secure software under
such conditions!

Hardware fix: Impose strong isolation
between processes, i.e., secure enclaves

Intel XGS,
Sanctum[Costan, Lebedev, Devadas]

RiscyOO: A RISC V OOO Processor
S. Zhang, A. Wright, T. Bourgeat, Arvind
[MICRO2018]

Rename

ROB

ALU IQ Issue
Reg
Read Exec Reg

Write

MEM IQ Issue
Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

4

A sophisticated OOO processor
designed for experimentation;
Boots linux, runs on FPGAs,
synthesizes at 1GHz in 22nm

RiscyOO: A RISC V OOO Processor
S. Zhang, A. Wright, T. Bourgeat, Arvind
[MICRO2018]

Rename

ROB

ALU IQ Issue
Reg
Read Exec Reg

Write

MEM IQ Issue
Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

No speculation during
execution causes 3X

slowdown!

This is like throwing
the baby out with the

bath water! 4

A sophisticated OOO processor
designed for experimentation;
Boots linux, runs on FPGAs,
synthesizes at 1GHz in 22nm

MI6: Secure Enclaves in RiscyOO
T. Bourgeat, I. Lebedev,, A. Wright, S. Zhang,
Srini Devadas and Arvind [MICRO2019]

Rename

ROB

ALU IQ Issue
Reg
Read Exec Reg

Write

MEM IQ Issue
Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache

None of the blocks had to be redesigned but some required
extra hardware checks.

5

Enclave Enclave

Enclave Lifecycle

Enclave
binary
image

Untrusted
software (OS)

Create enclave,
Grant

resources

Load
enclave

Seal
enclave

Enclave

Enclave
binary image

Enclave
binary
image

① ② ③

Enclave can no
longer be modified
from outside

Enclave has a
measurement
for attestation

Enter
enclave

Exit
enclave

④

⑤

enclave executes in
a strongly isolated

environment

Platform
erases

sensitive
state

MI6 keeps this overall
lifecycle of enclaves and
enforces strong isolation

in all phases

no
speculation

6

Speculation
allowed

Sanctum[Costan, Lebedev, Devadas]

Isolation during the start
and exit of enclave

Threats to protect against
 Enclave start: influence from the previous process on

the same core
 Enclave end: leakage to the next process on the same

core
Mechanisms to achieve isolation
 Software can reset architectural states, i.e., contents

of architectural registers and memory
 Still need hardware support to reset microarchitectural

states because of microarchitectural side channels!

7

Isolation during the start
and exit of enclave

Threats to protect against
 Enclave start: influence from the previous process on

the same core
 Enclave end: leakage to the next process on the same

core
Mechanisms to achieve isolation
 Software can reset architectural states, i.e., contents

of architectural registers and memory
 Still need hardware support to reset microarchitectural

states because of microarchitectural side channels!

PURGE instruction: ISA extension to reset microarchitectural state

7

Semantics of the PURGE
instruction

After executing a PURGE instruction, the
microarchitectural states in a core are reset to
publicly known values. For example:
 The core pipeline is empty
 All buffers (e.g., ROB and LSQ) are empty, and

pointers to the buffers are reset to a fixed position
 States in branch predictors (e.g., branch history

table) are reset
 All TLBs are empty
 L1 caches are empty
 …

8

Implementation of the
PURGE instruction

Wait for older instructions to complete, including draining
store buffer

Squash younger instructions

Wait for wrong-path activities (e.g., memory accesses) to
complete

Reset microarchitectural states, e.g., flush L1 caches, TLBs,
branch predictors, etc.

This idea works for both in-order and out-of-order processors

9

While an enclave is running
Attacker can try to access memory of the
enclave
Enclave may accidently (speculatively) access
memory of the attacker
Through microarchitectural side channels,
 Attacker can influence the execution of instructions

or their timing in the enclave
 Enclave can leak its secret inadvertently by affecting

the execution or the timing of the attacker
 Prime+Probe of shared cache set

10

While an enclave is running

Memory isolation
Check the address of any memory access,
including speculative accesses, instruction
fetches, and page walks
 Prevent attacker from issuing memory accesses to

the address space of enclave


Core 0
Enclave

Core 1
Attacker

Enclave
address space

Attacker
address space

Memory

Mechanism borrowed from Sanctum [Ilia, S. Devadas] 11

While an enclave is running

Memory isolation
Check the address of any memory access,
including speculative accesses, instruction
fetches, and page walks
 Prevent attacker from issuing memory accesses to

the address space of enclave
 Prevent enclave from issuing memory accesses

outside of the its own address space
Core 0
Enclave

Core 1
Attacker

Enclave
address space

Attacker
address space

Memory

It does not matter
whether the core is

speculative/out-of-order
or not

Mechanism borrowed from Sanctum [Ilia, S. Devadas] 11

While an enclave is running

Block memory side channels
Any microarchitectural resource
shared by the enclave and the
attacker can become a side channel
Resources in the core are owned
exclusively by the enclave but
everything in the memory system is
shared
 L2 cache slots
 L2 cache miss status handling

registers (MSHRs)
 L2 cache internal bandwidth
 DRAM access bandwidth

Shared L2 cache

Core 0
Enclave

DRAM

Core 1
Attacker

Shared memory system

Microarchitectural isolation:
Partition every shared resource to isolate

enclave from attackers
12

While an enclave is running

Partition L2 cache slots

Reserve a fixed set of L2 cache sets for an
enclave
Borrowed the idea from Sanctum

13

While an enclave is running

Partition L2 MSHRs
Problem: requests from different cores are
contending for the limited MSHR entries



Core 0
Enclave

Core 1
Attacker

MSHRs

Shared L2 cache

14

Contention

While an enclave is running

Partition L2 MSHRs
Problem: requests from different cores are
contending for the limited MSHR entries
Solution: divide the MSHR entries equally
across cores

Core 0
Enclave

Core 1
Attacker

MSHRs

Shared L2 cache

Core 0
Enclave

Core 1
Attacker

Core 0
MSHRs

Core 1
MSHRs

Shared L2 cache

14

Contention

While an enclave is running

Partition DRAM access bandwidth
Each missing request in MSHR can generate at most 2
DRAM requests (writeback + refill)
 No contention if DRAM bandwidth > 2X(# of MSHRs)

In reality, this problem is much harder, because DRAM
bandwidth and access latency depends on access pattern
(e.g., random vs. sequential), and DRAM controllers
rearrange requests
 In MI6, we assume a DRAM model with constant latency

and bandwidth, so we only need to limit the number of
MSHRs < DRAM bandwidth / 2

15

While an enclave is running

Partitioning L2 internal bandwidth
Problem: messages from different cores are contending
for accessing the cache arrays



Cache-access
pipeline

Core 0 downgrade resp
Core 1 downgrade resp

Core 0 upgrade req
Core 1 upgrade req

Process

DRAM resp Req to DRAM

Req/resp to cores

Contention

16

While an enclave is running

Partitioning L2 internal bandwidth
Problem: messages from different cores are contending
for accessing the cache arrays
Solution: use a round-robin arbiter to fairly arbitrate
access to cache arrays across different cores

Cache-access
pipeline

Core 0 downgrade resp
Core 1 downgrade resp

Core 0 upgrade req
Core 1 upgrade req

Process

DRAM resp Req to DRAM

Req/resp to cores

Solution
Round-robin arbiter

16

How much does this strong
isolation of processes cost?

17

Performance evaluation:

The naïve solution - turning off
speculation

Strictly less secure than our solution
Overhead: average 205%, maximum 427%

18

Not our solution

Performance evaluation:

PURGE instruction
Execute a PURGE instruction whenever the
processor context is changed
 exceptions, interrupts, system calls, return from trap

handling
Overhead: average 5.4%, maximum 10.9%
 Mostly caused by the cold branch-predictor after

executing PURGE

19

Performance evaluation:

Partitioning L2 cache slots
Cache partitioning is commonly used to achieve quality
of service
Assuming the partition size is fixed, our partition scheme
may increase cache conflicts compared to an ideal
scheme
Overhead: average 7.4%, maximum 21.6%

20

Performance evaluation:

Partitioning MSHR and DRAM
bandwidth

Number of MSHRs is reduced
Associativity of MSHR is reduced in case MSHRs are
banked
Worst case analysis:
 16 fully associative  4 Banks x 3 per bank

Overhead: average 3.2%, maximum 8.3%

21

Performance evaluation:

Partitioning L2 internal bandwidth
Increased latency in accessing L2 cache arrays
 For 16 cores, increase by 8 cycles on average

Overhead: average 8.5%, maximum 14%

22

Performance evaluation
putting it all together

Overhead: average 16.4%, maximum 34.8%

Much faster and more secure than turning off
speculative execution (average overhead 205%,

maximum overhead 427%)

23

Conclusion
Speculation is not harmful in itself, if done within
bounds
The cost of checking at the boundaries is significantly
less than the cost of turning off speculation
We reduce the performance cost of security from 200%
to ~20%
PURGE instruction and memory isolations have been
implemented and tested
Shared state in the L2 cache are a work in progress

24

We can build high performance microprocessors on
which it is possible to write secure software

