





#### Human Brain Project

## Which tools and services do the HPAC Platform (and Fenix) offer?

1st HPAC Platform Training, 11-12 Dec 2018

Colin McMurtrie (CSCS)

Alberto Madonna (CSCS)





#### Overview of Services



#### Fenix/ICEI provides the Base Infrastructure for HPAC

**HPAC Infrastructure** 

1. Create Docker image

- · Support of user workflows
- Job Submission
- Data access
- Site-to-site Data Transfer
- Single sign-on to HPC Allocations
- Launch simulations and data analysis tasks from Jupyter notebooks
- Software deployment via Docker Containers





PLATFORMS -

COLLABORATORY



- Data Services PortalHPC Portal
- Supported Scientific Libraries
- Externally supported portals

- Virtualization
- Containers
- Web interfaces
- Custom middleware

#### IT infrastructure

Services (laaS)

- ComputingStorage
- Networking
- Security

#### **HBP Platforms**

**REST APIs** 

#### Infrastructure Services





Collaboratory





UNIC#RE













#### What Services does Fenix/ICEI provide?

#### End-user Services

- Scalable Compute Services
- Interactive Compute Services
- SWIFT Object Storage
- Data Storage Services
- (Data Transfer Service) ← HPAC
- (Continuous Integration Services) ← HPAC
- (Software Packaging and Deployment Services) ← HPAC
- {Visualisation Services} ← HPAC

#### Platform Services

- Infrastructure Services (middleware access to HPC resources via RestAPIs)
- Infrastructure as a Service (e.g. OpenStack) for Virtual Machine Services
- Data Management Services
- User and Resource Management Services
- Service Accounts (currently not available at all sites)



#### ICEI Resources for HBP

1st HPAC Platform Training | 11-12 Dec 2018 | Barcelona

- ICEI resources have already been made available to the HBP (highlighted in green) and PRACE by CSCS
- There are currently 8 HBP projects with compute allocations at CSCS
  - More are in the approval stages
- More resources are available than are being consumed so HBP users are encouraged to apply for a compute allocation
  - More on this in the next session

|                          |                                                      |                        |                        |                |              |                | 2            | 018 Quarter    | y Node Hours |        |        |
|--------------------------|------------------------------------------------------|------------------------|------------------------|----------------|--------------|----------------|--------------|----------------|--------------|--------|--------|
|                          |                                                      |                        | <b>Total Nodes</b>     | otal Nodes     |              | Q2             |              | Q3             |              | Q4     |        |
|                          | Type of                                              | ICEI                   | НВР                    | Prace          | Quarterly    |                |              |                |              |        |        |
| Component                | Service                                              | (100%)                 | (25%)                  | (15%)          | Conversion   | HBP            | Prace        | HBP            | Prace        | НРВ    | Prace  |
| Piz Daint<br>Multicore   | Scalable<br>Computing<br>Services                    | 250                    | 63                     | 38             | 1862         | 116344         | 69806        | 116344         | 69806        | 116344 | 69806  |
| Piz Daint<br>Hybrid      | Interactive<br>and Scalable<br>Computing<br>Services | 400                    | 100                    | 60             | 1862         | 186150         | 111690       | 186150         | 111690       | 186150 | 111690 |
| Totals                   |                                                      |                        | 163                    | 98             |              | 302494         | 181496       | 302494         | 181496       | 302494 | 181496 |
|                          |                                                      |                        |                        |                |              |                |              |                |              |        |        |
|                          |                                                      |                        | 2018 Quarterly Servers |                |              |                |              |                |              |        |        |
|                          |                                                      |                        | Q2                     |                | Q3           |                | Q4           |                |              |        |        |
| Component                | Type of<br>Service                                   | ICEI Servers<br>(100%) | HBP<br>(25%)           | Prace<br>(15%) | HBP<br>(25%) | Prace<br>(15%) | HBP<br>(25%) | Prace<br>(15%) |              |        |        |
| OpenStack<br>Cluster     | VM services                                          | 35                     | 8.75                   | 5.25           | 8.75         | 5.25           | 8.75         | 5.25           |              |        |        |
|                          |                                                      |                        |                        |                |              |                |              |                |              |        |        |
|                          |                                                      |                        |                        |                |              |                |              |                |              |        |        |
|                          |                                                      |                        | 2018 Quarterl          |                |              | · · · ·        |              |                |              |        |        |
|                          | Type of                                              | ICEI TB                | НВР                    | Prace          | HBP Q        | 3<br>Prace     | НВР          | Prace          |              |        |        |
| Component                | Service                                              | (100%)                 | (25%)                  | (15%)          | (25%)        | (15%)          | (25%)        | (15%)          |              |        |        |
| Store POSIX and Object   |                                                      | 1000                   | 250                    | 150            | 250          | 150            | 250          | 150            |              |        |        |
| Tape library             | Archival Data<br>Repositories                        | 3000                   | 750                    | 450            | 750          | 450            | 750          | 450            |              |        |        |
| Low latency storage tier | Active Data<br>Repositories                          | 80                     | 20                     | 12             | 20           | 12             | 20           | 12             |              |        |        |



## How do I use ICEI Resources? (1)

#### **Scalable Compute Resources:**

The Piz Daint system is available as a stateof-the-art scalable compute resource for use by HBP users

- Accessible globally via Command-line Interface
- Via the Unicore GUI
- Via the RESTful API offered via UNICORE for platforms
  - Use of Service Accounts for Platforms is also acceptable at some sites (e.g. CSCS)
  - See next slide for some more details











## How do I use ICEI Resources? (2)

#### **Interactive Compute Resources:**

The *Piz Daint* system supports the use of Jupyter Notebooks for interactive supercomputing, powered by JupyterHub

- This is a multi-user Hub that spawns, manages and proxies multiple instances of the single-user Jupyter notebook server
  - More details below
- Sessions later in the day will demonstrate the use of this environment

Piz Daint and other HPAC HPC systems are also accessible from the Jupyter Notebooks service of the Collaboratory

- This relies on the RESTful API offered via UNICORE for platforms
- The session later this morning will go into the details of how to do this



## How do I use ICEI Resources? (4)

#### Pollux OpenStack laaS:

The Pollux OpenStack laaS is available to host your platform VMs:

- Accessible globally via the Horizon GUI interface
- RESTful API can be used for automation



Example of a Platform service (NRP) using VMs AND HPC resources.







How do I use ICEI Resources? (3)

#### **Swift Object Storage:**

SWIFT OS can be accessed directly from your personal computer

- GUI clients e.g. CyberDuck
- SP5 Python Library
  - Better for mgmt. of the ACLs and Object Buckets
  - https://hbparchive.readthedocs.io/en/lat est/

Reachable from inside the Collaboratory

- Get/Put from Jupyter Notebooks
- More capabilities coming soon





Slide

## How do I use ICEI Resources? (3)

#### **Active Data Repositories:**

- Come as part of the with the compute allocation (= \$SCRATCH)
- Low-latency storage tier (Cray DataWarp with SSDs) in *Piz Daint* can also be requested

#### **Archival Data Repositories:**

- Are available either as part of a computing request (your proposal should state how much you need)
- Separately in a data-storage only use case (in which case a separate proposal is needed)



# Service Detail: Software Packaging and Deployment



#### Containers

 Lightweight, isolated environments to run applications/services

Already include all software dependencies

Interest from HPC: a way to provide user-defined

software stacks



## Container implementations





#### Docker

Extremely popular container implementation



- Easy to use authoring tools
  - Container images are created from recipe-like files
  - Images can be named, tagged and built on top of other images

- Cloud-based image distribution strategy
  - Several remote registries available (e.g. Docker Hub)
  - Client includes facilities to authenticate, push and pull images

#### Docker workflow

- 1. An image is created locally from a *Dockerfile*
- 2. Push (i.e. upload) the image to a remote registry
  - DockerHub is the public registry maintained from the Docker company
- 3. Pull (i.e. download) the image on a target machine and run the container

  2. Push to Docker Hub







## Key terms

- Image: standalone, executable package that includes everything needed to run a piece of software
  - code, runtime libraries, environment variables, configuration files

- Container: runtime instance of an image
  - What the image becomes in memory when actually executed
  - Runs completely isolated from the host environment by default
    - only accessing host resources if configured to do so



#### So... how are containers useful?

Containers give the possibility to create (scientific) applications that are:

- 1. Portable
- 2. Reproducible
- 3. Easy to deploy
- 4. Easy to test

Unfortunately Docker containers are not a panacea for HPC environments because of:

- Security concerns
  - root in the container means root on shared parallel file systems
- Performance Portability
  - Performance is important in HPC (it's in the name...)





#### Shifter

- Shifter is a Docker-compatible container platform specifically developed for HPC and addressing:
  - Security
  - Accounting
  - Native performance from custom HPC hardware
  - Integration with site infrastructure
- Enables flexible and convenient user workflows:







## Shifter development @ CSCS

- The Infrastructure & Development Services group works on extending Shifter with a focus on:
  - Usability
  - Features
  - Performance
- Previous work:
  - Native GPU support: automatic import of host's CUDA driver and devices
  - Native MPI support
    - Transparently swap container's MPI libraries with the host's at runtime
    - Enables full performance from vendor-specific implementations (e.g. Infiniband, Cray Aries)
    - Relies on MPICH ABI compatibility (<a href="http://www.mpich.org/abi/">http://www.mpich.org/abi/</a>)





## Shifter development @ CSCS - (cont.)

#### Software Architecture

- Single executable, no background service
- Image Manager component: robust, fast, designed from scratch
- Docker-like command line interface
- Improved container customization
  - User-specified mounts
  - "Writable volatile" directories



#### Shifter Architecture - CSCS branch





## Shifter Image Manager



- Container image management component written in C++
- Pull/query/remove images in user owned repositories
- Import images from tar files
- Parallel and robust layer download
  - automatic retry in case of errors
- Improved image expansion and local filesystem use

## Image Manager performance



- Image: NVIDIA CUDA 8.0 Toolkit on CentOS 7 (official image)
- Size on Docker Hub: 1 GB (6 layers)
- Total speedup: 3.73x



## Image Manager performance



- Image: Microsoft Cognitive Toolkit (CNTK) custom build
- Size on Docker Hub: 6 GB (32 layers)
- Speedup: 4.20x



#### Shifter CLI



- Command line processing component
- Goal was providing an in interface as close as possible to Docker
  - Consistent experience
  - Smoother transition between platforms



## CLI comparison

#### Shifter

```
# run container
$ shifter run [options] <image>[<:tag>]
<args>
# pull image
$ shifter pull [options] <image>[<:tag>]
# show list of images
$ shifter images
# remove image
$ shifter rmi <image>[<:tag>]
# import image
$ shifter import [options] <file> <image>
```

#### Docker

```
# run container
$ docker run [options] <image>[<:tag>]
<args>

# pull image
$ docker pull [options] <image>[<:tag>]

# show list of images
$ docker images [options] [repo[<:tag>]]

# remove image
$ docker rmi [options] <image> [image...]

# import image
$ docker import [options] <file>|<URL>|-
```

### Support for private & 3<sup>rd</sup> party registries

Authentication option for private registries (--login)

```
$ shifter pull user/privateRepo:tag --login
username : user
password :
...
```

- Support for 3<sup>rd</sup> party registry services
  - \$ shifter pull <server>/<namespace>/<image><:tag>
  - e.g. NVIDIA GPU Cloud

```
$ shifter pull nvcr.io/nvidia/caffe:17.12 --login
username : $oauthtoken
password :
...
```

## Shifter Import

- Import image from a tar file created by docker save
- Deploy an image to the HPC system without using the cloud

```
$ shifter import ./debian.tar my_debian

> expand image layers ...
> extracting :
/tmp/debian.tar/7e5c6402903b327fc62d1144f247c91c8e85c6f7b64903b8be289828285d502e/layer.tar
> make squashfs ...
> create metadata ...
# created: <user dir>/.shifter/images/import/library/my_debian/latest.squashfs
# created: <user dir>/.shifter/images/import/library/my_debian/latest.meta
```

#### Container customizations



## User-specified Mounts

- Map some paths from the Host to another location within the container
- Requested at launch time with the --mount option
- Reproduces the same option syntax from Docker

```
$ ls -l /data
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data1.csv
-rw-r--r--. 1 root root 1048576 Feb 7 10:49 data2.csv

$ shifter run --mount=type=bind, source=/data, destination=/input debian bash

[user@container]$ ls -l /input
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data1.csv
-rw-r--r--. 1 root 0 1048576 Feb 7 10:49 data2.csv
```



#### Writable volatile directories

- Directories originating from the container image are mounted as readonly
- Some use cases have specific requirements (e.g. create file in /var/lock)
- The --writable-volatile option of shifter run can be used to make such directories writable
- Original contents of the directory keep owners and permissions, but it is possible to create new files and work with them (thus, "writable")
- Any modification made to the directory is lost when the container exits (thus, "volatile")





#### Writable volatile directories

```
$ shifter run --writable-volatile=/usr/local debian bash
[user@container]$ ls -l /usr
 drwxr-xr-x 2 root
                                     0 3560 Oct 9 00:00 bin/
                                          3 Jul 13 13:01 games/
 drwxr-xr-x 2 root
                                     0 3 Jul 13 13:01 include/
 drwxr-xr-x 2 root
 drwxr-xr-x 20 root
                                     0 324 Oct 9 00:00 lib/
 drwx----- 10 <user name> <group name> 105 Oct 9 00:00 local/
                                     0 961 Oct 9 00:00 sbin/
 drwxr-xr-x 2 root
                                     0 670 Oct 9 00:00 share/
 drwxr-xr-x 41 root
                                     0 3 Jul 13 13:01 src/
 drwxr-xr-x 2 root
[user@container]$ echo "Hello world" > /usr/local/hello.txt
[user@container]$ ls -1 /usr/local/
 -rw-r--r-- 1 <user name> <group name> 12 Dec 19 15:18 hello.txt
[user@container]$ cat /usr/local/hello.txt
Hello world
```

### Wrap-up

#### Improved deployment and operation

- Simpler architecture
- Streamlined build/installation process
- No background service

#### Improved user experience

- Docker-like CLI for a more consistent workflow
- Robust, faster image pulling
- Import images bypassing the cloud
- Support private and 3<sup>rd</sup> party repositories
- User owned image repositories improve privacy
- Mount custom directories in the container
- Writable volatile directories

#### More information available at

https://user.cscs.ch/tools/containers/

#### Cheatsheet

Step-by-step guides: <a href="https://github.com/eth-cscs/containers-hands-on">https://github.com/eth-cscs/containers-hands-on</a>

```
docker pull <repo/image:tag>
docker run <image:tag> <command>
docker run -it <image:tag> bash
docker run <image:tag> mpiexec -n 2
docker images
docker build -t <repo/image:tag> .
docker login
docker push <repo/image:tag>
```



## Shifter is not just for HPC!

```
pi@raspberrypi: " $ cat /etc/os-release
PRETTY_NAME="Raspbian GNU/Linux 9 (stretch)"
NAME="Raspbian GNU/Linux"
VERSION ID="9"
VERSION="9 (stretch)"
ID=raspbian
ID LIKE=debian
HOME_URL="http://www.raspbian.org/"
SUPPORT_URL="http://www.raspbian.org/RaspbianForums"
                                                                   🦰 Raspberry Pi°
BUG_REPORT_URL="http://www.raspbian.org/RaspbianBugs"
pi@raspberrypi:" $ shifter images
REPOSITORY
                TAG
                              DIGEST
                                            CREATED
                                                                   SIZE
                                                                                SERVER
arm32v6/alpine latest 7a643060ae76 2018-03-24T19:05:42
                                                                   1.88MR
                                                                                index.docker.ic
pi@raspberrypi: $ shifter run arm32v6/alpine cat /etc/os-release
WARNING: skipping mount of image's /home. The file or directory already exists in the container
t resources in the container whose path conflicts with the contents of the image.
WARNING: skipping mount of image's /tmp. The file or directory already exists in the container
 resources in the container whose path conflicts with the contents of the image.
NAME="Alpine Linux"
ID=alpine
VERSION ID=3.7.0
PRETTY_NAME="Alpine Linux v3.7"
HOME_URL="http://alpinelinux.org"
BUG_REPORT_URL="http://bugs.alpinelinux.org"
pi@raspberrypi:~ $
```



## Service Detail: Continuous Integration



#### Jenkins CI Overview

- CSCS provides the Java-based open source Jenkins interface as an automation server
  - Can be used as a simple continuous integration (CI) server or turned into a CI tool for projects
  - Each project is assigned a Jenkins folder with the corresponding project name on the Jenkins instance
  - The Jenkins jobs related to the project have to be created in the above folder
  - Credentials can be added to be used with version control systems, etc.
  - Each project is assigned a Jenkins node which will manage the corresponding Jenkins jobs
  - Each project is additionally assigned a Jenkins user which is going to be used by the Jenkins node to
    access Piz Daint
- Since the CSCS Jenkins is not visible in public web, it is not possible to communicate with Github and trigger builds via webhooks. Two alternatives are recommended:
  - Use polling with a reasonable timestep to poll your remote repository for changes.
  - Use the GitHub Pull Request Builder (ghprb) plugin





#### Overview of Jenkins Service Interactions





## Service Detail: JupyterHub Service at CSCS



## Using JupyterHub at CSCS

- This service enables the interactive execution of Jupyter Notebook on Piz Daint over both single and multiple nodes.
  - The supported python version is python3.
- The service is accessed through the address
  - https://jupyter.cscs.ch
  - users should provide their HPAC credentials in order to login
- Once logged in, the user is redirected to a job setup page
  - Allows typical job configuration options to be selected in order to allocate the resources that are going to be used to run Jupyter
    - account
    - type of Piz Daint node type (gpu or mc)
    - number of nodes
    - wall-clock time limit
- More information at: <a href="https://user.cscs.ch/tools/interactive/">https://user.cscs.ch/tools/interactive/</a>





## JupyterHub Service Architecture (1)

 The current architecture protects the notebook in each compute node (CN) by launching a JupyterHub Service along with it





## JupyterHub Service Architecture (2)

Notebooks v4.3 and newer are protected with a per-session tokens

- Avoids the creation of several custom spawners
  - Ideally we want one CSCS spawner only
- Will be integrated with an Infrastructure Services API (UNICORE or similar)
- The frontend will be kept outside of the HPC system





## How to get Help or More Information

#### General Contact for HPAC Platform:

HPAC Platform:

https://collab.humanbrainproject.eu/#/collab/264/nav/2378

#### How to apply for resources:

• Send your proposals to: <a href="mailto:icei-coord@fz-juelich.de">icei-coord@fz-juelich.de</a>

#### Getting help:

Send emails to: <a href="mailto:hpac-support@humanbrainproject.eu">hpac-support@humanbrainproject.eu</a>



## Thank You

colin@cscs.ch

madonna@cscs.ch

www.humanbrainproject.eu







