

INSIGHTS

A morphologically-detailed neuronal network simulation library for contemporary high performance computing architectures

12TH DECEMBER 2018 I ALEXANDER PEYSER & ANNE KÜSTERS

AGENDA

Insights into Arbor

Introduction

Features

Model

Performance

Hands-on session

Build and run a ring network with python

This presentation is provided under the terms of the Creative Commons Attribution-ShareAlike License 4.0.

RECENT COLLABORATORS

From different institutions

CSCS

Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

- Ben Cumming
- Stuart Yates

- Nora Abi Akar
- Vasileios Karakasis

- Alexander Peyser
- Wouter Klijn

- Anne Küsters
- Felix Huber

Simon Oerl

Norwegian University of Life Sciences

Susanne Kunkel

openly available @ https://github.com/arbor-sim/arbor

WHAT IS ARBOR?

A morphologically-detailed neuronal network simulation library for contemporary HPC architectures

A **library** for the simulation

- of large networks of morphologically-detailed, spiking neurons
- for all HPC systems in the HBP

Runs on multiple architectures

- GPU systems,
- vectorized multicore,
- Intel AVX and laptops

Modular design for **extensibility** to new computer architectures

Purkinje cell by Santiago Ramón y Cajal

WHY ARBOR?

To solve multi-compartment simulations with large networks on new HPC architectures

Problems and models that are challenging to explore with current software and systems, e.g.

- Near real-time multi-compartment simulations
- Large networks with long simulations, parameter search, statistical validation
- Field potential calculations of large networks with volume visualization

Adapting existing simulators to new HPC architectures is hard, e.g. for

- Highly parallel architectures such as Intel Xeon and Intel KNL
- Wider vector operations such as AVX, AVX2, AVX512
- Specialized accelerator hardware as GPUs

Source of picture: flaticon.com

FEATURES OF ARBOR

Aiming for interoperability by being a simulator as library

* available soon

Interoperability
Simulator as library

- Visualization (with coupling to in-situ visualization and analysis tools*)
- Multi-physics: can be integrated with other tools
- Multi-scale from single neurons to large multi-compartmental networks
- Usability: installable target and simple configuration, python front-end (as basis for PyNN integration*), efficient sampling of voltage and currents

Extensibility

Modular internal API

Performance *HPC targeted*

Source of picture: flaticon.com

FEATURES OF ARBOR

Aiming for Extensibility by having modular internal API

Interoperability
Simulator as library

* available soon

Extensibility Modular internal API

- New **integration schemes**, (high-order time stepping, error control, and efficient gap junction schemes*)
- Custom spike communication and event systems,
 API for receiving spikes live from external simulators (e.g. NEST*)
- Specialized cells: leaky integrate-and-fire, Hodgkin-Huxley, Poisson spikes

Performance *HPC targeted*

Source of picture: CitiXsys

FEATURES OF ARBOR

Aiming for high performance on HPC targets

Interoperability
Simulator as library

Extensibility

Modular internal API

Performance HPC targeted

- **Highly parallel and performance portable** with task-based threading implementation, GPU and SIMD vector targets using NMODL and modcc
- Design for scalability with fine-grained allocation of CPU and GPU resources
- Reporting on memory and energy consumption
- Unit testing, continuous integration*, validation and a benchmarking suite*

Source of picture: flaticon.com

* available soon

INTRODUCTION

Summary

- Arbor is a new library for simulation of morphologically detailed spiking network
 - Specialized for GPUs, vectorized multicore, AVX and laptops
 - Designed to handle very large, very long and computationally intensive problems
- Goals:
 - Interoperability with visualizations and simulators at other scales/problems
 - Modular internal API for extensibility for custom integration, spike communication and cell types
 - And targeted to highly parallel architectures, both existing and emerging
 - with an open development model, validation and testing

NEURON MODEL

00

Arbor simulates networks of multi-compartment neurons

D. Electrical circuit equivalent of the membrane of a segment of a neuron.

- **Neurons:** approximated by axonal delay, synaptic functions and a set of cables (for dendrites + soma) connected in a tree.
- **Cables:** characterized as 1D electrical compartments (of variable diameter) composed of ion channels, cable resistance and capacitance.
- Neurons represented as sparse, close-to-band matrices to be solved (e.g. by Hines solver) against known current states due to synaptic conductance.
- Network and spike exchange between neurons at synapses are represented by concatenations of matrices.

Source: Koch, Methods in Neuronal Modeling: From Ions to Networks

CABLE EQUATION

A cell is modelled as a branching, one-dimensional electrical system

$$\begin{split} \frac{\partial}{\partial x} \Big(\sigma \frac{\partial v}{\partial x} \Big) &= \Big(c_m \cdot \frac{\partial v}{\partial t} + \sum_{\substack{\text{channels } k}} g_k(\underline{s}_k(x,t)) (v - e_k^{\text{rev}}) \Big) \cdot \frac{\partial S}{\partial x} \\ &+ \sum_{\substack{\text{synapses k} \\ \text{synapses k}}} I_i^{\text{syn}}(\underline{s}_k^{\text{syn}}(t), v(x_k^{\text{syn}})) \, \delta x_k^{\text{syn}} \\ &+ \sum_{\substack{\text{injections k} \\ \text{injections k}}} I_k^{\text{inj}}(t) \, \delta x_k^{\text{inj}}, \end{split}$$

$$\frac{d}{dt}\underline{s}_{k}(x,t) = f_{k}(\underline{s}_{k}, v(x,t)),$$

$$\frac{d}{dt}\underline{s}_{k}^{\text{syn}}(t) = f_{k}^{\text{syn}}(\underline{s}_{k}^{\text{syn}}, v(x_{k}^{\text{syn}}, t), t),$$

with

- Axial conductivity σ of the intracellular medium
- Membrane areal capacitance c_m , areal conductance g_k for an ion channel of type k
- as a function of channel's state \underline{s}_k
- Corresponding reversal potential e_k^{ref}
- Membrane surface area S(x) as a function of axial distance x
- Current I_k^{syn} produced by a synapse at position x_k^{syn} as a function of the synaptic state $\underline{s}_k^{\text{syn}}$ and local voltage
- Injected current $I_k^{\rm inj}(t)$ at position $x_k^{\rm inj}$

NUMERICAL MODEL

Cell state evolution is numerically solved with first order methods

Space discretization:

- Voltage and channel state time evolution split:
 - Time discretization:

Channel state ODEs:

Vertex-centered 1D finite volume method

using first-order approximation for axial current flux
$$c_i \frac{dV_i}{dt} = \sum_{j: \ X_j \cap X_i \neq \emptyset} \sigma_{i,j}(V_j - V_i) - \sum_{k: \ x_k^{\rm inj} \in X_i} I_k^{\rm inj}(t) \\ - \sum_{k: \ x_k^{\rm syn} \in X_i} I_k^{\rm syn}(\underline{s}_k^{\rm syn}, V_i) \qquad \text{with} \qquad \frac{d\underline{s}_{k,i}}{dt} = f_k(\underline{s}_{k,i}, V_i), \\ - \sum_{k: \ x_k^{\rm syn} \in X_i} S_i \cdot g_k(\underline{s}_{k,i})(V_i - e_k^{\rm rev}),$$

Lie-Trotter

First-order implicit Euler integration

channels k

$$\frac{c_i}{\delta t}V_i' + \sum_j \sigma_{i,j}V_i' - \sum_j \sigma_{i,j}V_j' = -I_i^{\text{memb}} + \frac{c_i}{\delta t}V_i$$

Integration with updated voltages depending on set of ODEs

CELL SIMULATION

Most time consuming parts on a CPU are updating currents and integrating gating variables

DESIGN MODEL

Scalability through the abstraction of recipes

Cells

- A "cell" represents the smallest model to be simulated
- A "cell" forms the smallest unit of work distributed across processes
- Types:
 - Specialized leaky integrate-and-fire cells
 - Artificial spike sources
 - Multi-compartment cells

Recipes

- A "recipe" describes models in a celloriented manner and supplies methods to
 - Map global cell identifier gid to cell type
 - Describe cells
 - List all **connections** from other cells that terminate on a cell
- Advantage: parallel instantiation of cell data

DESIGN MODEL

Extensibility through cell group abstraction

Cell groups

- A "cell group" represents a collection of cells
 of the same type together with
 implementation of their simulation
- Partitioning into cell groups provided by decomposition
- A "simulation" manages instantiation of model and scheduling of spike exchange as well as integration for each cell group

Mechanisms

- In a recipe, mechanisms are specifications of ion channel and synapse dynamics
- Implementations of mechanisms:
 - Hand-coded for CPU/ GPU execution or
 - A translator (modcc) is used to compile a subset of NEURONs mechanism specification language NMODL to architecture-optimized vectorized C++ or CUDA source

MODEL

Summary

- Arbor models:
 - Multicompartment neurons using a cable model transformed into a sparse matrix
 - Neurons characterized by axonal delays, synaptic functions and cables connected in a tree
 - Spike exchanges are global across computer nodes, functionally concatenating matrices
- Numerical solutions are discretized in time and space, and channel states are discretized ODEs
- Accelerator (GPU) optimization is focused on updating currents and integrating gating variables
- Models are composed of:
 - Cells representing the small unit of computation (LIF, Artificial sources, Multicompartment cells)
 - Recipes representing a parallelizable set of neuron construction and connections
 - Cell groups computed together on the GPU or CPU
 - Mechanism representing ion channel and synapse dynamics

SPIKE EXCHANGE

With a minimum delay

Overlapping computation and communication with a minimum spike propagation delay ΔT

Integration of states in epoch i requires spikes from epoch i-2 and are exchanged in epoch i-1.

Reason: latency hiding

DESIGN MODEL

Programming interface ensures extensibility

- Components can be substituted according to the internal API.
- Models are described in NMODL, a DSL used for the NEURON simulator.
- Python interface for building networks is under development.

DESIGN MODEL

Computational work is hidden in backends

- Cell simulation modules share computational backends for channel and synapse state evolution.
- CPU-hosted finite volume cell simulation.

STRUCTURE

Summary

- Spikes are exchanged at ½ the minimal spike propagation delay to overlap computation and communication
- Internal API uncouples model description, execution, spike exchange and cell simulation
- Computational work is hidden in pluggable backends, allowing automatic generation for different architectures
- Python interface is under development

Used systems and benchmark model

Systems

CPU	cores	threads	ISA
Kaby Lake i7	2	4	AVX-2
Broadwell	18	36	AVX-2
Skylake-X	18	36	AVX-512
KNL	64	256	AVX-512

Benchmark model

Cells: 300 compartments with Hudgkin-Huxley mechanisms,

5.000 randomly connected exponential synapses

Network: 100 cells per single core

1000 cells per socket

• Duration: 100 ms

Comparison of explicit vectorization relative to the compiler's auto-vectorization

Speedup of total time to solution with vectorization

- 1.5 x for Broadwell socket
- 3.4 x for KNL socket

Use of data-pattern optimized loads and stores contributes to speedup.

Less improvement for Broadwell due to **poor performance of vectorized division**.

Setup of ring network on HPC architecture

System

	Daint-mc	Daint-gpu	Tave-knl
CPU	Broadwell	Haswell	KNL
memory	64 GB	$32~\mathrm{GB}$	96 GB
cores/socket	18	12	64
threads/core	2	2	4
vectorization	AVX2	AVX2	AVX512
accelerator	_	P100 GPU	_
MPI ranks	2	1	4
threads/rank	36	24	64
configuration	_	CUDA 9.2	cache,quadrant
compiler	GCC $7.2.0$	GCC 6.2.0	GCC 7.2.0

Ring model

• Cells: Randomly generated morphologies with on average 130 compartments

• Synapses: 10 000 exponential synapses per cell with only one synapse connected to

a spike detector on the preceding cell

Soma: Hodgkin-Huxley mechanism;

Dendrites: Passive conductance

Single node scaling - time: utilization of computational resources on one node at various model sizes

- Models with fewer cells take less time to execute
- Scaling is architecture and model size dependent
 - MC scales well for 64 or more cells
 - KNL scales well for 512 or more cells
 - GPU scales well for 1024 or more cells
- Below scaling thresholds node resources are under-utilized
- **GPU catches up** at 4000 cells

Single node scaling – speedup: comparison with NEURON

Memory

- Arbor significantly more memory efficient with 4.4 GB for 16k model,
- NEURON unable to run 16k model due to running out of 64 GB memory available on Daint-mc

Speedup

- Arbor is faster for all model sizes with speedup increasing with model size
 - 5-10x faster for less than 128 cells
 - over 20x faster for more than 256 cells

Setup of connectivity model on HPC architecture

System

	Daint-mc	Daint-gpu	Tave-knl
CPU	Broadwell	Haswell	KNL
memory	64 GB	$32~\mathrm{GB}$	96 GB
cores/socket	18	12	64
threads/core	2	2	4
vectorization	AVX2	AVX2	AVX512
accelerator	_	P100 GPU	_
MPI ranks	2	1	4
threads/rank	36	24	64
configuration	_	CUDA 9.2	cache,quadrant
compiler	GCC 7.2.0	GCC 6.2.0	GCC 7.2.0

10k connectivity model

Cells: As in ring model with 16k cells for duration of 100 ms

Network: 10 000 way randomly connected with no self-connections

Minimal delay: 10 ms or 20 ms

• Synapses: All excitatory

• Spiking: All cells spike synchronously with frequency 100 Hz or 50 Hz

Strong scaling: minimizing time to solution for a fixed model size with increasing number of nodes

- For less than 4k cells (on 4 nodes)
 multicore and GPU are equivalent (within 10% range)
- For more than 4k cells multicore is faster
- A KNL node is uniformly slower than multicore, using 1.4x more time
- Still, Arbor can be used effectively on an HPC system available

Strong scaling efficiency

- Resource utilization is effective where strong scaling efficiency is good
- Efficiency decreases as the number of nodes increases
- Only the multicore system scales with 90% efficiency to 64 nodes (256 cells per node) and minimizes time-to-solution
- GPU system is still effective for running large models

Strong scaling: consumed resources in node-seconds and energy consumption

Setup of dry-run mode on HPC architecture

System

	Daint-mc	Daint-gpu
CPU	Broadwell	Haswell
memory	64 GB	$32~\mathrm{GB}$
cores/socket	18	12
threads/core	2	2
vectorization	AVX2	AVX2
accelerator	_	P100 GPU
MPI ranks	2	1
threads/rank	36	24
configuration	_	CUDA 9.2
compiler	GCC 7.2.0	GCC 6.2.0

Dry-run mode

Model: 100 ms simulation with 10 ms delay and cells firing at 87.5 Hz

each cell connected to 10 000 random cells with no self-connection

Mode: Run model on single MPI rank, and mimic running on a large cluster

(here: 10 000 nodes) by generating proxy spikes from cells on other ranks

• Cells/ node: 1000 & 10 000 cells per node for total model size of 10 M & 100 M cells

Weak scaling is near perfect

Maximize model size while increasing number of nodes with fixed number of cells

To hundreds of nodes

 Arbor weak scales (near) perfectly on multicore and GPU

Weak scaling sufficient with 80% at extreme scale

To 10 000 nodes

- 1000 nodes: 1k and 10k models weak scale very well with 99% and 95% efficiency
- 10 000 nodes: weak scaling still good with 87% and 79% for 1k and 10k models, but decreased due to spike communication and processing

Summary

- Arbor has been tested on a variety of vectorized CPU architectures, showing significant improvement over compiler auto-vectorization
- Synthetic networks have been tested on multicore, GPU and KNL architectures
 - Close to linear single node scaling, with comparable performance at >1000 cells
 - More memory efficient than standard NEURON, with speedup's of 5-30x as cell numbers increase
- Strong scaling has been shown for up to 10k cells with good energy consumption scaling
- Weak scaling is near perfect up to 128 nodes (1 million cells)
 - Even at 10k nodes, weak scaling is still at 79%

CONCLUSION

Summary

- Arbor is an extensible library for multicompartment neuron models
- It is designed with the goal of optimizing usage of current HPC architectures and is ready to be ported to future architectures
- Development is fully open, developed from scratch, developed by software engineers at supercomputing centers
- It uses standard cell and network formalisms with a focus on performance
 - A subset of NMODL descriptions can be used
 - A python interface is under development
- We have focused on synthetic verification, testing and performance benchmarks
 - Current architectures are standard cpus, vectorized cpus, many core and GPUs
 - Weak and strong scaling have been shown up to 10 000 nodes
 - 5-30x faster than standard NEURON for tested morphologies and networks

QUESTIONS

