
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Preparing for Extreme Heterogeneity in High
Performance Computing

Jeffrey S. Vetter
With many contributions from FTG Group and Colleagues

Barcelona Supercomputing Center

Technical University of Catalonia (UPC)

8 May 2019

88

Highlights

• Recent trends in extreme-scale HPC paint an uncertain future
– Contemporary systems provide evidence that power constraints are driving architectures to change rapidly

– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O

– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures

– Programming and operating systems need major redesign to address these architectural changes

– Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and benchmarking.

• We need portable programming models and performance prediction now more than ever!

• Programming systems must provide performance portability (beyond functional portability)!!
– Heterogeneous processor

• OpenACC->FGPAs

• Clacc – OpenACC support in LLVM (not covered today)

– Emerging memory hierarchies (NVM)

• DRAGON – transparent NVM access from GPUs

• NVL-C – user management of nonvolatile memory in C

• Papyrus – parallel aggregate persistent storage (not covered today)

• Performance prediction is critical for design and optimization (not covered today)

20
20 Managed by UT-Battelle

for the Department of Energy

Oak Ridge National Laboratory is the
DOE Office of Science’s Largest Lab

2424

Today, ORNL is a leading
science and energy laboratory

3,200
research
guests

annually

Nation’s
largest

materials
research
portfolio

$1.63B
FY18

expenditures

Nation’s
most diverse

energy
portfolio

Forefront
scientific

computing
facilities

World-
class

research
reactor

$750M
modernization

investment

4,440
employees

World’s
most intense

neutron
source Managing

major DOE
projects:
US ITER,

exascale
computing

2,270
journal articles

published
in CY17 258

invention
disclosures

in FY18

60
patents
issued
in FY18

3838

ORNL 75th Lab Day and Summit Unveiling – 8 June 2018
#1 on Top 500

3939

4444

US Exascale Computing Project

45

US DOE Office of Science (SC) and National
Nuclear Security Administration (NNSA)

DOE Exascale Program: The Exascale Computing Initiative (ECI)

ECI
partners

Accelerate R&D, acquisition, and deployment to
deliver exascale computing capability to DOE
national labs by the early- to mid-2020s

ECI
mission

Delivery of an enduring and capable exascale
computing capability for use by a wide range
of applications of importance to DOE and the US

ECI
focus

Exascale
Computing

Project
(ECP)

Exascale system
procurement projects &

facilities

ALCF-3 (Aurora)

OLCF-5 (Frontier)

ASC ATS-4 (El Capitan)

Selected program
office application

development
(BER, BES,

NNSA)

Three Major Components of the ECI

49

ECP by the Numbers

A seven-year, $1.7 B R&D effort that launched in 2016

Six core DOE National Laboratories: Argonne, Lawrence
Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Sandia

• Staff from most of the 17 DOE national laboratories take part
in the project

More than 100 top-notch R&D teams

Three technical focus areas (Application Development,
Software Technology, Hardware and Integration)

supported by project management expertise in the
ECP Project Office

Hundreds of consequential milestones delivered on
schedule and within budget since project inception

7
YEARS

$1.7B

6
CORE DOE

LABS

3
TECHNICAL

FOCUS
AREAS

100
R&D TEAMS

1000
RESEARCHERS

ECP
Project
Office

53

The three technical areas in ECP have the necessary components
to meet national goals

Application Development (AD) Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale

Foster application
development

Ease
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP
products on targeted systems at
leading DOE computing facilities

Produce expanded and vertically
integrated software stack to achieve
full potential of exascale computing

Develop and enhance the predictive
capability of applications critical to

the DOE

25 applications ranging from
national security, to energy, earth

systems, economic security,
materials, and data

80+ unique software
products spanning

programming models
and run times, math
libraries, data and

visualization

6 vendors supported
by PathForward

focused on memory,
node, connectivity

advancements;
deployment to facilities

61

National security

Stockpile
stewardship

Next-generation
electromagnetics

simulation of hostile
environment and

virtual flight testing for
hypersonic re-entry

vehicles

Energy security

Turbine wind plant
efficiency

High-efficiency,
low-emission

combustion engine
and gas turbine

design

Materials design for
extreme

environments of
nuclear fission

and fusion reactors

Design and
commercialization
of Small Modular

Reactors

Subsurface use
for carbon capture,

petroleum extraction,
waste disposal

Scale-up of clean
fossil fuel combustion

Biofuel catalyst
design

Scientific discovery

Find, predict,
and control materials

and properties

Cosmological probe
of the standard model

of particle physics

Validate fundamental
laws of nature

Demystify origin of
chemical elements

Light source-enabled
analysis of protein

and molecular
structure and design

Whole-device model
of magnetically
confined fusion

plasmas

Earth system

Accurate regional
impact assessments

in Earth system
models

Stress-resistant crop
analysis and catalytic

conversion
of biomass-derived

alcohols

Metagenomics
for analysis of

biogeochemical
cycles, climate

change,
environmental
remediation

Economic security

Additive
manufacturing
of qualifiable
metal parts

Reliable and
efficient planning
of the power grid

Seismic hazard
risk assessment

Urban planning

Health care

Accelerate
and translate

cancer research

ECP applications target national problems in 6 strategic areas

81

ECP SW Stack: Strategic Alignment & Synergies

Applications Co-Design

Software Ecosystem & Delivery

Development
Tools

Data & Visualization

Hardware interface

Programming
Models

Runtimes

Mathematical

Libraries
Embedded Data &

Visualization

82

Many ECP ST products are available (many github)

etc…

For example…

83

OpenHPC
Potential exit strategy
for binary distributions

• Target similar software to
existing OpenHPC stack

• Develop super-scalable
release targeting higher end
systems

Direct2Facility
Platform-specific software
in support of a specified
2021–2023 exascale system

• Software exclusively
supporting a specific platform

• System software, some tools
and runtimes

ECP software projects
Each project to define (at least 2) release vectors

SDKs
Reusable software libraries
embedded in applications;
cohesive/interdependent
libraries released as sets
modeled on xSDK

• Regular coordinated
releases

• Hierarchical collection
built on Spack

• Products may belong to >1
SDK based on dependences

• Establish community policies
for library development

• Apply Continuous Integration
and other robust testing
practices

Assume all releases are delivered as “build from source”
via Spack – at least initially

Focus on ensuring that software compiles robustly
on all platforms of interest to ECP (including testbeds)

Software Development Kits (SDKs): A Key ST Design Feature
An important delivery vehicle for software products with a direct line of sight to ECP applications

Math SDK

Tools SDK

PM&RT SDK

DataViz SDK

Facility SDK

More projects Fewer projects

http://e4s.io

http://e4s.io/

9797

Major Trends in Computing

138

Contemporary devices are approaching fundamental limits

I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54,

2014, doi:10.1038/nature13570.

Economist, Mar 2016

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted

MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974,

Dennard scaling has already ended. Dennard observed that voltage and
current should be proportional to the linear dimensions of a transistor: 2x
transistor count implies 40% faster and 50% more efficient.

139139

Business climate reflects this uncertainty, cost, complexity, consolidation

140

Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition
Period

6th wave

141141

Predictions for Transition Period

Optimize Software and
Expose New

Hierarchical Parallelism

• Redesign software to
boost performance
on upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
efficiently for our
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

Emerging Technologies

• Investigate new
computational
paradigms

• Quantum

• Neuromorphic

• Advanced Digital

• Emerging Memory
Devices

142142

Transition Period Predictions

Optimize Software and
Expose New

Hierarchical Parallelism

• Redesign software to
boost performance
on upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
efficiently for our
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

Emerging Technologies

• Investigate new
computational
paradigms

• Quantum

• Neuromorphic

• Advanced Digital

• Emerging Memory
Devices

143143
https://www.thebroadcastbridge.com/content/entry/1094/altera-announces-arria-10-2666mbps-ddr4-memory-fpga-interface

Pace of Architectural Specialization is Quickening

• Industry, lacking Moore’s Law, will need to
continue to differentiate products (to stay
in business)

• Grant that advantage of better CMOS
process stalls

• Use the same transistors differently to
enhance performance

• Architectural design will become extremely
important, critical
– Dark Silicon
– Address new parameters for benefits/curse

of Moore’s Law

http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics

simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-

ai-platform-takes-aim-at-nvidias-gpu-techology

https://fossbytes.com/nvidia-volta-gddr6-2018/

Xilinx ACAP

HotChips 2018

HotChips 2018

145145

Analysis of Apple A-* SoCs

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

146

Memory Hierarchy is Specializing, Expanding, and Diversifying

Image Source: IMEC

147

NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

148148

Transition Period will be Disruptive

• New devices and architectures may not
be hidden in traditional levels of
abstraction

– A new type of CNT transistor may be
completely hidden from higher levels

– A new paradigm like quantum may require
new architectures, programming models, and
algorithmic approaches

• Solutions need a co-design framework to
evaluate and mature specific
technologies

Layer Switch, 3D NVM Approximate Neuro Quantum

Application 1 1 2 2 3

Algorithm 1 1 2 3 3

Language 1 2 2 3 3

API 1 2 2 3 3

Arch 1 2 2 3 3

ISA 1 2 2 3 3

Microarch 2 3 2 3 3

FU 2 3 2 3 3

Logic 3 3 2 3 3

Device 3 3 2 3 3
Adapted from IEEE Rebooting Computing Chart

149149

LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
TBD

LLNL
TBD

LANL/SNL
Cray/Intel Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9
Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

Jan 2018

Heterogeneous Cores

Deep Memory incl NVM

Plateauing I/O Performance

164164

Final Report on Workshop on Extreme Heterogeneity

1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages

– Intelligent, domain-aware compilers and tools

– Composition of disparate software components

• Managing resources intelligently

– Automated methods using introspection and machine learning

– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance

– Evaluate impact of potential system designs and application mappings

– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony

– Methods for validation on non-deterministic architectures

– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows

– Mapping of science workflows to heterogeneous hardware and software services

– Adapting workflows and services to meet facility-level objectives through learning approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756

190190

Programming Heterogeneous Systems

192

Complex Architectures Yields Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource
contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, SYCL, Kokkos…

Memory use,
coalescing

Data
orchestration

Fine grained
parallelism

Hardware
features

• This approach is not
scalable, affordable,
robust, elegant, etc.

• Not performance
portable across
different architectures

205205

Directive-based Solutions for
FPGA Computing

213213

FPGAs| Approach

• Design and implement an OpenACC-to-FPGA translation
framework, which is the first work to use a standard and portable
directive-based, high-level programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma
extensions to improve performance.

• Evaluate the functional and performance portability of the
framework across diverse architectures (Altera FPGA, NVIDIA
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE

International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.

214214

OpenARC System Architecture

OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End
Kernels &

Host

Program

Generator

Device

Specific

Optimizer

OpenAR

C

IR

LLVM

Back-End

Extended

LLVM IR

Generator

NVL

Passes

Standard

LLVM

Passes

Kernels for

Target

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io

NVM Library
Executable

OpenARC

Auto-Tuner

Tuning

Configuratio

n Generator

Search

Space

Pruner

CUDA,

OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

GCN

GPU

Xeon

Phi

Input C Program

Feedback

Run

Run

Altera

FPGA

215215

Baseline Translation of OpenACC-to-FPGA

• Use OpenCL as the output model and the Altera Offline Compiler
(AOC) as its backend compiler.

• Translates the input OpenACC program into a host code
containing HeteroIR constructs and device-specific kernel codes.
– Use the same HeteroIR runtime system of the existing OpenCL backends,

except for the device initialization.

– Reuse most of compiler passes for kernel generation.

217

FPGA OpenCL Architecture

FPGA

Memory

Local

Memory

Interconnect

Local

Memory

Interconnect

Local

Memory

Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory

Controller and PHY

External Memory

Controller and PHY

H
o

st P
ro

c
e

sso
r

External DDR Memory External DDR Memory

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Pipeline
Depth

Vector
Width

Number of Replicated Compute Units

220220

Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC
– Device kernels can communicate with

each other only through the device
global memory.

– Synchronizations between kernels are
at the granularity of a kernel
execution.

• Altera OpenCL channels
– Allows passing data between kernels

and synchronizing kernels with high
efficiency and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through
global memory in OpenACC

Kernel communications with
Altera channels

221

Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;

__kernel void kernel1(__global float* a) {

int i = get_global_id(0);

write_channel_altera(pipe_b, a[i]*a[i]);

}

__kernel void kernel2(__global float* c) {

int i = get_global_id(0);

c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

222

Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)

{

#pragma acc kernels loop gang worker pipeout (b) present (a)

For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker pipein (b) present (c)

For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining
transformation

Valid under
specific conditions

228

Speedup over CU, SIMD (1,1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
,1

1
,2

1
,4

1
,8

1
,1

6

2
,1

2
,2

2
,4

2
,8

2
,1

6

4
,1

4
,2

4
,4

4
,8

8
,1

1
,1

1
,2

1
,4

1
,8

2
,1

2
,2

2
,4

4
,1

4
,2

8
,1

1
,1

2
,1

4
,1

1
,1

1
,2

2
,1

1
,1

1
,2

1
,4

2
,1

2
,2

4
,1

1
,1

1
,2

1
,4

2
,1

Jacobi MatMul SpMul HotSpot NW SRAD

S
p
e

e
d
u

p

Jacobi and MatMul show better
performance with increase in CU
and SIMD, thanks to regular
memory accesses.

SpMul and SRAD perform worse
with multiple CUs, mainly due to
memory contention.

Performance of HotSpot and NW
increases with multiple CUs, but
decreases with vectorization.

231

Overall Performance

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p
e
e

d
u

p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and
FFT-2D), performing much higher than other accelerators.

For traditional HPC applications with abundant parallel floating-point operations,
it seems to be difficult for FPGAs to beat the performance of other accelerators,
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators,
while remaining power-efficient.

Emerging Memory Systems

272272

Memory Systems Started
Diversifying Several Years Ago

• Architectures

– HMC, HBM/2/3, LPDDR4, GDDR5X, WIDEIO2,
etc

– 2.5D, 3D Stacking

• Configurations

– Unified memory

– Scratchpads

– Write through, write back, etc

– Consistency and coherence protocols

– Virtual v. Physical, paging strategies

• New devices

– ReRAM, PCRAM, STT-MRAM, 3D-Xpoint

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance

Computing,” CiSE, 17(2):73-82, 2015.

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg
https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

273

Complexity in the Expanding and Diversifying Memory Hierarchy

Image Source: IMEC

274

NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

285

Many Memory Architecture Options under Consideration…

300300

Programming NVM Systems Portably

302302

NVM Opportunities in Applications

• Burst Buffers, C/R

• Persistent data structures like materials
tables

• In situ visualization and analytics

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

Empirical results show many reasons…

•Lookup, index, and permutation tables

•Inverted and ‘element-lagged’ mass matrices

•Geometry arrays for grids

•Thermal conductivity for soils

•Strain and conductivity rates

•Boundary condition data

•Constants for transforms, interpolation

•MC Tally tables, cross-section materials tables…

http://ft.ornl.gov/eavl

303303

NVM Design Choices

• Dimensions
– Integration point

– Exploit persistence

• ACID?

– Scalability

– Programming model

• Our Approaches
– Transparent access to NVM from GPU

– NVL-C: expose NVM to user/applications

– Papyrus: parallel aggregate persistent
memory

– Many others (See S. Mittal and J. S. Vetter, "A Survey of
Software Techniques for Using Non-Volatile Memories for
Storage and Main Memory Systems," in IEEE TPDS 27:5, pp.
1537-1550, 2016)

http://j.mp/nvm-sw-survey

http://j.mp/nvm-sw-survey

304304

Transparent Runtime Support for NVM
from GPUs

306306

DRAGON: API and Integration

306

// Allocate host & device memory
h_buf = malloc(size);
cudaMalloc(&g_buf, size);

while() { // go over all chunks
// Read-in data
f = fopen(filepath, “r”);
fread(h_buf, size, 1, f);

// H2D Transfer
cudaMemcpy(g_buf, h_buf, H2D);

// GPU compute
compute_on_gpu(g_buf);

// Transfer back to host
cudaMemcpy(h_buf, g_buf, D2H);
compute_on_host(h_buf);

// Write out result
fwrite(h_buf, size, 1, f);

}

// mmap data to host and GPU
dragon_map(filepath, size,

D_READ | D_WRITE, &g_buf);

// Accessible on both host and GPU
compute_on_gpu(g_buf);
compute_on_host(g_buf);

// Implicitly called when program
exits
dragon_sync(g_buf);
dragon_unmap(g_buf);O

u
t-

o
f-

C
o
re

 u
si

n
g
 C

U
D

A DRAGON

• Similar to NVIDIA’s Unified Memory (UM)

• Enable access to large memory on NVM

• UM is limited by host memory

Notes

307307

DRAGON Operations: Key Components

• Three memory spaces:
– GPU Mem (GM) as 1st level cache

– Host Mem (HM) as 2nd level cache

– NVM as primary storage

• Modified GPU driver
– Manage data movement &

coherency

• GPU MMU with HW Page Fault
– Manage GPU virtual memory

mapping

• Page cache
– Buffer & accelerate data access

307
P. Markthub, M.E. Belviranli et al., “DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access,” in SC18, 2018

https://github.com/pakmarkthub/dragon

https://github.com/pakmarkthub/dragon

311311

Results with Caffe

• Improves capability and productivity
– Larger problem sizes transparently

– Handles irregularity easily

– Surprising performance on applications

312312

Language support for NVM:
NVL-C - extending C to support NVM

313313

NVL-C: Portable Programming for NVMM

– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of
pointer bugs.

– Best to enforce pointer safety constraints at
compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory in
case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and
optimizations.

– LLVM-based:

– Core of compiler can be reused for other
front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016

315

Design Goals: Familiar programming interface

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node

= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next = after->next;

after->next = node;

}

• Small set of C language extensions:
– Header file

– Type qualifiers

– Library API

– Pragmas

• Existing memory interfaces remain:
– NVL-C is a superset of C

– Unqualified types as specified by C

– Local/global variables stored in volatile
memory (DRAM or registers)

– Use existing C standard libraries for HDD

316

Design Goals: Avoiding persistent data corruption

• New categories of pointer bugs:

– Caused by multiple memory types:

• E.g., pointer from NVM to volatile memory will
become dangling pointer

– Prevented at compile time or run time

• Automatic reference counting:

– No need to manually free

– Avoids leaks and dangling pointers

• Transactions:

– Avoids persistent data corruption across
software and hardware failures

• High performance:

– Performance penalty from memory
management, pointer safety, and
transactions

– Compiler-based optimizations

– Programmer-specified hints

318318
http://ft.ornl.gov/research/openarc

http://ft.ornl.gov/research/openarc

321

Programming Model: NVM Pointers

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node

= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next = after->next;

after->next = node;

}

• nvl type qualifier:
– Indicates NVM storage

– On target type, declares NVM pointer

– No NVM-stored local or global variable

• Stricter type safety for NVM pointers:
– Does not affect other C types

– Avoids persistent data corruption

– Facilitates compiler analysis

– Needed for automatic reference counting

– E.g., pointer conversions involving NVM
pointers are strictly prohibited

struct list *node

= malloc(sizeof(struct list));

compile-time error
explicit cast won’t help

323323

Programming Model: NVM memory management

• Hybrid of traditional HDD and DRAM programming interfaces

• NVM storage organized into NVM heaps identified by file names

• NVM heaps can be managed using normal file system commands

• Within an NVM heap, memory always allocated dynamically

NVM HDD analogue

nvl_heap_t FILE

nvl_open fopen

nvl_close fclose

mv, rm, ls, etc. mv, rm, ls, etc.

NVM DRAM analogue

nvl T* T*

nvl_alloc_nv malloc

automatic free

324324

Programming Model: Accessing NVM

NVM Heap A
("A.nvl")

Volatile Memory
(registers, stack, bss,

heap)

nvl T *root =

nvl_get_root(heap, T);

nvl_heap_t

How do we access allocations
within an NVM heap?

nvl_heap_t *heap =

nvl_open("A.nvl");

heap

root

Checksum error if T is
incorrect type.

Set root with nvl_set_root.

Before first nvl_set_root,
nvl_get_root returns null.

329329

Programming Model: Pointer types (like Coburn et al.)

NVM Heap A ("A.nvl")

NVM Heap B ("B.nvl")

Volatile Memory
(registers, stack, bss,

heap)

V-to-NV

intra-heap
NV-to-NV

NV-to-V

inter-heap
NV-to-NV

compile-time error

run-time error

avoids dangling pointers when
memory segments close

330330

Programming Model: Transactions: Purpose

• Ensures data consistency

• Handles unexpected application termination:
– Hardware failure (e.g., power loss)

– Application or OS failure (e.g., segmentation fault)

– NVL-C safety constraint violation (e.g., inter-heap NV-to-NV pointer)

• Does not handle concurrent access to NVM:
– Future work

– Concurrency is still possible

– Programmer must safeguard NVM data from concurrent access

332

Programming Model: Transactions: MATMUL Example

#include <nvl.h>

void matmul(nvl float a[I][J],

nvl float b[I][K],

nvl float c[K][J],

nvl int *i)

{

for (; *i<I; ++*i) {

for (int j=0; j<J; ++j) {

float sum = 0.0;

for (int k=0; k<K; ++k)

sum += b[*i][k] * c[k][j];

a[*i][j] = sum;

}

}

}

• Store i in NVM

• Caller initializes *i to 0 when allocated

• To recover after failure, matmul
resumes at old *i

• Problem: failure might have occurred
before all of a[*i-1] became durable
in NVM due to buffering and caching

333

Programming Model: Transactions: MATMUL Example

#include <nvl.h>

void matmul(nvl float a[I][J],

nvl float b[I][K],

nvl float c[K][J],

nvl int *i)

{

while (*i<I) {

#pragma nvl atomic heap(heap)

{

for (int j=0; j<J; ++j) {

float sum = 0.0;

for (int k=0; k<K; ++k)

sum += b[*i][k] * c[k][j];

a[*i][j] = sum;

}

++*i;

}

}

}

• nvl atomic pragma specifies explicit
transaction that computes one row of a

• Transaction guarantees atomicity: both
*i is incremented and one row of a is
written durably, or neither

• Incomplete transaction rolled back after
failure

334334

Programming Model: Transactions: ACID

• Atomicity:
– Incomplete transaction rolled back next time NVM heap is accessed

• Consistency:
– Transactions begin and end with NVM data is in a consistent state
– Implicit transactions: specify NVL-C internal data consistency
– Explicit transactions: specify application data consistency

• Isolation (handles concurrent access):
– Not guaranteed yet

• Durability:
– All NVM writes are durable when transaction commits

341

Evaluation: MATMUL

188

1552

206 193 205 183 188

0
200
400
600
800

1000
1200
1400
1600

ExM T1 T2 T3 T1 T2 T3

ND BlockNVM ByteNVM

Hoisting

N
o

rm
a

li
ze

d
 T

im
e

(%
)

• ExM = use SSD as extended DRAM

• T1 = BSR + transactions

• T2 = T1 + backup clauses

• T3 = T1 + clobber clauses

• BlockNVM = msync included

• ByteNVM = msync suppressed

• Log aggregation (backup) is important for performance
• msync is the culprit
• Skipping undo logs (clobber) has little to improve upon
• NVL-C has minimal overhead

better

worse

357357

NVM Implications

358358

Implications

1. Device and architecture trends will have major impacts on HPC in coming decade
1. NVM in HPC systems is real!
2. Entirely possible to have an Exabyte of NVM in upcoming systems!

2. Performance trends of system components will create new opportunities and challenges
1. Winners and losers

3. Sea of NVM allows/requires applications to operate differently
1. Sea of NVM will permit applications to run for weeks without doing I/O to external storage system
2. Applications will simply access local/remote NVM
3. Longer term productive I/O will be ‘occasionally’ written to Lustre, GPFS
4. Checkpointing (as we know it) will disappear

4. Requirements for system design will change
1. Increase in byte-addressable memory-like message sizes and frequencies
2. Reduced traditional IO demands
3. KV traffic could have considerable impact – need more applications evidence
4. Need changes to the operational mode of the system

360360

Recap

• Recent trends in extreme-scale HPC paint an
ambiguous future

• Complexity is the next major hurdle
– Heterogeneous compute

– Deep memory with NVM

• New software solutions
– Programming

• Memory

– DRAGON

– NVL-C

– Papyrus

• Heterogeneity

– OpenACC->FPGAs

– Clacc for LLVM

• These changes will have a substantial impact
on both software and application design

• Visit us
– We host interns and other visitors

year round

• Jobs in FTG
– Postdoctoral Research Associate in

Computer Science

– Software Engineer

– Computer Scientist

– Visit http://jobs.ornl.gov

• Contact me vetter@ornl.gov

http://jobs.ornl.gov/
mailto:vetter@ornl.gov

371371

Acknowledgements

• Contributors and Sponsors

– Future Technologies Group: http://ft.ornl.gov

– US Department of Energy Office of Science

• Exascale Computing Project

• DOE Vancouver Project:
https://ft.ornl.gov/trac/vancouver

• DOE Blackcomb Project:
https://ft.ornl.gov/trac/blackcomb

• SciDAC RAPIDS Project

– US DARPA

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb

372372

Bonus Material

