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Highlights

• Recent trends in extreme-scale HPC paint an uncertain future
– Contemporary systems provide evidence that power constraints are driving architectures to change rapidly

– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O

– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures

– Programming and operating systems need major redesign to address these architectural changes

– Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and benchmarking.

• We need portable programming models and performance prediction now more than ever!

• Programming systems must provide performance portability (beyond functional portability)!!
– Heterogeneous processor

• OpenACC->FGPAs

• Clacc – OpenACC support in LLVM  (not covered today)

– Emerging memory hierarchies (NVM)

• DRAGON – transparent NVM access from GPUs

• NVL-C – user management of nonvolatile memory in C

• Papyrus – parallel aggregate persistent storage  (not covered today)

• Performance prediction is critical for design and optimization (not covered today)
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Oak Ridge National Laboratory is the 
DOE Office of Science’s Largest Lab
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Today, ORNL is a leading 
science and energy laboratory

3,200
research
guests 

annually

Nation’s 
largest 

materials 
research 
portfolio

$1.63B 
FY18

expenditures

Nation’s 
most diverse 

energy 
portfolio

Forefront
scientific 

computing 
facilities

World-
class 

research 
reactor

$750M 
modernization 

investment

4,440
employees

World’s 
most intense 

neutron
source Managing 

major DOE 
projects: 
US ITER, 

exascale 
computing 

2,270
journal articles 

published 
in CY17 258

invention
disclosures

in FY18

60
patents 
issued
in FY18
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ORNL 75th Lab Day and Summit Unveiling – 8 June 2018
#1 on Top 500
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US Exascale Computing Project
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US DOE Office of Science (SC) and National 
Nuclear Security Administration (NNSA) 

DOE Exascale Program: The Exascale Computing Initiative (ECI)

ECI 
partners

Accelerate R&D, acquisition, and deployment to 
deliver exascale computing capability to DOE 
national labs by the early- to mid-2020s

ECI 
mission

Delivery of an enduring and capable exascale 
computing capability for use by a wide range 
of applications of importance to DOE and the US

ECI 
focus

Exascale
Computing 

Project 
(ECP)

Exascale system 
procurement projects & 

facilities

ALCF-3 (Aurora)

OLCF-5 (Frontier)

ASC ATS-4 (El Capitan)

Selected program 
office application 

development 
(BER, BES, 

NNSA)

Three Major Components of the ECI
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ECP by the Numbers

A seven-year, $1.7 B R&D effort that launched in 2016

Six core DOE National Laboratories: Argonne, Lawrence 
Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Sandia

• Staff from most of the 17 DOE national laboratories take part 
in the project

More than 100 top-notch R&D teams 

Three technical focus areas (Application Development, 
Software Technology, Hardware and Integration) 

supported by project management expertise in the 
ECP Project Office 

Hundreds of consequential milestones delivered on 
schedule and within budget since project inception

7 
YEARS

$1.7B

6
CORE DOE

LABS

3
TECHNICAL

FOCUS
AREAS

100 
R&D TEAMS

1000 
RESEARCHERS

ECP 
Project 
Office
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The three technical areas in ECP have the necessary components 
to meet national goals

Application Development (AD) Software
Technology (ST)

Hardware 
and Integration (HI)

Performant mission and science applications @ scale

Foster application 
development

Ease 
of use

Diverse
architectures

HPC
leadership

Integrated delivery of ECP 
products on targeted systems at 
leading DOE computing facilities

Produce expanded and vertically 
integrated software stack to achieve 
full potential of exascale computing

Develop and enhance the predictive 
capability of applications critical to 

the DOE

25 applications ranging from 
national security, to energy, earth 

systems, economic security, 
materials, and data

80+ unique software 
products spanning 

programming models 
and run times, math 
libraries, data and 

visualization

6 vendors supported 
by PathForward

focused on memory, 
node, connectivity 

advancements; 
deployment to facilities
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National security

Stockpile 
stewardship

Next-generation 
electromagnetics 

simulation of hostile 
environment and 

virtual flight testing for 
hypersonic re-entry 

vehicles 

Energy security

Turbine wind plant 
efficiency

High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design

Materials design for 
extreme 

environments of 
nuclear fission 

and fusion reactors

Design and 
commercialization 
of Small Modular 

Reactors

Subsurface use 
for carbon capture, 

petroleum extraction, 
waste disposal

Scale-up of clean 
fossil fuel combustion

Biofuel catalyst 
design

Scientific discovery

Find, predict, 
and control materials 

and properties

Cosmological probe 
of the standard model 

of particle physics

Validate fundamental 
laws of nature

Demystify origin of 
chemical elements

Light source-enabled 
analysis of protein 

and molecular 
structure and design

Whole-device model 
of magnetically  
confined fusion 

plasmas

Earth system

Accurate regional 
impact assessments 

in Earth system 
models

Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols

Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Economic security

Additive 
manufacturing 
of qualifiable 
metal parts

Reliable and 
efficient planning 
of the power grid

Seismic hazard 
risk assessment

Urban planning

Health care

Accelerate 
and translate 

cancer research

ECP applications target national problems in 6 strategic areas
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ECP SW Stack: Strategic Alignment & Synergies

Applications Co-Design

Software Ecosystem & Delivery

Development
Tools

Data & Visualization

Hardware interface

Programming
Models

Runtimes

Mathematical

Libraries
Embedded Data & 

Visualization
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Many ECP ST products are available (many github)

etc…

For example…
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OpenHPC
Potential exit strategy 
for binary distributions

• Target similar software to 
existing OpenHPC stack

• Develop super-scalable 
release targeting higher end 
systems

Direct2Facility
Platform-specific software 
in support of a specified 
2021–2023 exascale system

• Software exclusively
supporting a specific platform

• System software, some tools 
and runtimes

ECP software projects
Each project to define (at least 2) release vectors

SDKs
Reusable software libraries 
embedded in applications; 
cohesive/interdependent 
libraries released as sets 
modeled on xSDK

• Regular coordinated 
releases

• Hierarchical collection 
built on Spack

• Products may belong to >1 
SDK based on dependences

• Establish community policies 
for library development

• Apply Continuous Integration 
and other robust testing 
practices

Assume all releases are delivered as “build from source” 
via Spack – at least initially

Focus on ensuring that software compiles robustly 
on all platforms of interest to ECP (including testbeds)

Software Development Kits (SDKs): A Key ST Design Feature
An important delivery vehicle for software products with a direct line of sight to ECP applications

Math SDK

Tools SDK

PM&RT SDK

DataViz SDK

Facility SDK

More projects Fewer projects 

http://e4s.io

http://e4s.io/
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Major Trends in Computing



138

Contemporary devices are approaching fundamental limits

I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54, 

2014, doi:10.1038/nature13570.

Economist, Mar 2016

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted 

MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974, 

Dennard scaling has already ended. Dennard observed that voltage and 
current should be proportional to the linear dimensions of a transistor: 2x 
transistor count implies 40% faster and 50% more efficient.
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Business climate reflects this uncertainty, cost, complexity, consolidation
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Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition 
Period

6th wave
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Predictions for Transition Period

Optimize Software and 
Expose New 

Hierarchical Parallelism

• Redesign software to 
boost performance 
on upcoming 
architectures

• Exploit new levels of 
parallelism and 
efficient data 
movement

Architectural 
Specialization and 

Integration

• Use CMOS more 
efficiently for our 
workloads

• Integrate components 
to boost performance 
and eliminate 
inefficiencies 

Emerging Technologies

• Investigate new 
computational 
paradigms

• Quantum 

• Neuromorphic

• Advanced Digital

• Emerging Memory 
Devices
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Transition Period Predictions

Optimize Software and 
Expose New 

Hierarchical Parallelism

• Redesign software to 
boost performance 
on upcoming 
architectures

• Exploit new levels of 
parallelism and 
efficient data 
movement

Architectural 
Specialization and 

Integration

• Use CMOS more 
efficiently for our 
workloads

• Integrate components 
to boost performance 
and eliminate 
inefficiencies 

Emerging Technologies

• Investigate new 
computational 
paradigms

• Quantum 

• Neuromorphic

• Advanced Digital

• Emerging Memory 
Devices
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https://www.thebroadcastbridge.com/content/entry/1094/altera-announces-arria-10-2666mbps-ddr4-memory-fpga-interface

Pace of Architectural Specialization is Quickening

• Industry, lacking Moore’s Law, will need to 
continue to differentiate products (to stay 
in business)

• Grant that advantage of better CMOS 
process stalls

• Use the same transistors differently to 
enhance performance

• Architectural design will become extremely 
important, critical
– Dark Silicon
– Address new parameters for benefits/curse 

of Moore’s Law

http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics 

simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-

ai-platform-takes-aim-at-nvidias-gpu-techology

https://fossbytes.com/nvidia-volta-gddr6-2018/

Xilinx ACAP

HotChips 2018

HotChips 2018
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Analysis of Apple A-* SoCs

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
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Memory Hierarchy is Specializing, Expanding, and Diversifying

Image Source: IMEC
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NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Transition Period will be Disruptive 

• New devices and architectures may not 
be hidden in traditional levels of 
abstraction

– A new type of CNT transistor may be 
completely hidden from higher levels

– A new paradigm like quantum may require 
new architectures, programming models, and 
algorithmic approaches

• Solutions need a co-design framework to 
evaluate and mature specific 
technologies

Layer Switch, 3D NVM Approximate Neuro Quantum

Application 1 1 2 2 3

Algorithm 1 1 2 3 3

Language 1 2 2 3 3

API 1 2 2 3 3

Arch 1 2 2 3 3

ISA 1 2 2 3 3

Microarch 2 3 2 3 3

FU 2 3 2 3 3

Logic 3 3 2 3 3

Device 3 3 2 3 3
Adapted from IEEE Rebooting Computing Chart
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LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
TBD

LLNL
TBD

LANL/SNL
Cray/Intel  Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9
Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

Jan 2018

Heterogeneous Cores

Deep Memory incl NVM

Plateauing I/O Performance
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Final Report on Workshop on Extreme Heterogeneity

1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages

– Intelligent, domain-aware compilers and tools

– Composition of disparate software components

• Managing resources intelligently

– Automated methods using introspection and machine learning

– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance

– Evaluate impact of potential system designs and application mappings

– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony

– Methods for validation on non-deterministic architectures

– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows

– Mapping of science workflows to heterogeneous hardware and software services

– Adapting workflows and services to meet facility-level objectives through learning approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756
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Programming Heterogeneous Systems
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Complex Architectures Yields Complex Programming Models

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource 
contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, SYCL, Kokkos…

Memory use, 
coalescing

Data 
orchestration

Fine grained 
parallelism

Hardware 
features

• This approach is not 
scalable, affordable, 
robust, elegant, etc.

• Not performance 
portable across 
different architectures
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Directive-based Solutions for 
FPGA Computing



213213

FPGAs| Approach

• Design and implement an OpenACC-to-FPGA translation 
framework, which is the first work to use a standard and portable 
directive-based, high-level programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma 
extensions to improve performance.

• Evaluate the functional and performance portability of the 
framework across diverse architectures (Altera FPGA, NVIDIA 
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 

International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.
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OpenARC System Architecture

OpenARC RuntimeOpenARC Compiler

Output CodesOpenARC

Front-EndOpenACC

OpenMP 4

NVL-C

C Parser

Directive

Parser

Preprocessor

General

Optimizer

OpenARC

Back-End
Kernels  & 

Host 

Program

Generator

Device 

Specific 

Optimizer

OpenAR

C

IR

LLVM

Back-End

Extended 

LLVM IR

Generator

NVL

Passes

Standard

LLVM

Passes

Kernels for

Target 

Devices

Host Program

NVM NVMNVM NVM

NVL Runtime

pmem.io

NVM Library
Executable

OpenARC

Auto-Tuner

Tuning 

Configuratio

n Generator

Search 

Space

Pruner

CUDA, 

OpenCL

Libraries

HeteroIR Common Runtime

with Tuning Engine

CUDA

GPU

GCN

GPU

Xeon

Phi

Input C Program

Feedback

Run

Run

Altera

FPGA
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Baseline Translation of OpenACC-to-FPGA

• Use OpenCL as the output model and the Altera Offline Compiler 
(AOC) as its backend compiler.

• Translates the input OpenACC program into a host code 
containing HeteroIR constructs and device-specific kernel codes.
– Use the same HeteroIR runtime system of the existing OpenCL backends, 

except for the device initialization.

– Reuse most of compiler passes for kernel generation.
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FPGA OpenCL Architecture

FPGA

Memory

Local 

Memory

Interconnect

Local 

Memory

Interconnect

Local 

Memory

Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory 

Controller and PHY

External Memory 

Controller and PHY

H
o

st P
ro

c
e

sso
r

External DDR Memory External DDR Memory

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Kernel

Pipelin

e

Pipeline 
Depth

Vector 
Width

Number of Replicated Compute Units
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Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC
– Device kernels can communicate with 

each other only through the device 
global memory.

– Synchronizations between kernels are 
at the granularity of a kernel 
execution.

• Altera OpenCL channels
– Allows passing data between kernels 

and synchronizing kernels with high 
efficiency and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through 
global memory in OpenACC

Kernel communications with 
Altera channels
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Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;

__kernel void kernel1(__global float* a) {

int i = get_global_id(0);

write_channel_altera(pipe_b, a[i]*a[i]);

}

__kernel void kernel2(__global float* c) {

int i = get_global_id(0);

c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel
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Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)

for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)

{

#pragma acc kernels loop gang worker pipeout (b) present (a)

For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }

#pragma acc kernels loop gang worker pipein (b) present (c)

For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining 
transformation

Valid under 
specific conditions
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Speedup over CU, SIMD (1,1)
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Jacobi and MatMul show better 
performance with increase in CU 
and SIMD, thanks to regular 
memory accesses.

SpMul and SRAD perform worse 
with multiple CUs, mainly due to 
memory contention.

Performance of HotSpot and NW 
increases with multiple CUs, but 
decreases with vectorization.
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Overall Performance

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

Jacobi MatMul SpMul HotSpot NW SRAD FFT-1D FFT-2D

S
p
e
e

d
u

p

CPU Sequential
CPU OpenMP

Altera FPGA
Xeon Phi

NVIDIA GPU
AMD GPU

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and 
FFT-2D), performing much higher than other accelerators.

For traditional HPC applications with abundant parallel floating-point operations, 
it seems to be difficult for FPGAs to beat the performance of other accelerators, 
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point 
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators, 
while remaining power-efficient.



Emerging Memory Systems
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Memory Systems Started 
Diversifying Several Years Ago

• Architectures

– HMC, HBM/2/3, LPDDR4, GDDR5X, WIDEIO2, 
etc

– 2.5D, 3D Stacking

• Configurations

– Unified memory

– Scratchpads

– Write through, write back, etc

– Consistency and coherence protocols

– Virtual v. Physical, paging strategies

• New devices

– ReRAM, PCRAM, STT-MRAM, 3D-Xpoint

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg

https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en

H.S.P. Wong, H.Y. Lee, S. Yu et al., “Metal-oxide RRAM,” Proceedings of the IEEE, 100(6):1951-70, 2012.

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High Performance 

Computing,” CiSE, 17(2):73-82, 2015.

http://gigglehd.com/zbxe/files/attach/images/1404665/988/406/011/788d3ba1967e2db3817d259d2e83c88e_1.jpg
https://www.micron.com/~/media/track-2-images/content-images/content_image_hmc.jpg?la=en
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Complexity in the Expanding and Diversifying Memory Hierarchy

Image Source: IMEC
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NVRAM Technology Continues to Improve – Driven by Broad Market Forces

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg

http://www.eetasia.com/STATIC/ARTICLE_IMAGES/201212/EEOL_2012DEC28_STOR_MFG_NT_01.jpg
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Many Memory Architecture Options under Consideration…
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Programming NVM Systems Portably
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NVM Opportunities in Applications

• Burst Buffers, C/R

• Persistent data structures like materials 
tables

• In situ visualization and analytics

J.S. Vetter and S. Mittal, “Opportunities for Nonvolatile Memory Systems in Extreme-Scale High-Performance Computing,” Computing in Science & Engineering, 17(2):73-82, 2015.

http://ft.ornl.gov/eavl

[Liu, et al., MSST 2012]

Empirical results show many reasons…

•Lookup, index, and permutation tables

•Inverted and ‘element-lagged’ mass matrices

•Geometry arrays for grids

•Thermal conductivity for soils

•Strain and conductivity rates

•Boundary condition data

•Constants for transforms, interpolation

•MC Tally tables, cross-section materials tables…

http://ft.ornl.gov/eavl
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NVM Design Choices

• Dimensions
– Integration point

– Exploit persistence

• ACID?

– Scalability

– Programming model

• Our Approaches
– Transparent access to NVM from GPU

– NVL-C: expose NVM to user/applications

– Papyrus: parallel aggregate persistent 
memory

– Many others (See S. Mittal and J. S. Vetter, "A Survey of 
Software Techniques for Using Non-Volatile Memories for 
Storage and Main Memory Systems," in IEEE TPDS 27:5, pp. 
1537-1550, 2016)

http://j.mp/nvm-sw-survey

http://j.mp/nvm-sw-survey
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Transparent Runtime Support for NVM 
from GPUs
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DRAGON: API and Integration

306

// Allocate host & device memory
h_buf = malloc(size);
cudaMalloc(&g_buf, size);

while() { // go over all chunks
// Read-in data
f = fopen(filepath, “r”);
fread(h_buf, size, 1, f);

// H2D Transfer
cudaMemcpy(g_buf, h_buf, H2D);

// GPU compute
compute_on_gpu(g_buf);

// Transfer back to host
cudaMemcpy(h_buf, g_buf, D2H);
compute_on_host(h_buf);

// Write out result
fwrite(h_buf, size, 1, f);

}

// mmap data to host and GPU
dragon_map(filepath, size, 

D_READ | D_WRITE, &g_buf);

// Accessible on both host and GPU
compute_on_gpu(g_buf);
compute_on_host(g_buf);

// Implicitly called when program 
exits
dragon_sync(g_buf);
dragon_unmap(g_buf);O

u
t-

o
f-

C
o
re

 u
si

n
g
 C

U
D

A DRAGON

• Similar to NVIDIA’s Unified Memory (UM)

• Enable access to large memory on NVM

• UM is limited by host memory

Notes
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DRAGON Operations: Key Components

• Three memory spaces:
– GPU Mem (GM) as 1st level cache

– Host Mem (HM) as 2nd level cache

– NVM as primary storage

• Modified GPU driver
– Manage data movement & 

coherency

• GPU MMU with HW Page Fault
– Manage GPU virtual memory 

mapping

• Page cache
– Buffer & accelerate data access

307
P. Markthub, M.E. Belviranli et al., “DRAGON: Breaking GPU Memory Capacity Limits with Direct NVM Access,” in SC18, 2018

https://github.com/pakmarkthub/dragon

https://github.com/pakmarkthub/dragon
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Results with Caffe

• Improves capability and productivity
– Larger problem sizes transparently

– Handles irregularity easily

– Surprising performance on applications
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Language support for NVM:
NVL-C - extending C to support NVM
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NVL-C: Portable Programming for NVMM

– Minimal, familiar, programming interface:

– Minimal C language extensions.

– App can still use DRAM.

– Pointer safety:

– Persistence creates new categories of 
pointer bugs.

– Best to enforce pointer safety constraints at 
compile time rather than run time.

– Transactions:

– Prevent corruption of persistent memory in 
case of application or system failure.

– Language extensions enable:

– Compile-time safety constraints.

– NVM-related compiler analyses and 
optimizations.

– LLVM-based:

– Core of compiler can be reused for other 
front ends and languages.

– Can take advantage of LLVM ecosystem.

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void remove(int k) {

nvl_heap_t *heap

= nvl_open("foo.nvl");

nvl struct list *a

= nvl_get_root(heap, struct list);

#pragma nvl atomic

while (a->next != NULL) {

if (a->next->value == k)

a->next = a->next->next;

else

a = a->next;

}

nvl_close(heap);

}

J. Denny, S. Lee, and J.S. Vetter, “NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems,” in ACM High Performance Distributed Computing (HPDC). Kyoto: ACM, 2016
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Design Goals: Familiar programming interface

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node

= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next  = after->next;

after->next = node;

}

• Small set of C language extensions:
– Header file

– Type qualifiers

– Library API

– Pragmas

• Existing memory interfaces remain:
– NVL-C is a superset of C

– Unqualified types as specified by C

– Local/global variables stored in volatile 
memory (DRAM or registers)

– Use existing C standard libraries for HDD
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Design Goals: Avoiding persistent data corruption

• New categories of pointer bugs:

– Caused by multiple memory types:

• E.g., pointer from NVM to volatile memory will 
become dangling pointer

– Prevented at compile time or run time

• Automatic reference counting:

– No need to manually free

– Avoids leaks and dangling pointers

• Transactions:

– Avoids persistent data corruption across 
software and hardware failures

• High performance:

– Performance penalty from memory 
management, pointer safety, and 
transactions 

– Compiler-based optimizations

– Programmer-specified hints



318318
http://ft.ornl.gov/research/openarc

http://ft.ornl.gov/research/openarc
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Programming Model: NVM Pointers

#include <nvl.h>

struct list {

int value;

nvl struct list *next;

};

void add(int k, nvl struct list *after) {

nvl struct list *node

= nvl_alloc_nv(heap, 1, struct list);

node->value = k;

node->next  = after->next;

after->next = node;

}

• nvl type qualifier:
– Indicates NVM storage

– On target type, declares NVM pointer

– No NVM-stored local or global variable

• Stricter type safety for NVM pointers:
– Does not affect other C types

– Avoids persistent data corruption

– Facilitates compiler analysis

– Needed for automatic reference counting

– E.g., pointer conversions involving NVM 
pointers are strictly prohibited

struct list *node

= malloc(sizeof(struct list));

compile-time error
explicit cast won’t help
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Programming Model: NVM memory management

• Hybrid of traditional HDD and DRAM programming interfaces

• NVM storage organized into NVM heaps identified by file names

• NVM heaps can be managed using normal file system commands

• Within an NVM heap, memory always allocated dynamically

NVM HDD analogue

nvl_heap_t FILE

nvl_open fopen

nvl_close fclose

mv, rm, ls, etc. mv, rm, ls, etc.

NVM DRAM analogue

nvl T* T*

nvl_alloc_nv malloc

automatic free
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Programming Model: Accessing NVM

NVM Heap A
("A.nvl")

Volatile Memory
(registers, stack, bss, 

heap)

nvl T *root =

nvl_get_root(heap, T);

nvl_heap_t

How do we access allocations 
within an NVM heap?

nvl_heap_t *heap =

nvl_open("A.nvl");

heap

root

Checksum error if T is 
incorrect type.

Set root with nvl_set_root.

Before first nvl_set_root, 
nvl_get_root returns null.
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Programming Model: Pointer types (like Coburn et al.)

NVM Heap A ("A.nvl")

NVM Heap B ("B.nvl")

Volatile Memory
(registers, stack, bss, 

heap)

V-to-NV

intra-heap
NV-to-NV

NV-to-V

inter-heap
NV-to-NV

compile-time error

run-time error

avoids dangling pointers when 
memory segments close
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Programming Model: Transactions: Purpose

• Ensures data consistency

• Handles unexpected application termination:
– Hardware failure (e.g., power loss)

– Application or OS failure (e.g., segmentation fault)

– NVL-C safety constraint violation (e.g., inter-heap NV-to-NV pointer)

• Does not handle concurrent access to NVM:
– Future work

– Concurrency is still possible

– Programmer must safeguard NVM data from concurrent access
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Programming Model: Transactions: MATMUL Example

#include <nvl.h>

void matmul(nvl float a[I][J],

nvl float b[I][K],

nvl float c[K][J],

nvl int *i)

{

for (; *i<I; ++*i) {

for (int j=0; j<J; ++j) {

float sum = 0.0;

for (int k=0; k<K; ++k)

sum += b[*i][k] * c[k][j];

a[*i][j] = sum;

}

}

}

• Store i in NVM

• Caller initializes *i to 0 when allocated

• To recover after failure, matmul
resumes at old *i

• Problem: failure might have occurred 
before all of a[*i-1] became durable 
in NVM due to buffering and caching
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Programming Model: Transactions: MATMUL Example

#include <nvl.h>

void matmul(nvl float a[I][J],

nvl float b[I][K],

nvl float c[K][J],

nvl int *i)

{

while (*i<I) {

#pragma nvl atomic heap(heap)

{

for (int j=0; j<J; ++j) {

float sum = 0.0;

for (int k=0; k<K; ++k)

sum += b[*i][k] * c[k][j];

a[*i][j] = sum;

}

++*i;

}

}

}

• nvl atomic pragma specifies explicit 
transaction that computes one row of a

• Transaction guarantees atomicity: both 
*i is incremented and one row of a is 
written durably, or neither

• Incomplete transaction rolled back after 
failure
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Programming Model: Transactions: ACID

• Atomicity:
– Incomplete transaction rolled back next time NVM heap is accessed

• Consistency:
– Transactions begin and end with NVM data is in a consistent state
– Implicit transactions: specify NVL-C internal data consistency
– Explicit transactions: specify application data consistency

• Isolation (handles concurrent access):
– Not guaranteed yet

• Durability:
– All NVM writes are durable when transaction commits
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Evaluation: MATMUL
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• ExM = use SSD as extended DRAM 

• T1 = BSR + transactions

• T2 = T1 + backup clauses

• T3 = T1 + clobber clauses

• BlockNVM = msync included

• ByteNVM = msync suppressed

• Log aggregation (backup) is important for performance
• msync is the culprit
• Skipping undo logs (clobber) has little to improve upon
• NVL-C has minimal overhead

better

worse
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NVM Implications
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Implications

1. Device and architecture trends will have major impacts on HPC in coming decade
1. NVM in HPC systems is real!
2. Entirely possible to have an Exabyte of NVM in upcoming systems!

2. Performance trends of system components will create new opportunities and challenges
1. Winners and losers

3. Sea of NVM allows/requires applications to operate differently
1. Sea of NVM will permit applications to run for weeks without doing I/O to external storage system
2. Applications will simply access local/remote NVM
3. Longer term productive I/O will be ‘occasionally’ written to Lustre, GPFS
4. Checkpointing (as we know it) will disappear

4. Requirements for system design will change
1. Increase in byte-addressable memory-like message sizes and frequencies
2. Reduced traditional IO demands
3. KV traffic could have considerable impact – need more applications evidence
4. Need changes to the operational mode of the system
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Recap

• Recent trends in extreme-scale HPC paint an 
ambiguous future

• Complexity is the next major hurdle
– Heterogeneous compute

– Deep memory with NVM

• New software solutions
– Programming

• Memory

– DRAGON

– NVL-C

– Papyrus

• Heterogeneity

– OpenACC->FPGAs

– Clacc for LLVM

• These changes will have a substantial impact 
on both software and application design

• Visit us
– We host interns and other visitors 

year round

• Jobs in FTG
– Postdoctoral Research Associate in 

Computer Science

– Software Engineer

– Computer Scientist

– Visit http://jobs.ornl.gov

• Contact me vetter@ornl.gov

http://jobs.ornl.gov/
mailto:vetter@ornl.gov
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Bonus Material


