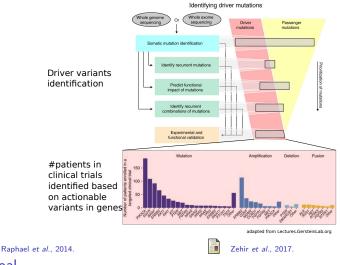
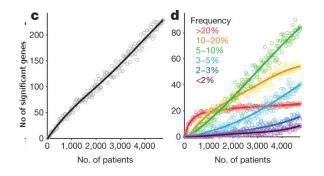
Combining transcriptional and post-transcriptional regulation to predict somatic mutations altering the gene regulatory program in cancer cells

Anthony Mathelier

Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine and Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital

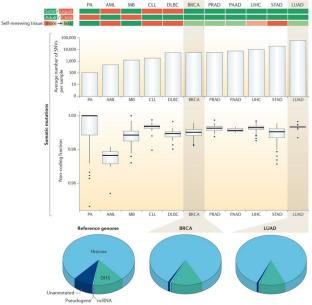

anthony.mathelier@ncmm.uio.no

Barcelona Supercomputing Centre - 2019 Sept. 23rd

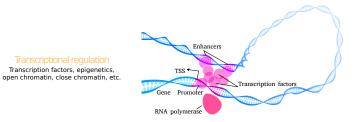

Variant prioritization to identify cancer drivers

Goal

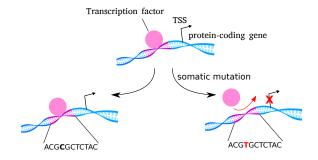
Identify driver somatic events to shed light into molecular mechanisms and enable more precise diagnostics and targeted therapies.


A cancer gene discovery gap

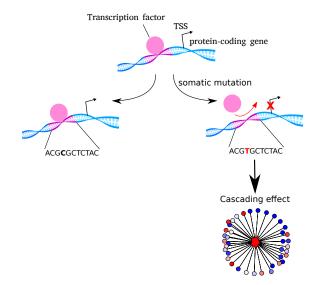
M.S. Lawrence et al., 2013.


- Highly mutated cancer genes revealed through The Cancer Genome Atlas project.
- Still a discovery gap in the search of new cancer genes.
- We assert this gap can be partially filled through the analysis of the non-coding genome.

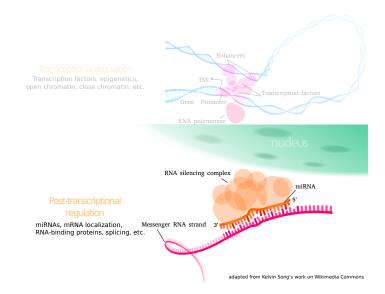
The vast majority of somatic mutations are non-coding

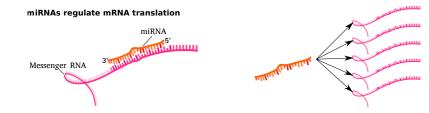


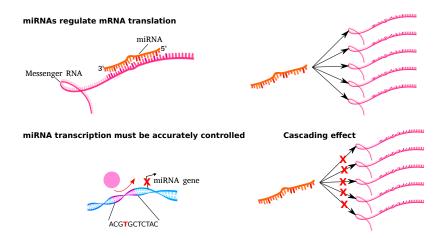
Transcriptional regulation

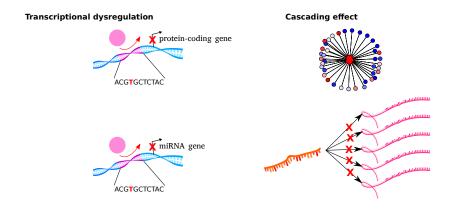


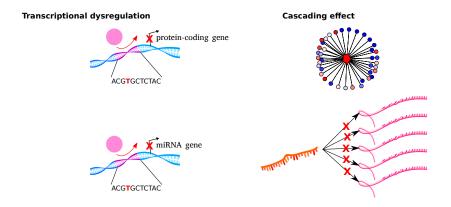
adapted from Kelvin Song's work on Wikimedia Commons


Transcriptional deregulation and cascading effect


Transcriptional deregulation and cascading effect


Multiple layers of gene expression regulation


Transcriptional and post-transcriptional deregulation

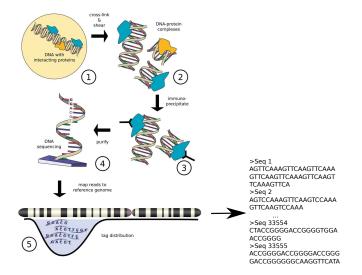

Transcriptional and post-transcriptional deregulation

Predicting cis-regulatory mutations altering the regulatory program in cancer cells

Predicting cis-regulatory mutations altering the regulatory program in cancer cells

One needs to accurately locate TFBSs to identify and characterize the regulatory sequences controlling specific genes transcription.

1. Improving our capacity to predict transcription factor binding events


2. Combining transcriptional and post-transcriptional regulation to predict mutations altering the gene regulatory program in cancer cells

Outline

1. Improving our capacity to predict transcription factor binding events

 Combining transcriptional and post-transcriptional regulation to predict mutations altering the gene regulatory program in cancer cells

Genome-scale data capturing TFBSs: ChIP-seq

adapted from

You do not always ChIP what you expect

Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins

Leonid Teytelman^{a,b,1}, Deborah M. Thurtle^{c,1}, Jasper Rine^{c,2}, and Alexander van Oudenaarden^{a,b,d,2}

Nucleic Acids Research Advance Access published June 27, 2015

Nucleic Acids Research, 2015 1 doi: 10.1093/nar/gkv637

Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments

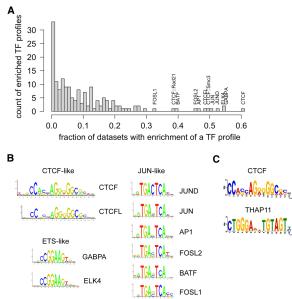
Dhawal Jain, Sandro Baldi, Angelika Zabel, Tobias Straub and Peter B. Becker

Worsley Hunt and Wasserman Genome Biology 2014, 15:412 http://genomebiology.com/2014/15/7/412

RESEARCH

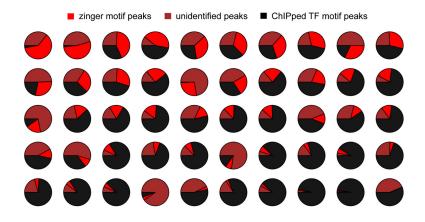
Open Access

Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets

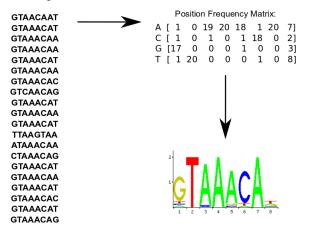

Rebecca Worsley Hunt^{1,2} and Wyeth W Wasserman^{1,3*}

bioRxiv preprint first posted online Mar. 5, 2017; doi: http://dx.doi.org/10.1101/107680. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

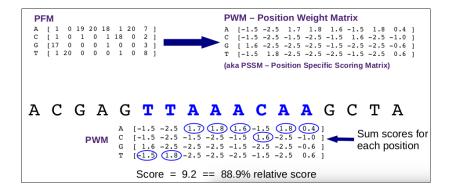
HOT or not: examining the basis of highoccupancy target regions


Katarzyna Wreczycka1^{*}, Vedran Franke1^{*}, Bora Uyar¹, Ricardo Wurmus¹, Altuna Akalin^{1#}

ChIP-seq peaks are enriched for zingers


Worsley-Hunt and Wasserman, 2014.

ChIP-seq peaks are enriched for zingers


Modeling TFBSs

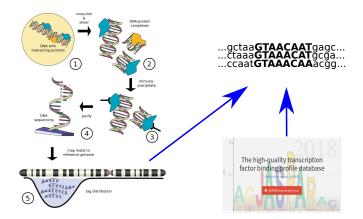
Known binding sites:

PFMs reflect the preferred binding motifs associated to TFs.

Scoring potential TFBSs

JASPAR

Profile summary	TR Add	Sequ	ience lo	go											
ane .	04683						-								
aderia (D):	MADELEO CALEGORIA						-Т/	۱۸-	1	n					
***	Basic leacing sigper factors (h23P)				1		11	-I\r	\sim						
nip	CRES-related factors						11	1HL	11	L.F					
diections	096						1	114	'X.	VI	-				
	Vetaboles														
pecies:	Harao saplens	_													
	Homo saplens Chilm-seq	Freq	uancy #	atrix				6.050A	470	NYAL	4100	Aine	ю	-Sivered	m
Га Турні		Freq	1935	atrix 2796	209	127	6337	8.00000 200	▲ 700 953	NYAL 250	4 stot	▲ 1549 6235	122	2142	
ta Type: Idefor:	Chill-son				209	127						-			-
la Type: Idefor: iprot IX	Chill-Seq 1293-G32	AL	1905	2796			6037	210	963	259	221	6275	722	2142	
da Type: Adelore riprot ID: cor TP:	Chamony 1290(033) P35320	A[6[1935	2796 2075	213	223	6037 56	210 7146	963 555	250 252	221 8909	6236 174	722 3279	2142 2888	1
ala Type: aldefor: algest IX: see Th Hidshape III:	char-seq 17964233 7936239 779000813	A1 6[61	1935 1949 2985	2796 2075 3279	213	223 8305	6337 55 252	210 7146 555	963 555 71,46	258 212 95	221 8303 223	6235 174 213	122 3279 2075	2102 2000 1949	1
pecie: ata Type aldefor: signot ID: terr Th FBSshape ID: Terrocyclopedia IDs: ource:	Charloog 1296633 P13223 Theocolis 28	A1 61 71	1935 1949 2988 2162	2796 2075 3279	213 134 8278	223 8305	6337 55 252	210 7146 555	963 555 71,46 318	258 212 95	221 8909 223 127	6235 174 213	122 3279 2075	2102 2000 1949	1

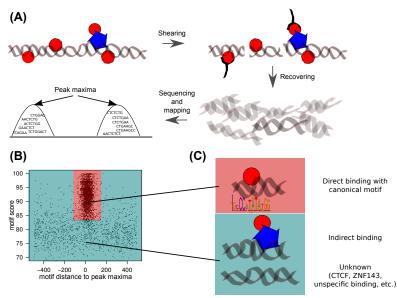

Largest open-access database
of manually curated TF
binding profiles.

Khan, Fornes, et al., 2018.

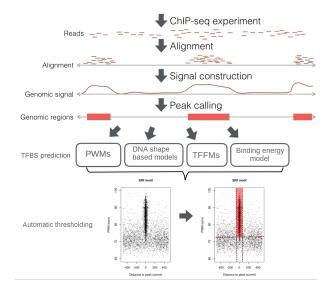
Subset	# TF binding profiles
Vertebrates	579
Plants	489
Insects	133
Nematodes	26
Fungi	176
Urochordata	1
Total	1404

Combining ChIP-seq peaks with JASPAR TF binding profiles

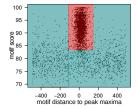
Combining ChIP-seq peaks and TF-binding profiles

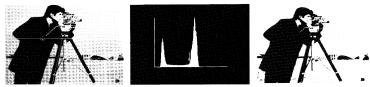


Chèneby et al., 2018.



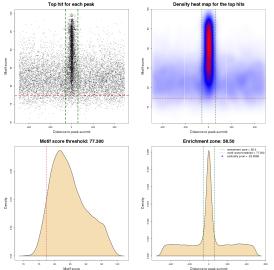
What to expect when you are ChIP'ing



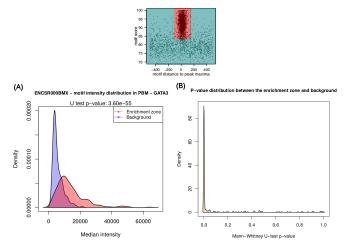


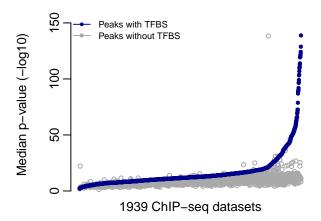
ChIP-eat: from raw reads to high quality TFBSs

Entropy to automatically define TFBS enrichment zones

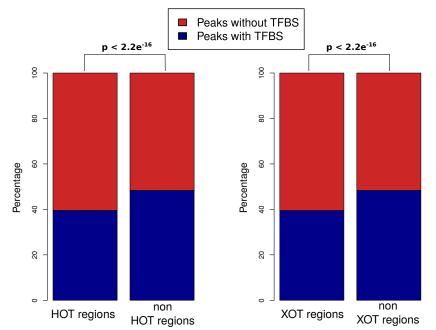


Kapur et al., 1985.


A map of TF-DNA interactions in the human genome

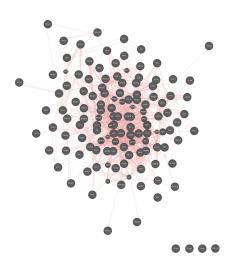

We predict **direct TF-DNA interactions** covering > 2% of the human genome from 1,982 ChIP-seq data sets for 231 TFs.

The TFBS enrichment zone highlights higher binding affinity

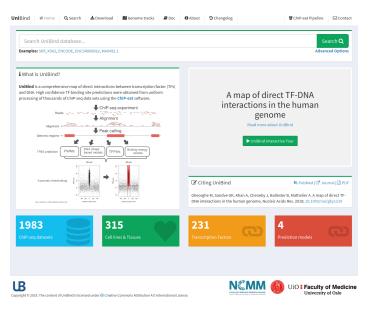


TFBSs in enrichment zones show higher PBM binding affinity than hits outside.

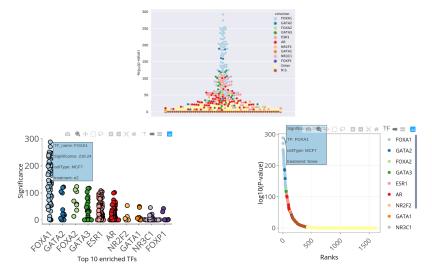
Direct TF-DNA interactions are found in high confidence peaks



HOT regions are depleted of TFBSs in enrichment zones


26

Direct TF-DNA interactions reveal co-localizing TFs



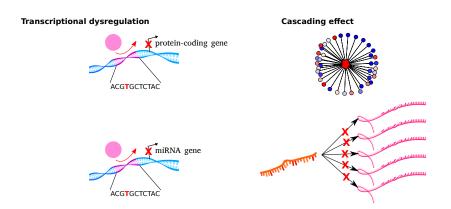
Out of 231 available TFs (26,796 pairs tested), 150 pairs of co-binding (112) TFs are predicted, 82% of which known in PPI database.

UniBind

TFBS sets enrichment analyses

You can query UniBind to compute enrichment against your genomic regions.

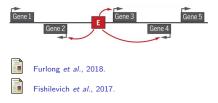
Summary


- We provide a genome-wide map of direct TF-DNA interactions by combining both experimental and computational evidences.
- TFBSs predicted in the enrichment zones cover > 2% of the human genome (1,983 ChIP-seq data sets - 231 TFs).
- TFBSs in enrichment zones show high PBM binding affinity and are found in high quality peaks.
- Direct TF-DNA interactions reveal co-binding TFs.
- cis-regulatory modules derived from TFBSs are enriched for disease- and trait-associated SNPs.

Outline

 Improving our capacity to predict transcription factor binding events

2. Combining transcriptional and post-transcriptional regulation to predict mutations altering the gene regulatory program in cancer cells Predicting somatic mutations altering the gene regulatory program in cancer cells



Data to analyze transcriptional regulation of miRNAs and protein-coding genes

miRNA TSSs

Enhancer-TSS associations

TFBSs from UniBind

miRNA - target networks

Agarwal et al., 2015.

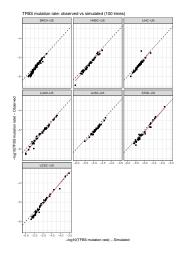
Available cancer data cohorts

Data requirements:

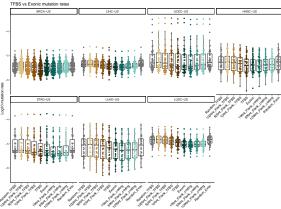
- WGS (tumor and normal) to call SNVs and indels
- RNA-seq
- Copy number alterations

Cohorts:

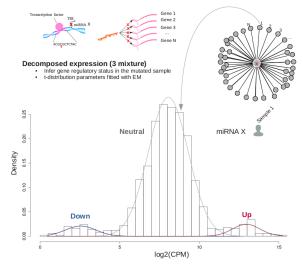
TCGA: 343 samples (7 cancer types)


BRCA	Breast cancer	91
LIHC	Liver Hepatocellular Carcinoma	50
UCUC	Uterine Corpus Endometrial Carcinoma	48
HNSC	Head and Neck Squamous Cell Carcinoma	43
LUSC	Lung Squamous Cell Carcinoma	42
LUAD	Lung Adenocarcinoma	37
STAD	Gastric Adenocarcinoma	35

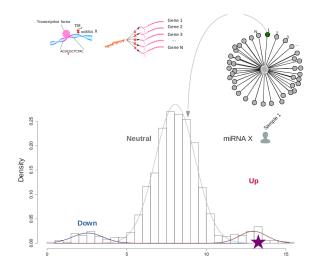
BASIS: 296 breast cancer samples

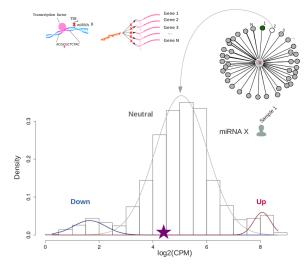

TFBSs are less mutated than expected by chance

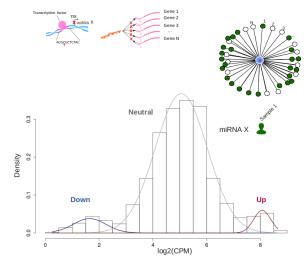
13,107,508 mutations in TCGA (from 211,421 to 2,141,178 per cohort).

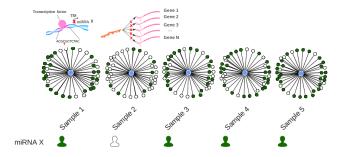


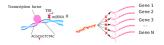
TFBSs are less mutated than expected by chance

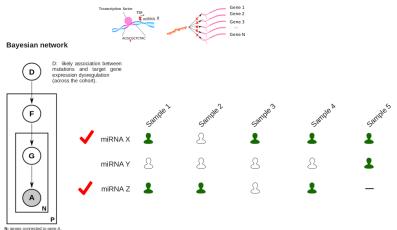

13,107,508 mutations in TCGA (from 211,421 to 2,141,178 per cohort).

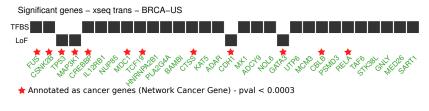

Mut_rate


1. Ding et al. (2015) Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat Comms

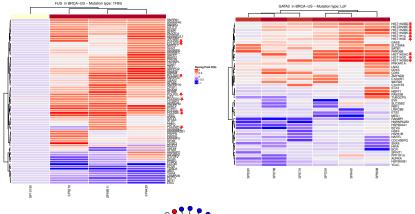

1. Ding et al. (2015) Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat Comms

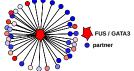



1. Ding et al. (2015) Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat Comms

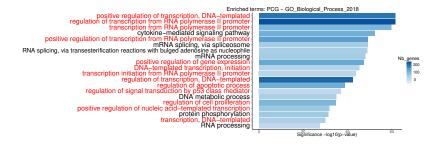


1. Ding et al. (2015) Systematic analysis of somatic mutations impacting gene expression in 12 tumour types. Nat Comms

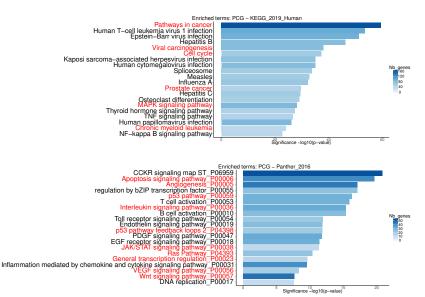



P: samples with mutations in gene A

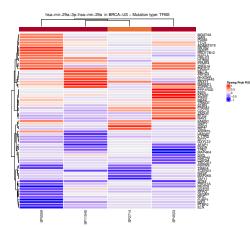
Prediction results on protein-coding genes in breast cancer



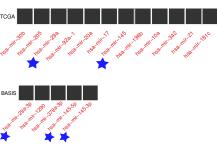
Visualization of the regulatory network alteration

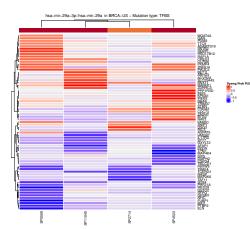


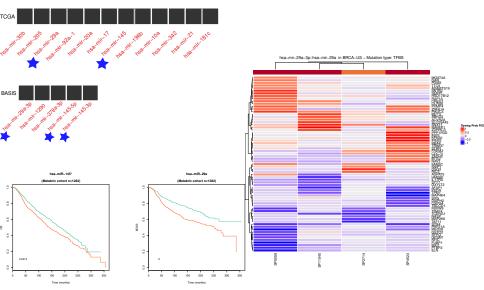
Dysregulated networks for PCGs highlight key pathways



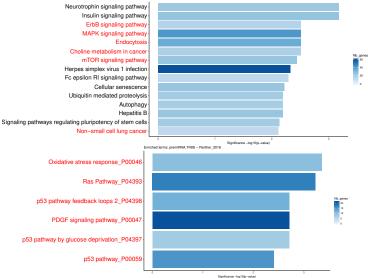
Dysregulated networks for PCGs highlight key pathways



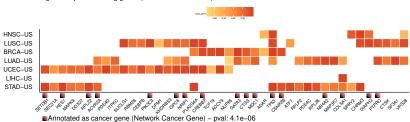

Predictions on miRNA genes in breast cancer



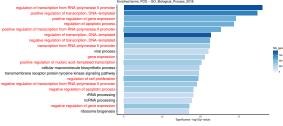
Predictions on miRNA genes in breast cancer



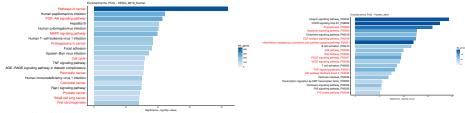
Predictions on miRNA genes in breast cancer


Unpublished

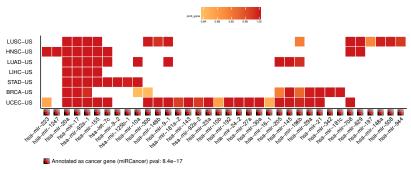
Dysregulated networks for miRNAs highlight key pathways

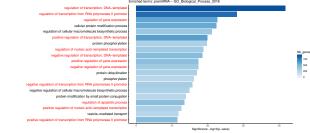

Enriched terms: premiRNA.TFBS - KEGG 2019 Human

Pan-cancer analysis of PCG networks dysregulation

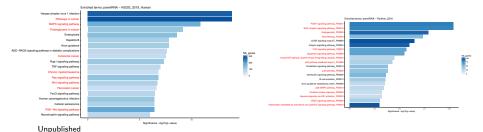


Significant protein coding genes (in at least two cohorts)


Pan-cancer analysis of PCG networks dysregulation



Pan-cancer analysis of miRNA networks dysregulation



Selected genes - premiRNA_analysis - Mutation type: TFBS

Pan-cancer analysis of miRNA networks dysregulation

Summary

 Combining LoF mutations with mutations in TFBSs highlights candidate driver PCGs pan-cancer

dysmiR predicts candidate driver miRNAs that are dysregulated through cis-regulatory mutations with cascading effects on the gene expression regulation program.

We highlight candidate regulatory-disrupting variations dysregulating the gene expression regulatory program in cancer pathways

Acknowledgements

Marius Gheorghe ChIP-eat - UniBind

IASPAR - ReMap

Aziz Khan JASPAR UniBind

JASPAR:

- Oriol Fornes
- Arnaud Stigliani
- Robin van der Lee
- Adrien Bessy
- Jeanne Cheneby
- Shubhada Kulkarni
- Ge Tan
- Damir Baranasic

Jaime Castro-Mondragon Cancer deregulation JASPAR

Miriam Ragle-Aure Cancer deregulation

Cancer deregulation:

- Vessela Kristensen
- Anne-Lise Borresen-Dale
- Anita Langerod
- BASIS consortium

- Albin Sandeling
- Klaas Vandepoele
- Boris Lenhard
- Benoit Ballester
- Wyeth Wasserman
- Francois Parcy

- ChIP-eat UniBind ReMap:
 - Geir Kjetil Sandve
 - Jeanne Cheneby
 - Marie Artufel
 - Benoit Ballester

