Understanding disease with omic data

Alejandro Cáceres ISGlobal, Barcelona

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Talk's aim

How we can use **omic** data for understanding **biological processes** that are involved in **disease**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

....in six examples

Types of omic data

- genomic
- transcriptomic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

methylomic

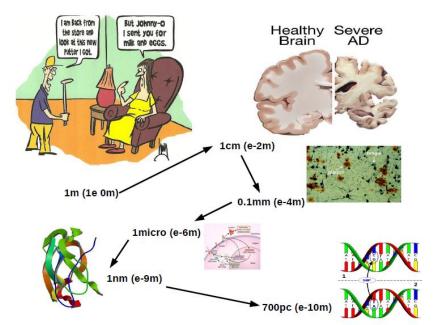
What is *omic* data ?

What is omic data ?

- Big data in biology
- High dimensional data (a lot of features) collected at different biological domains.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Biological Levels (orders of magnitude)



Omic data

Ome refers to the totality of elements in a biological domain gen*ome*, proteome*ome*, ... interact*ome*, phen*ome*, exposome*ome*

Operational definition:

Omic data is an **unbiased scan** of variables that **cover** a given biological range.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Genomic data: unbiased scan of DNA sequence At the level of chromosome molecules: genomic data

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Genomic data: unbiased scan of DNA sequence

Definition:

 A genomic variable is the presence of a given DNA sequence from reference values (reference genome, hybridization probes)

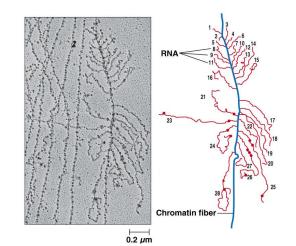
SNP:

ref: A T G C T G chr1: A T G C T T

Property:

The values are (almost) stable throughout an individual's cells and life span

Transcritomic data: unbiased scan of RNA sequence At the level of RNA molecules: transcriptomic data



Transcritomic data: unbiased scan of RNA sequence

Definition:

 A Transcript variable is the amount of a given RNA sequence from reference values (reference genome, hybridization probes)

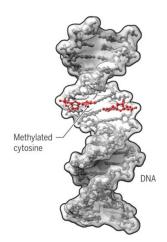
Property:

The values are highly dynamic in time and are different for each cell type -snapshot of the cell at work in the nucleus

(日) (同) (三) (三) (三) (○) (○)

Methylomic data: unbiased scan of DNA methylated sites

At the level of DNA sequence: **methyl**omic data



Methylomic data: unbiased scan of DNA methylated sites

Definition:

A Methylomic variable is the average state of methylation at a given DNA site for the cells in a sample

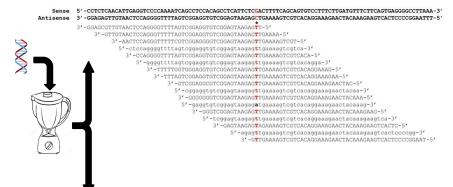
Property:

The values change in time according to the individual's development/age and are different for each cell within a cell type

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Measuring omic data

Sequencing + mapping



Hybridization

Sense 5'-CCTCTCAACATTGAGGTCCCCAAAATCAGCCTCCACAGCCTCATTCTCG
Antisense 3'-GGAGAGTTGTAACTCCAGGGGTTTTAGTCGGAGGTGTCGGAGTAAGAGC -(

Omic data from different methods

Omic data based from sequencing:

- + collects all the possible information on an individual (maximum coverage)
- + is useful to detect rare variables (large effects)
- is computationally demanding

Omic data based from microarrays:

- + is highly scalable (100,000s of individuals)
- + is useful to detect small effects of variables on phenotypes
- is not unbiased

Understanding disease with omic data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Method

- 1. Study how a biological process is imprinted on a given **omic** data
- 2. Develop a **method** to mine the **omic** data
- 3. Understand the role of the **biological process** in human **disease**

Examples

hidden structure in omic data

inversion polymorphisms, asthma and obesity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

recombination substructure, breast cancer

Examples

interaction between omic variables

- epistasis, Alzheimer's disease
- reliability of co-expression networks, evaluating networks across different tissues

 cosplicing, predicting genes' physiological interactions

Examples

multi omic data integration

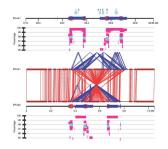
 Lost of chromosome Y, male susceptibility to disease.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example 1 (hidden structure)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

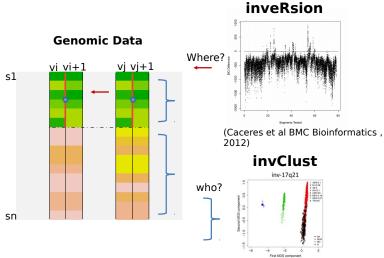
Studying inversion polymorphisms



Inversions are DNA sequences that run in the opposite direction of a reference sequence.

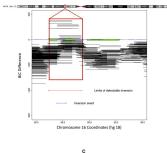
- important structural variants involved in adaptation and chromosomal evolution (chr Y)
- little studied in humans because they are difficult to measure in large cohorts

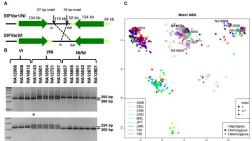
inversion imprint in genomic data



(Caceres et al NAR, 2015)

Detection and genotyping of inv-16p11

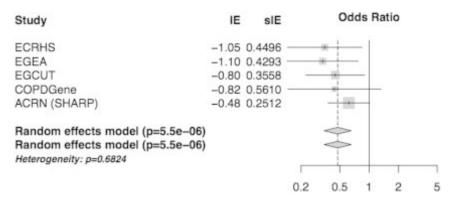




◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

inversion 16p11

inv-16p11 is a risks factor for the cooccurence of asthma and obesity (OMIM #615835)



(Gonzalez*, Caceres*, et al. AJHG, 2014, *fisrt joint author)

studying inversions with genomic data

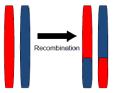
Significance

- First hypothesis for the joint susceptibility to asthma and obesity
- Study of inversions in human populations using large cohorts

Example 2 (hidden structure)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Studying recombination

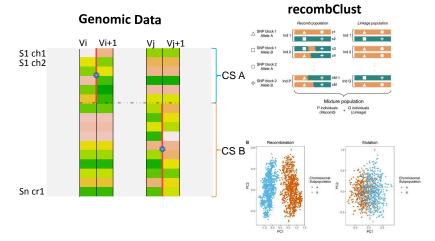


- increases genetic diversity
- different ancestries have different recombination patterns

Detection of **population substructure** is commonly based on **mutation** differences not on **allele combination** differences

can we detect allele combination substructure?

Recombination differences in genomic data



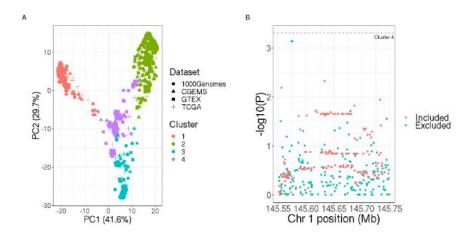
(Ruiz*, Caceres* et al submitted NAR, *first joint author)

イロト 不得 トイヨト イヨト

э

Recombination substructure in 1q21.1

The recombination substructure at 1q21.1 associates with the risk of breast cancer



Studying recombination substructure with genomic data

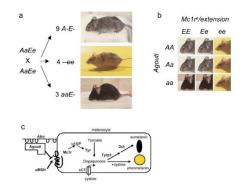
Significance

- The causal variant in the susceptibility locus 1q21.1 to breast cancer may be a structural variant or process that suppressed recombination of the risk chromosomes with others.
- Recombination substructure (differential allele combinations) may help to explain additional heritability of complex diseases

Example 3 (variable interaction)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

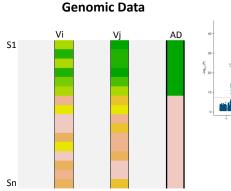
Studying epistasis



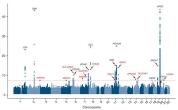
- complex traits are likely to emerge from the interaction between genomic variables
- there are too many to test ($\sim 10^{13}$ possibilities)

Do the interactions of validated risk SNPs overlap?

Genome-wide association studies (Alzheimer's Disease)



GWAS

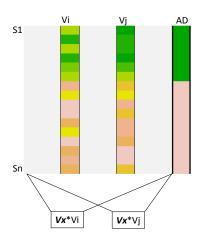


Validated associations

APOE's rs4420638 PICALM's rs536841 MS4A6A's rs610932 BIN1's rs610932

•••

Epistasis in genomic data



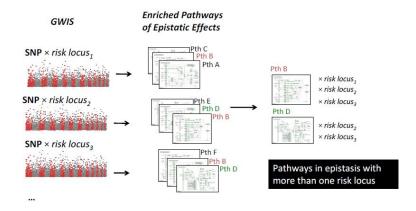
Genomic Data

Genome Wide Interaction

...

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Enrichment of epistatic effects



Pathway B is enriched in interactions with risk SNPs 1 2 and 3 $\,$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

(Caceres et al, 2017 Alzheimer's and Dementia)

Enrichment of epistatic effects in AD

Gonodatropin signaling is enriched in interactions with *APOE* and *MS4A6A*'s polymorphisms

Risk Locus	Pathway	combined uncorrected p-value	combined corrected p-value	GENADA	NIA	ADG12	ADG31
rs429358 ×	KEGG: GNRH SIGNALING PATHWAY	3.7e-5	0.01	0.025	0.033	0.001	0.046
	KEGG: LONG TERM POTENTIATION KEGG: ARRHYTHMOGENIC RIGHT	1.6e-5	0.02	0.145	0.001	0.001	0.096
	VENTRICULAR CARDIOMYOPATHY	2.9e-5	0.04	0.001	0.146	0.001	0.196
	KEGG: CALCIUM SIGNALING PATHWAY KEGG: VASCULAR SMOOTH MUSCLE	1.1e-4	0.05	0.162	0.001	0.01	0.087
	CONTRACTION	9.6e-5	0.06	0.222	0.002	0.001	0.265
	KEGG: PHOSPHATIDYLINOSITOL SIGNALING						
rs610932 ×	SYSTEM	1.0e-4	0.008	0.027	0.356	0.013	0.001
	KEGG: DILATED CARDIOMYOPATHY	3.1e-7	0.01	0.01	0.001	0.001	0.014
	BioCarta: HDAC PATHWAY KEGG: VASCULAR SMOOTH MUSCLE	6.4e-6	0.02	0.002	0.016	0.147	0.001
	CONTRACTION	2.4e-7	0.03	0.001	0.001	0.013	0.008
	KEGG: GNRH SIGNALING PATHWAY KEGG: HYPERTROPHIC CARDIOMYOPATHY	5.6e-6	0.05	0.01	0.004	0.011	0.009
	HCM	1.0e-4	0.06	0.248	0.001	0.004	0.131
	BioCarta: NKT PATHWAY	1.7e-4	0.11	0.022	0.001	0.201	0.055
	KEGG: GALACTOSE METABOLISM	8.6e-5	0.12	0.789	0.002	0.005	0.013
	BioCarta: PGC1A PATHWAY	1.6e-4	0.14	0.017	0.001	0.414	0.033
	KEGG: LONG TERM DEPRESSION	1.4e-4	0.15	0.024	0.072	0.022	0.005

Studying epistasis of risk variants with genomic data

Significance

- Clinical trials targeting the gonodatropin pathway should test APOE and MS4A6A's polymorphisms for response to treatment.
- epistasis helps to link risk SNPs by their interactions with common biological processes (join the dots of GWAS)

Example 4 (variable interaction)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

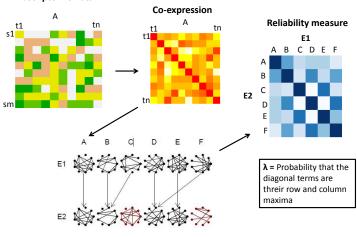
Studying co-expression networks

Co-expression networks

- inform which genes are co-regulated, functional related or work together in the same pathway
- must be reproducible

Can we identify the tissues for which a network is functional?

Co-expression networks across multiple tissues



Trascriptomic Data

6 Tissues × 2 experiments

(Caceres et al. BMC genomics, under revision)

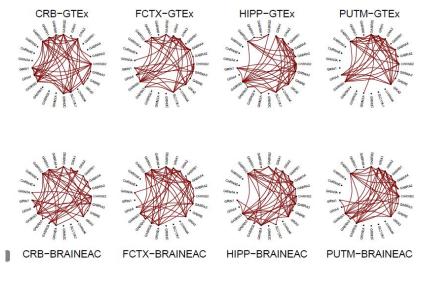
Inter-study reliability of networks across multiple tissues

Top agreement between BRAINEAC and GTEx across 4 brain regions in 287 KEGG pathways

λ	σ	Ref	Description
0.68	0.02	hsa05033	Nicotine addiction
0.67	0.04	hsa04720	Long-term potentiation
0.58	0.04	hsa05206	MicroRNAs in cancer
0.55	0.01	hsa04080	Neuroactive ligand-receptor int.
0.53	0.03	hsa04020	Calcium signaling pathway
0.52	0.03	hsa04261	Adrenergic sig. in cardiom.
0.51	0.02	hsa04912	GnRH signaling pathway

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nicotine addiction pathway across 4 brain regions



Studying network reliability with transcritomic data

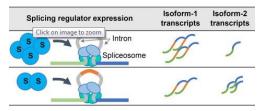
Significance

- the changes in nicotine addiction pathway are consistent across four brain regions with dopaminergic projections
- inter-study reliability of pathway changes across tissues can inform on the fraction of tissues with specific functional changes in network structure.

Example 5 (variable interaction)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

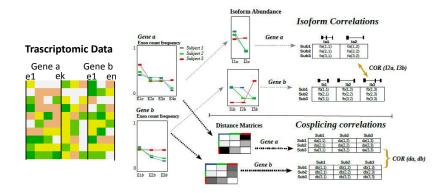
Studying co-splicing



 Isoform ratios can correlate between two genes, across subjects

To which extent co-regulation of splicing can predict gene function?

Studying co-splicing with transcritomic data



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(Caceres et al, BMC genomics, 2018-accepted)

Physiological function of genes across multiple tissues

		Data		with Gene	by SNP	Enrichment	stringNet		
Select Tissue and Ref Gene Tissue Brain - Hippocampus		APP co-							
		splicing		PCA plot: APP-UBQLN1 Brain - Hippocampus					
		gene	MantelCor		PCA based co-splicing correlations Adjusted r = 0.688, P = 6.56e-11				
Ref Gene	Top genes	APP	1.00		Adjuste	id r = 0.688, P =	6.56e-11		
APP	20	RAD23B	0.90	0.114					
		SARAF	0.87						
🕹 Download	GET Data	WDR1	0.85	1st UBQLN1-PCA 0.108 0.110 0.112					
		GHITM	0.84	01110					
Ref Gene co-	splicing with Gene	CLINT1	0.84	BOL 0.1					
Gene 2 UBQLN1		DNAJC6	0.83	0.108	81-				
		UBQLN1	0.83	8	2				
Ref Gene exon		SRPK2	0.83						
1	PLOT with Gene	NARS	0.83		1 1	1 1	1 1		
		STRAP	0.83	0	104 0.106	0.108 0.110	0.112 0.114 0.		
co-splicing between genes by SNP		GNB1	0.83	1st APP-PCA					

work supported with computing hours from RES

Studying co-splicing with transcriptomic data

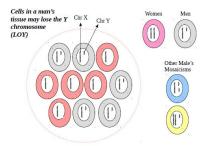
Significance

- APP is physiologically liked with genes affected in Alzheimer's disease, supporting the hypothesis that a loss of function of APP contributes to the disease.
- Co-splicing is a common phenomena and should be taken into account to predict gene function.

Example 6 (multi omic data)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

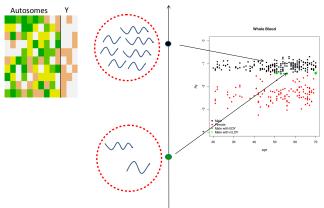
Studying loss of chromosome Y



- LOY associates with age and all-cause mortality in men (smoking, cancer and AD)
- We dont know whether LOY causes disease or vice-versa.

Can we predict a consequence of LOY that is closer to disease?

Detecting extreme deregulation of chromosome Y



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

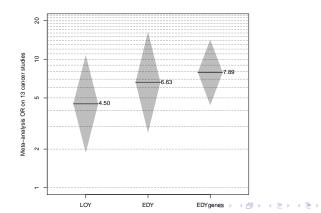
Relative amount of Y transcription

(Caceres et al, final draft ready!)

 $LOY \rightarrow EDY \rightarrow Male Disease$

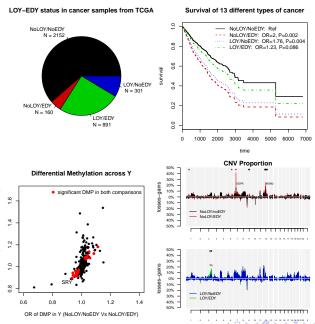
EDY:

- associates with LOY-associated conditions (age, AD, cancer)
- strongly correlates with LOY
- improves the effect of LOY with male disease



Studying EDY with multiple omic data

OR of DMP in Y (LOY/NoEDY Vs LOY/EDY)



∋ 900

ъ

Studying EDY with multiple omic data

Significance

- We give first evidence of a likely path from LOY to disease
- EDY is a novel biomarker for male disease which can be triggered by multiple mechanisms including LOY

Further questions

Histone modification of EDY

What are the histone marks of EDY?



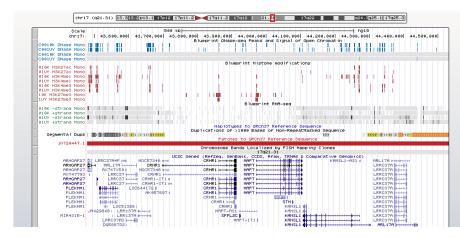
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

EDY is a protective factor for leukemia... (controls = 3112, cases = 800, $OR = 0.08, P = 5.3 \times 10^{-5}$)

Chromatine modification of inversions

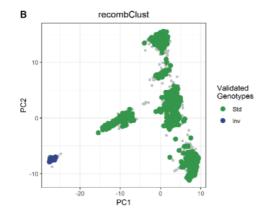
What are the histone marks of inversions?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Machine learning for recombination substructure

Can we train a neural network to detect recombination substructures?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Thanks:

- Juan R Gonzalez -ISGlobal
- Luis Perez Jurado -UPF
- Mario Caceres -UAB
- Suzzane Sindi -University of California Merced

- Carlos Ruiz -ISGlobal
- Mariona Bustamante -ISGlobal
- ▶ Tonu Esko -University of Tartu