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Talk’s aim

How we can use omic data for understanding
biological processes that are involved in disease

....in six examples



Types of omic data

I genomic

I transcriptomic

I methylomic



What is omic data ?



What is omic data ?

I Big data in biology

I High dimensional data (a lot of features)
collected at different biological domains.



Biological Levels (orders of magnitude)



Omic data

Ome refers to the totality of elements in a
biological domain
genome, proteomeome, ... interactome, phenome,
exposomeome

Operational definition:

Omic data is an unbiased scan of variables that
cover a given biological range.





Genomic data: unbiased scan of DNA sequence

At the level of chromosome molecules: genomic
data



Genomic data: unbiased scan of DNA sequence

Definition:

I A genomic variable is the presence of a given
DNA sequence from reference values (reference
genome, hybridization probes)

SNP:

ref: A T G C T G
chr1: A T G C T T

Property:

I The values are (almost) stable throughout an
individual’s cells and life span



Transcritomic data: unbiased scan of RNA sequence

At the level of RNA molecules:
transcriptomic data



Transcritomic data: unbiased scan of RNA sequence

Definition:

I A Transcript variable is the amount of a
given RNA sequence from reference values
(reference genome, hybridization probes)

Property:

I The values are highly dynamic in time and are
different for each cell type -snapshot of the cell
at work in the nucleus



Methylomic data: unbiased scan of DNA
methylated sites

At the level of DNA sequence:
methylomic data



Methylomic data: unbiased scan of DNA
methylated sites

Definition:

I A Methylomic variable is the average state
of methylation at a given DNA site for the cells
in a sample

Property:

I The values change in time according to the
individual’s development/age and are
different for each cell within a cell type



Measuring omic data

Sequencing + mapping 

Hybridization 



Omic data from different methods

Omic data based from sequencing:
+ collects all the possible information on an

individual (maximum coverage)
+ is useful to detect rare variables (large effects)
– is computationally demanding

Omic data based from microarrays:
+ is highly scalable (100,000s of individuals)
+ is useful to detect small effects of variables on

phenotypes
– is not unbiased



Understanding disease with omic data



Method

1. Study how a biological process is imprinted on a
given omic data

2. Develop a method to mine the omic data

3. Understand the role of the biological process
in human disease



Examples

hidden structure in omic data

I inversion polymorphisms, asthma and obesity

I recombination substructure, breast cancer



Examples

interaction between omic variables

I epistasis, Alzheimer’s disease

I reliability of co-expression networks, evaluating
networks across different tissues

I cosplicing, predicting genes’ physiological
interactions



Examples

multi omic data integration

I Lost of chromosome Y, male susceptibility to
disease.



Example 1
(hidden structure)



Studying inversion polymorphisms

Inversions are DNA sequences that run in the
opposite direction of a reference sequence.

I important structural variants involved in
adaptation and chromosomal evolution (chr Y)

I little studied in humans because they are
difficult to measure in large cohorts



inversion imprint in genomic data

(Caceres et al BMC Bioinformatics , 
2012)

inveRsion

invClust

(Caceres et al NAR, 
2015)

who?

vi vi+1 vj vj+1
s1

sn

Where?

Genomic Data



Detection and genotyping of inv-16p11



inversion 16p11

inv-16p11 is a risks factor for the cooccurence of
asthma and obesity (OMIM #615835)

(Gonzalez*, Caceres*, et al. AJHG, 2014, *fisrt joint author)



studying inversions with genomic data

Significance

I First hypothesis for the joint susceptibility to
asthma and obesity

I Study of inversions in human populations using
large cohorts



Example 2
(hidden structure)



Studying recombination

I increases genetic diversity

I different ancestries have different recombination
patterns

Detection of population substructure is
commonly based on mutation differences not on
allele combination differences

can we detect allele combination substructure?



Recombination differences in genomic data

(Ruiz*, Caceres* et al submitted NAR, *first joint author ) 

Vi Vi+1 Vj Vj+1 
S1 ch1 

Sn cr1 

recombClust 

S1 ch2 

CS A 

CS B 



Recombination substructure in 1q21.1

The recombination substructure at 1q21.1
associates with the risk of breast cancer



Studying recombination substructure with genomic
data

Significance

I The causal variant in the susceptibility locus
1q21.1 to breast cancer may be a structural
variant or process that suppressed recombination
of the risk chromosomes with others.

I Recombination substructure (differential allele
combinations) may help to explain additional
heritability of complex diseases



Example 3
(variable interaction)



Studying epistasis

I complex traits are likely to emerge from the
interaction between genomic variables

I there are too many to test (∼ 1013 possibilities)

Do the interactions of validated risk SNPs overlap?



Genome-wide association studies
(Alzheimer’s Disease)

GWAS 
Genomic Data 

Vi Vj 
S1 

Sn 

AD 

Validated associations 
 
APOE’s rs4420638 
PICALM’s rs536841 
MS4A6A’s rs610932 
BIN1’s rs610932 
… 



Epistasis in genomic data

Genomic Data 

Vi Vj 
S1 

Sn 

AD 

Vx*Vi Vx*Vj 

Genome Wide Interaction 



Enrichment of epistatic effects

Pathway B is enriched in interactions with risk
SNPs 1 2 and 3
(Caceres et al, 2017 Alzheimer’s and Dementia)



Enrichment of epistatic effects in AD

Gonodatropin signaling is enriched in interactions
with APOE and MS4A6A’s polymorphisms



Studying epistasis of risk variants with genomic data

Significance

I Clinical trials targeting the gonodatropin
pathway should test APOE and MS4A6A’s
polymorphisms for response to treatment.

I epistasis helps to link risk SNPs by their
interactions with common biological processes
(join the dots of GWAS)



Example 4
(variable interaction)



Studying co-expression networks

Co-expression networks

I inform which genes are co-regulated, functional
related or work together in the same pathway

I must be reproducible

Can we identify the tissues for which a network is
functional?



Co-expression networks across multiple tissues

t1 tn 
s1 

sm 

t1 tn 
t1 

tn 

A 
A 

Trascriptomic Data 

Co-expression 

6 Tissues × 2 experiments 

Reliability measure 

A B C D E F 

A 

B 

C 

D 

E 

F 

E1 

E2 

λ = Probability that the  
diagonal terms are  
threir row and column  
maxima 

(Caceres et al. BMC genomics, under revision)



Inter-study reliability of networks across multiple
tissues

Top agreement between BRAINEAC and GTEx
across 4 brain regions in 287 KEGG pathways

λ σ Ref Description
0.68 0.02 hsa05033 Nicotine addiction
0.67 0.04 hsa04720 Long-term potentiation
0.58 0.04 hsa05206 MicroRNAs in cancer
0.55 0.01 hsa04080 Neuroactive ligand-receptor int.
0.53 0.03 hsa04020 Calcium signaling pathway
0.52 0.03 hsa04261 Adrenergic sig. in cardiom.
0.51 0.02 hsa04912 GnRH signaling pathway



Nicotine addiction pathway across 4 brain regions



Studying network reliability with transcritomic data

Significance

I the changes in nicotine addiction pathway are
consistent across four brain regions with
dopaminergic projections

I inter-study reliability of pathway changes
across tissues can inform on the fraction of
tissues with specific functional changes in
network structure.



Example 5
(variable interaction)



Studying co-splicing

I Isoform ratios can correlate between two genes,
across subjects

To which extent co-regulation of splicing can predict
gene function?



Studying co-splicing with transcritomic data

e1 en ek e1 
Gene a Gene b 

Trascriptomic Data 

(Caceres et al, BMC genomics, 2018-accepted)



Physiological function of genes across multiple
tissues

I work supported with computing hours from RES



Studying co-splicing with transcriptomic data

Significance

I APP is physiologically liked with genes affected
in Alzheimer’s disease, supporting the
hypothesis that a loss of function of APP
contributes to the disease.

I Co-splicing is a common phenomena and should
be taken into account to predict gene function.



Example 6
(multi omic data)



Studying loss of chromosome Y

I LOY associates with age and all-cause mortality
in men (smoking, cancer and AD)

I We dont know whether LOY causes disease or
vice-versa.

Can we predict a consequence of LOY that is closer
to disease?



Detecting extreme deregulation of chromosome Y

Autosomes 

Relative amount of Y transcription 

  

  

  

Y 

  

(Caceres et al, final draft ready!)



LOY → EDY → Male Disease

EDY:
I associates with LOY-associated conditions (age,

AD, cancer)
I strongly correlates with LOY
I improves the effect of LOY with male disease
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Studying EDY with multiple omic data

NoLOY/NoEDY 
 N = 2152 

NoLOY/EDY 
 N = 160

 LOY/EDY
 N = 891

LOY/NoEDY
 N = 301

LOY−EDY status in cancer samples from TCGA
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Survival of 13 different types of cancer
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Studying EDY with multiple omic data

Significance

I We give first evidence of a likely path from
LOY to disease

I EDY is a novel biomarker for male disease
which can be triggered by multiple mechanisms
including LOY



Further questions



Histone modification of EDY

What are the histone marks of EDY?

  
EDY is a protective factor for leukemia...
(controls = 3112, cases = 800,OR = 0.08,P = 5.3 × 10−5)



Chromatine modification of inversions

What are the histone marks of inversions?



Machine learning for recombination substructure

Can we train a neural network to detect
recombination substructures?
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