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Talk’s aim

How we can use omic data for understanding
biological processes that are involved in disease

....in six examples



Types of omic data

» genomic
» transcriptomic

» methylomic



What is omic data ?



What is omic data ?

» Big data in biology

» High dimensional data (a lot of features)
collected at different biological domains.
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Omic data

Ome refers to the totality of elements in a
biological domain

genome, proteomeome, ... interactome, phenome,
exposomeome

Operational definition:

Omic data is an unbiased scan of variables that
cover a given biological range.






Genomic data: unbiased scan of DNA sequence

At the level of chromosome molecules: genomic
data
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Genomic data: unbiased scan of DNA sequence
Definition:
» A genomic variable is the presence of a given

DNA sequence from reference values (reference
genome, hybridization probes)

SNP:

ref: A
A

T G CT G
chrl: T G CT T

Property:

» The values are (almost) stable throughout an
individual’s cells and life span



Transcritomic data: unbiased scan of RNA sequence

At the level of RNA molecules:
transcriptomic data

Chromatin fiber

DA



Transcritomic data: unbiased scan of RNA sequence

Definition:
» A Transcript variable is the amount of a

given RNA sequence from reference values
(reference genome, hybridization probes)

Property:
» The values are highly dynamic in time and are

different for each cell type -snapshot of the cell
at work in the nucleus



Methylomic data: unbiased scan of DNA
methylated sites

At the level of DNA sequence:
methylomic data

Methylated
cytosine




Methylomic data: unbiased scan of DNA
methylated sites

Definition:
» A Methylomic variable is the average state

of methylation at a given DNA site for the cells
in a sample

Property:
» The values change in time according to the

individual’s development/age and are
different for each cell within a cell type



Measuring omic data

Sequencing + mapping

Sense 5’ -CCTCTCAAC! c T A-37
Antisense 3’ TAC.
3’ ~GGAGCGTTGTAACTCCAGGGGTTTTAGTCGGAGGTGTC mz\GT:\AGAG’;T— -4
3 -GTTGTAACTCCA T TAGTCGGAGGTGTCGGAGTAAGAGTTGAAAA-5"
3’ -AACTCCAGGGT' 'TCGTCGGAGGGGTCGGAGTAAGAGTTGAAAAGTCGT
5’ -ctccaggggttttagtcggaggtgteggagtaagagttgaaaagtegtea-3
37

5’ -ggggttttagtcggaggtgtcggagtaagagttgaaaagtcgtcacagga=-3’
3/ -TTTTTGGTGGGAGGT
3’ ~TTTAGTCGGAGGTGTCGGAGTAAGAGTTGAAAAGTCGTCACAGGAAAGAA-5"
3’ ~GTCGGAGGCGTCGGAGTAAGAGTTGARAAGTCGTCACAGGAAAGAACTAC-5"
tgtcggagtaagagttgaaaagtcgtcacaggaaagaactacaa=-3"
3GTCGGAGTAAGAGTTGAAAAGTCGTCACAGGAAAGAACTACAAA-5'
5’ -gaggtgtcggagtaagagatgaaaagtcgtcacaggaaagaactacaaag-3"
3’ ~GGGTCGGAGTAAGAGTTGAAAAGTCGTCACAGGAAAGAACTACARAGAAG=5"
5’ -tcggagtaagagttgaaaagtcgtcacaggaaagaactacaaagaagtca=-3/
3 -GAGTAAGAGTAGAAAAGTCGTCACAGGAAAGAACTACAAAGAAGTCACTC-5"
5’ -agagttgaaaagtcgtcacaggaaagaactacaaagaagtcactcceegg-3'
3/ -GTTGAARAGTCGTCACAGGAAAGAACTACAAAGAAGTCACTCCCCGGAAT

R

Hybridization

Sense 5'
Antisense 3’ T -




Omic data from different methods

Omic data based from sequencing:

+ collects all the possible information on an
individual (maximum coverage)

+ is useful to detect rare variables (large effects)

— is computationally demanding

Omic data based from microarrays:

+ is highly scalable (100,000s of individuals)

+ is useful to detect small effects of variables on
phenotypes

— is not unbiased



Understanding disease with omic data



Method

1. Study how a biological process is imprinted on a
given omic data

2. Develop a method to mine the omic data

3. Understand the role of the biological process
in human disease



Examples

hidden structure in omic data
» inversion polymorphisms, asthma and obesity

» recombination substructure, breast cancer



Examples

interaction between omic variables
» epistasis, Alzheimer's disease

» reliability of co-expression networks, evaluating
networks across different tissues

» cosplicing, predicting genes’ physiological
interactions



Examples

multi omic data integration

» Lost of chromosome Y, male susceptibility to
disease.



Example 1

(hidden structure)



Studying inversion polymorphisms

Inversions are DNA sequences that run in the
opposite direction of a reference sequence.
» important structural variants involved in
adaptation and chromosomal evolution (chr Y)
» little studied in humans because they are
difficult to measure in large cohorts



inversion imprint in genomic data
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inversion 16pl1

inv-16p11 is a risks factor for the cooccurence of
asthma and obesity (OMIM #615835)

Study IE slE Odds Ratio
ECRHS =1.05 0.4488 —
EGEA -1.10 0.4293 —
EGCUT =0.80 0.3558 —
COPDGene -0.82 0.5610 : =
ACRM (SHARF) -0.48 0.2512 i
Random effects model (p=5.5e-08) =
Random effects model (p=5.5e-08) =
Heterogeneity: p=0.6824 1

T

0.2 05 1 2

(Gonzalez*, Caceres*, et al. AJHG, 2014, *fisrt joint author)



studying inversions with genomic data

Significance
» First hypothesis for the joint susceptibility to
asthma and obesity

» Study of inversions in human populations using
large cohorts



Example 2

(hidden structure)



Studying recombination

| | Recombnﬁlunl l

» increases genetic diversity
» different ancestries have different recombination
patterns

Detection of population substructure is
commonly based on mutation differences not on
allele combination differences

can we detect allele combination substructure?



Recombination differences in genomic data
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Recombination substructure in 1q21.1

The recombination substructure at 1g21.1
associates with the risk of breast cancer

PC2 (29.7%)
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Dataset
* 1000Genomes

* Included
* Excluded
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Chr 1 position (Mb)



Studying recombination substructure with genomic
data

Significance

» The causal variant in the susceptibility locus
1921.1 to breast cancer may be a structural
variant or process that suppressed recombination
of the risk chromosomes with others.

» Recombination substructure (differential allele
combinations) may help to explain additional
heritability of complex diseases



Example 3

(variable interaction)



Studying epistasis
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» complex traits are likely to emerge from the
interaction between genomic variables

» there are too many to test (~ 10'3 possibilities)

Do the interactions of validated risk SNPs overlap?



Genome-wide association studies

(Alzheimer’s Disease)

Genomic Data

Vi Vj AD
s1

Sn

GWAS

Validated associations

APOEF’s rs4420638
PICALM’s rs536841
MS4A6A’s rs610932
BIN1's rs610932



Epistasis in genomic data

Genomic Data

Genome Wide Interaction

SNP x risk locus,




Enrichment of epistatic effects

Enriched Pathways
of Epistatic Effects
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(Caceres et al, 2017 Alzheimer's and Dementia)

SNP x risk locus,




Enrichment of epistatic effects in AD

Gonodatropin signaling is enriched in interactions
with APOE and MS54A6A'’s polymorphisms

Risk Locus
rs429358 =

rs610832 x
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Studying epistasis of risk variants with genomic data

Significance

» Clinical trials targeting the gonodatropin
pathway should test APOE and MS54A6A's
polymorphisms for response to treatment.

» epistasis helps to link risk SNPs by their
interactions with common biological processes
(join the dots of GWAS)



Example 4

(variable interaction)



Studying co-expression networks

Co-expression networks

» inform which genes are co-regulated, functional
related or work together in the same pathway
» must be reproducible

Can we identify the tissues for which a network is
functional?



Co-expression networks across multiple tissues

Trascriptomic Data

Co-expression

A
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Reliability measure
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A = Probability that the
diagonal terms are
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maxima

6 Tissues x 2 experiments

(Caceres et al. BMC genomics, under revision)



Inter-study reliability of networks across multiple

tissues

Top agreement between BRAINEAC and GTEx
across 4 brain regions in 287 KEGG pathways
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Nicotine addiction pathway across 4 brain regions

FCTX-GTEx HIPP-GTEx PUTM-GTEx

-BRAINEAC

=
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Studying network reliability with transcritomic data

Significance

» the changes in nicotine addiction pathway are
consistent across four brain regions with
dopaminergic projections

» inter-study reliability of pathway changes
across tissues can inform on the fraction of
tissues with specific functional changes in
network structure.



Example 5

(variable interaction)



Studying co-splicing

Splicing regulator expression jeciomed isoform:2.
transcripts  transcripts

Click on image to zoom
— +_ 7 Intron
Sp!\cecsome f

» Isoform ratios can correlate between two genes,
across subjects

To which extent co-regulation of splicing can predict
gene function?



Studying co-splicing with transcritomic data
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(Caceres et al, BMC genomics, 2018-accepted)



Physiological function of genes across multiple
tissues
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Studying co-splicing with transcriptomic data

Significance

» APP is physiologically liked with genes affected
in Alzheimer’s disease, supporting the
hypothesis that a loss of function of APP
contributes to the disease.

» Co-splicing is a common phenomena and should
be taken into account to predict gene function.



Example 6

(multi omic data)



Studying loss of chromosome Y

Cells in @ man’s Women Men
tissue may lose the Y ChrX oy

» LOY associates with age and all-cause mortality
in men (smoking, cancer and AD)

» We dont know whether LOY causes disease or
vice-versa.

Can we predict a consequence of LOY that is closer
to disease?



Detecting extreme deregulation of chromosome Y

Relative amount of Y transcription

Autosomes Y

(Caceres et al, final draft ready!)



LOY — EDY — Male Disease

EDY:
» associates with LOY-associated conditions (age,

AD, cancer)
» strongly correlates with LOY
» improves the effect of LOY with male disease
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Studying EDY with multiple omic data
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Studying EDY with multiple omic data

Significance

» We give first evidence of a likely path from
LOY to disease

» EDY is a novel biomarker for male disease
which can be triggered by multiple mechanisms
including LOY



Further questions



Histone modification of EDY

What are the histone marks of EDY?
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Chromatine modification of inversions

What are the histone marks of inversions?
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Machine learning for recombination substructure

Can we train a neural network to detect
recombination substructures?
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