
Alternative Programming
Models

Distributed tasking with PaRSEC

BSC, Nov, 2018

George Bosilca and many others

https://bitbucket.org/icldistcomp/parsec

Exponential growth in HPC
• Appetite for compute will continue to

grow exponentially
• Fueled by the need to solve many

fundamental problems and deal with a
growing amount of data
• Energy, weather forecast, health, understanding

the universe but also connected devices, deep
learning

• The path forward seems to be a mix of
many-core general purpose supported
by special purpose units (not
necessarily computation only)

• New challenges arise: power, space,
cost, reliability, memory, …
• But also software
• Hardware solutions that require major changes in

software ecosystem are less likely to gain widespread
acceptance [quickly]

Top500 Nov 2018

A [very brief] history of computing paradigms

Heterogeneity
Concurrency*

Resiliency

SYNC

BSP & early
message passing

MPI + X

SYNC
SYNC

MPI + X + Y + Z + …

A [very brief] history of computing paradigms

Heterogeneity
Concurrency*

Resiliency

SYNC

BSP & early
message passing

MPI + X

SYNC
SYNC

MPI + X + Y + Z + …

40XHigher better

process

thread

A [very brief] history of computing paradigms

Heterogeneity
Concurrency*

Resiliency

SYNC

BSP & early
message passing

MPI + X

SYNC
SYNC

MPI + X + Y + Z + …

3X

Higher better

process

thread

thread Optimized 2 sided MPI

thread Optimized 1 sided MPI

4X
40X

A [very brief] history of computing paradigms

Heterogeneity
Concurrency*

Resiliency

SYNC

BSP & early
message passing

MPI + X

SYNC
SYNC

MPI + X + Y + Z + …

Over-subscription:
- User level threads (Qthreads,
MassiveThreads, Nanos++, Argobots)

Task-ification:
- Shared memory: OpenMP, Tascel,

Quark, TBB*, PPL, Kokkos**,
SuperGluer…

- Distributed Memory: StarPU,
StarSS*, DARMA**, Legion, CnC,
HPX, Dagger, X10, DuctTeip,
Hihat**, …

* explicit communications
** nascent effort

• Difficult to express the potential inter-algorithmic parallelism
• Why are we still struggling with control flow ?
• Software became an amalgam of algorithm, data distribution and architecture characteristics

• Increasing gaps between the capabilities of today’s programming environments, the requirements of
emerging applications, and the challenges of future parallel architectures

• What about developers productivity ?

Task-based programming support

1992

MPI
- More of a communication
library than a runtime
- Explicit communication

1993 2010

Charm++
- Supports distributed memory
- Low level – not based on
dataflow (communication is
explicit)

OMPSs/StarSs
- Supports distributed,
master/slave model

DAGuE/PaRSEC
- Supports distributed
memory
- Data-flow based
- Implicit communication

2012

Legion
- Nascent support for
distributed memory
- Data-flow based

StarPU
- Support shared memory
- Communication possible
through tasks(explicit)

2017

Legion
- Supports distributed memory
- Focus on compiler to allow
programmer express
applications more easily

StarPU
- Supports distributed memory
- Performance most close to
DTD

2013

OpenMP
- Introduces dependency
tracking for tasks in
Standard 4

7

PaRSEC
insert_task (DTD)

Co
nc

ep
ts

• Clear separation of concerns: compiler optimize each task
class, developer describe dependencies between tasks, the
runtime orchestrate the dynamic execution

• Interface with the application developers through
specialized domain specific languages (PTG/JDF/TTG,
Python, insert_task, fork/join, …)

• Separate algorithms from data distribution
• Make control flow executions a relic

Ru
nt

im
e

• Portability layer for heterogeneous
architectures

• Scheduling policies adapt every
execution to the hardware & ongoing
system status

• Data movements between producers
and consumers are inferred from
dependencies.
Communications/computations overlap
naturally unfold

• Coherency protocols minimize data
movements

• Memory hierarchies (including NVRAM
and disk) integral part of the scheduling
decisions

PaRSEC: a generic runtime
system for asynchronous,

architecture aware scheduling
of fine-grained tasks on
distributed many-core

heterogeneous architectures

PaRSEC

Data collections

Tasks

User data: dense
matrix, sparse,
structured or
unstructured

= a data centric programming environment based on
asynchronous tasks executing on a heterogeneous distributed
environment
• An execution unit taking a set of input data and generating,

upon completion, a different set of output data
• Data have a coherent distributed scope managed by the

runtime (similar to promises)
• Low-level API allowing the design of Domain Specific

Languages (JDF, DTD, TTG)
• Supports distributed heterogeneous environments

• Communications are implicit (the runtime moves data)
• Resources (threads, accelerators) are dynamic

encapsulated in distributed domains (similar to
executors)

• Built-in resilience, performance instrumentation and
analysis (R, python)

F(C(k))

A CB

Graph of tasks

F(A(k))

A

B

C

PaRSEC Architecture Software design based on
Modular Component
Architecture (MCA) of Open
MPI.
• Well defined components

API
• Runtime selection of

components
• Providing a new capability

by implementing a new
component has no
impact on the rest of the
software stack.
• Can be provided as

dynamic libraries by
vendors

Cores Memory
Hierarchies

Coherence Data
Movement Accelerators

Pa
ra

lle
l R

un
tim

e
Ha

rd
w

ar
e

D
om

ai
n

Sp
ec

ifi
c

Ex
te

ns
io

ns

Scheduling
SchedulingDistributed

Scheduling

Data Collections

Compact
Representation -

PTG

Dynamic Discovered
Representation -

DTG

Specialized
KernelsSpecialized

KernelsSpecialized
Kernels

Tasks
TasksTask
classes

Hard
core

Dense LA … Sparse LA TTG /
Chemistry

*

DataDataData

*…

Data
Movement Collective

Patterns

MPI
UCX

GasNet

Xeon Phi
NVidia

Memory
Allocator

Architecture
information

Soft. MOESI
OpenACC

The PaRSEC data
• A data is a manipulation token, the basic logical

element (view) used in the description of the dataflow
• Locations: have multiple coherent copies (remote node,

device, checkpoint)
• Shape: can have different memory layout
• Visibility: only accessible via the most current version of the

data
• State: can be migrated / logged

• Data collections are ensemble of data distributed
among the nodes
• Can be regular (multi-dimensional matrices)
• Or irregular (sparse data, graphs)
• Can be regularly distributed (cyclic-k) or user-defined

• Data View a subset of the data collection used in a particular
algorithm (aka. submatrix, row, column,…)

Runtime defined

User defined

D
at

a
Vi

ew

D
ata Collection

A(k)

v2

v1

v2

• A data-copy is the practical unit of data
• Has a memory layout (think MPI datatype)
• Has a property of locality (device, NUMA domain, node)
• Has a version associated with
• Multiple instances can coexist

DSL: The PaRSEC application parsec_vector_t dDATA;
parsec_vector_init(&dDATA, matrix_Integer, matrix_Tile,

nodes, rank,
1, /* tile_size*/
N, /* Global vector size*/
0, /* starting point */
1); /* block size */

parsec_context_t* parsec;
parsec = parsec_context_init(NULL, NULL); /* start the PaRSEC engine */

parsec_taskpool_t* ts = parsec_taskpool_new ();
parsec_context_add_taskpool (parsec, ts);

parsec_context_start(parsec);

for(n = 0; n < N; n++) {
parsec_insert_task(

parsec_dtd_handle,
call_to_kernel_type_write, “Create Data",
PASSED_BY_REF, DATA_AT(&dDATA, n), OUT | REGION_FULL,
0 /* DONE */);

for(k = 0; k < K; k++) {
parsec_insert_task(

parsec_dtd_handle,
call_to_kernel_type_read, "Read_Data",
PASSED_BY_REF, DATA_AT(&dDATA, n), INPUT | REGION_FULL,
0 /* DONE */);

}
}

parsec_context_wait(parsec);

Define a distributed
collection of data
(here 1 dimension
array of integers)

Start PaRSEC (resource
allocation)
Create a tasks placeholder
and associate it with the
PaRSEC context

Add tasks. A configurable
window will limit the number
of pending tasks

Wait ’till completion

D
ata initialization and PaRSEC

context setup. Com
m

on to all D
SL

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

How to describe a graph of tasks ?
• Uncountable ways
• Generic: Dagguer (Charm++), Legion, ParalleX, Parameterized

Task Graph (PaRSEC), Dynamic Task Discovery (StarPU,
StarSS), Yvette (XML), Fork/Join (spawn). CnC, Uintah, DARMA,
Kokkos, RAJA, OMPSS

• Application specific: MADNESS, …

• PaRSEC runtime
• The runtime is agnostic to the domain specific language (DSL)
• Different DSL interoperate through the data collections
• The DSL share
• Distributed schedulers
• Communication engine
• Hardware resources
• Data management (coherence, versioning, …)

• They don’t share

• The task structure
• The internal dataflow depiction 13

DSL: The insert_task interface parsec_vector_t dDATA;
parsec_vector_init(&dDATA, matrix_Integer, matrix_Tile,

nodes, rank,
1, /* tile_size*/
N, /* Global vector size*/
0, /* starting point */
1); /* block size */

parsec_context_t* parsec;
parsec = parsec_context_init(NULL, NULL); /* start the PaRSEC engine */

parsec_taskpool_t* ts = parsec_taskpool_new ();
parsec_context_add_taskpool (parsec, ts);

parsec_context_start(parsec);

for(n = 0; n < N; n++) {
parsec_insert_task(ts,

call_to_kernel_type_write, “Create Data",
PASSED_BY_REF, DATA_AT(dDATA, n), OUT | REGION_FULL,
0 /* DONE */);

for(k = 0; k < K; k++) {
parsec_insert_task(ts,

call_to_kernel_type_read, "Read_Data",
PASSED_BY_REF, DATA_AT(dDATA, n), INPUT | REGION_FULL,
0 /* DONE */);

}
}

parsec_context_wait(parsec);

Define a distributed
collection of data
(here 1 dimension
array of integers)

Start PaRSEC (resource
allocation)
Create a tasks placeholder
and associate it with the
PaRSEC context

Add tasks. A configurable
window will limit the number
of pending tasks

Wait ’till completion

D
ata initialization and PaRSEC

context setup. Com
m

on to all D
SL

The insert_task in action

15

for(k = 0; k < SIZE; k++) {
insert_task(“GEQRT”,

DATA_OF(A, k, k), INOUT|AFFINITY,
DATA_OF(T, k, k), OUTPUT|TILE_RECT)

for(n = k+1; n < SIZE; n++)
insert_task(“UNMQR”,

DATA_OF(A, k, k), INPUT|TILE_L,
DATA_OF(T, k, k), INPUT|TILE_RECT,
DATA_OF(A, k, n), INOUT|AFFINITY)

for(m = k+1; m < SIZE; m++) {
insert_task(“TSQRT”,

DATA_OF(A, k, k), INOUT|TILE_U,
DATA_OF(A, m, k), INOUT|AFFINITY,
DATA_OF(T, m, k), OUTPUT|TILE_RECT)

for(n = k+1; n < SIZE; n++)
insert_task(“TSMQR”,

DATA_OF(A, k, n), INOUT,
DATA_OF(A, m, n), INOUT|AFFINITY,
DATA_OF(A, m, k), INPUT,
DATA_OF(T, m, k), INPUT|TILE_RECT)

}
}

The insert_task in action

16

for(k = 0; k < SIZE; k++) {
insert_task(“GEQRT”,

DATA_OF(A, k, k), INOUT|AFFINITY,
DATA_OF(T, k, k), OUTPUT|TILE_RECT)

for(n = k+1; n < SIZE; n++)
insert_task(“UNMQR”,

DATA_OF(A, k, k), INPUT|TILE_L,
DATA_OF(T, k, k), INPUT|TILE_RECT,
DATA_OF(A, k, n), INOUT|AFFINITY)

for(m = k+1; m < SIZE; m++) {
insert_task(“TSQRT”,

DATA_OF(A, k, k), INOUT|TILE_U,
DATA_OF(A, m, k), INOUT|AFFINITY,
DATA_OF(T, m, k), OUTPUT|TILE_RECT)

for(n = k+1; n < SIZE; n++)
insert_task(“TSMQR”,

DATA_OF(A, k, n), INOUT,
DATA_OF(A, m, n), INOUT|AFFINITY,
DATA_OF(A, m, k), INPUT,
DATA_OF(T, m, k), INPUT|TILE_RECT)

}
}

Overhead of insert_task

17

TDTD/PTG:	Overall	time
N:	Total	number	of	tasks
CT:	Cost/duration	of	each	task
P:	Total	number	of	nodes/process
n:	Total	number	of	cores
CD:	Cost	of	discovering	a	task
CR:	Cost	of	building	DAG/relationship

DTD overhead

Benefits: critical path is defined by the sequential ordering
Drawbacks: impossible to build collective patterns,
selecting the window size is difficult, all data movement
must be known globally (and their order is critically
important)

• There are three types of scenario
• Insert All: Each rank inserts all tasks, and executes only locals
• Select Insert: Each rank inserts only local tasks, but iterates over all tasks.
• Insert Local: Each rank only inserts local tasks.

6144 cores

Fixed task
duration

Weak scaling: Fixed number
of tasks per process

What’s missing from insert_task?
• Need to balance between task graph knowledge and memory

overhead
• The task graph creation must happen in a single thread

• To trim or not to trim ? Who is tracking the data in order to
orchestrate global data coherence ?

• Difficult to type the input and output data, especially if one expects
the dependencies to only apply on partial data
• Difficult to reliably expose collective patterns without complete

knowledge of the task graph as different processes might have
discovered different sections of the task graph

PaRSEC DSL comparaison

19

SYN
C

SYN
C

Motivation
Related Works

The DAGuE framework
Performance Evaluation

Conclusion

Micro Benchmarking
Application: Cholesky Decomposition

Illustration of the Talk:
Cholesky Factorization

20 x 20 tiles matrix

George Bosilca DAGuE

vs. vs.

SLATE (over PaRSEC) approach
• Back to the future: return to the ScaLAPACK approach, the problem

hierarchically divided (panel + update) with flexible lookahead
• Remove most data dependencies (except data movement and versioning)
• The design is flexible enough to allow good performance on runtimes

with high scheduling costs (such as OpenMP or StarPU)
• Variable granularity with several benefits: task duration, task location, well

exposed “batched” operation
• Potential benefit for accelerators

• Present a different view to data movement
SLATE.send(data, [data range]+)

• Explicit life-expectancy for remote data
• Expose collective communications

• Everything is done in templated C++11, but the resulting
programming model (DSL) is generic

4 Exascale Computing Project

SLATE’s Connection to CUDA Graphs

• Simultaneously deploy large number of fine-grained operations

to the GPU, i.e., deploy a “batch” containing:

• different kinds of operations: GEMM, TRSM, SYRK, etc.

• different input parameters: Trans / NoTrans, etc.

• different sizes

• Asynchronously allocate and free GPU mamory

• This is critical.

• The current cudaMalloc() is not an option due to its synchronous behavior.

• SLATE has it’s own memory manager, but it’s very rudimentary.

• Stream management is not great

• The main purpose of CUDA streams is to synchronize (create a sequence).

• SLATE needs the oposite – to desynchronize (allow for concurrent execution).

• We end up creating multiple streams, what introduces the problem of stream management.

PaRSEC DSL comparaison

21

SYN
C

SYN
C

Motivation
Related Works

The DAGuE framework
Performance Evaluation

Conclusion

Micro Benchmarking
Application: Cholesky Decomposition

Illustration of the Talk:
Cholesky Factorization

20 x 20 tiles matrix

George Bosilca DAGuE

vs. vs.

Preliminary results

The Parameterized Task Graph (PTG/JDF)

22

GEQRT(k)

k = 0..(MT < NT) ? MT-1 : NT-1)

: A(k, k)

RW A <- (k == 0) ? A(k, k)
: A1 TSMQR(k-1, k, k)

-> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
-> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
-> (k == MT-1) ? A(k, k) [type = UPPER]

WRITE T <- T(k, k)
-> T(k, k)
-> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

BODY [type = CPU] /* default */
zgeqrt(A, T);

END

BODY [type = CUDA]
cuda_zgeqrt(A, T);

END

• A dataflow parameterized and concise
language

• Accept non-dense iterators
• Allow inlined C/C++ code to augment the

language [any expression]

• Termination mechanism part of the
runtime (i.e. needs to know the number
of tasks per node)

• The dependencies had to be globally
(and statically) defined prior to the
execution

• Dynamic DAGs non-natural
• No data dependent DAGs

Control flow is eliminated, therefore
maximum parallelism is possible

PaRSEC DSL comparaison

23

SYN
C

SYN
C

Motivation
Related Works

The DAGuE framework
Performance Evaluation

Conclusion

Micro Benchmarking
Application: Cholesky Decomposition

Illustration of the Talk:
Cholesky Factorization

20 x 20 tiles matrix

George Bosilca DAGuE

vs. vs.

Preliminary results

Dense Linear Algebra: QR heterogeneous

24

0

3

6

1 2

4

7

5

8
9

10 11

12

13

Experiments on Arc machines,
• E5-2650 v3 @ 2.30GHz
• 20 cores
• gcc 6.3
• MKL 2016
• PaRSEC-2.0-rc1
• StarPU 1.2.1
• CUDA 7.0

GEQRT

TSQRT

UNMQR

TSMQR

24

MAGMAruns out of GPU memory

B� big tile size
b: small tile size
ib: inner block size

0
3

6

1 2

4
7

5
89

1
0

1
11
21
3

0
3

6

1 2

4
7

5
89

1
0

1
11
21
3

Keeneland

 0

 5

 10

 15

 20

 25

 768 2304 4032 5760 7776 10080 14784 19584 23868

P
E

R
F

O
R

M
A

N
C

E
 (

T
F

L
O

P
/S

)

NUMBER OF CORES

DGEQRF performance strong scaling

LibSCI Scalapack

Systolic QR over PaRSEC (2D)Systolic QR over PULSAR

DPLASMA HQR (best single tree)

Cray XT5 (Kraken) - N = M = 41,472

h stands for dynamic
Hierarchical algorithms

(a task can divide itself)

GEQRT

TSQRT

UNMQR

TSMQR

Dense Linear Algebra
DPLASMA = ScaLAPACK + runtime (PaRSEC)

Relaxing constraints: Unhindered parallelism
• The only requirement is that upon a task completion the

descendants are locally known
• Information packed and propagated to participants where the descendent tasks are supposed to execute

• Uncountable DAGs
• ” %option nb_local_tasks_fn = …”
• PaRSEC provides support for global termination detection (or user provided)

• Add support for dynamic DAGs
• Properties of the algorithm / tasks
• ”hash_fn = …”
• ”find_deps_fn = …”

• Allow dataflow specialization (RMA, datatype, displacement)

26

Numerical illustration

Intel Xeon Phi results - e�ciency

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 60 120 240

e
ff

ic
ie

n
cy

number of threads

Perfect
PaRSEC

MPI

Lionel BOILLOT (Inria) Task-based programming 04-mar-15 22 / 23

N
ot

 y
et

 H
T

re
ad

yTask based programming Task dataflow

Fine granularity

Figure : Subdivision example

More than one domain per CPU

exhibit deeper parallelism

allow dynamic flexibility

reduce the boundary size

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 18 / 30

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
xe

cu
tio

n
 T

im
e

 (
se

c)

Cores/Node

Original 64
PaRSEC 64

DIP: Elastodynamic Wave Propagation

NWChem (PaRSEC)

C40H56

Be
ta

-c
ar

ot
en

e

More dynamic applications
Geophysics - wave equation

Geophysics simulation

Figure : Elastic wave propagation in 3D (2D slice view)

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 6 / 30

Dynamically redistribute the data
- use PAPI counters to estimate the imbalance
- reshuffle the frontiers to balance the workload

Interoperability between GlobalArray +
PaRSEC + MPI

�

�

�� �

��� �

�

�� �

�

�� � �� �

�

�� �

�

�

�

��

�

�

�

�

�

�

��

�

�

�

��

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

��

�

� � �� �

�

�

�

�

�

�

� �

����

�

� �

�

�� ��

��

�

�

Templated Task Graphs (TTG) Project A Project B

A + BdA/dx

B - A

cout

No synchronizations
between the different
algorithms, the data
flows from one to
another as soon as it
becomes available.

Need for termination
detection in the
runtime

Z 1

0
(g(x) + f(x))⇥ g(x)� g(f(x))dx

TESSE: Irregular tensor contraction

neither between the nodes of a distributed run or between the
threads of a single node. As a consequence, both runtimes
need to use threads simultaneously.

Instead of oversubscribing the cores with duplicate threads,
risking a high level of involuntary context switches, or space
sharing the computing resources by dedicating some cores to
PaRSEC threads and others to MADNESS threads, we provide
a PaRSEC backend runtime for MADNESS: MADNESS uses
PaRSEC to schedule tasks on different cores, and we used the
state machine of PaRSEC tasks to trigger the different steps
of a task progress in the MADNESS runtime. All computing
resource are under the control of a single runtime, that provide
computing capabilities to the other runtime system.

B

A C

N

K

K

M

k1

k2

k3

k4

m1

m2

m3

n1 n2 n3 n4 n5

Fig. 1. Example of a Irregular Tiled GEMM operation

V. RUNTIME AND ALGORITHM OPTIMIZATIONS

A. Optimized Matrix Multiply Algorithm

The ABCD operation is implemented in TiledArray as a
distributed-memory matrix multiplication (GEMM) [24] on
matrices with irregular tiles. GEMM computes C

0 = A ⇥
B + C, where A is a matrix of size M ⇥ K, B is a matrix
of size K ⇥ N , and C is a matrix of size M ⇥ N . A,B,

and C are tiled – they are divided into submatrices such
that Aij , 1 i m, 1 j k are submatrices of A of
size Mi ⇥ Kj ,

P
m

i=1 Mi = M,
P

k

j=1 Kj = K. We define
similarly Bij and Cij as the tiles of B and C, of size Ki⇥Nj

and Mi ⇥ Nj respectively. (Mi, Nj ,Kk) defines a cartesian
tiling of A,B,C such that the tiles remain compatible for the
GEMM operation: C

0
ij

= Cij +
P

k

l=1 Ail ⇥ Blj , 1 i
m, 1 j n. Figure 1 illustrates this irregular tiling for 3
matrices.

As described in Section II, the shape of the input matrices
is a consequence of the specific problem context: in typical
runs, K = N >> M . As a consequence, the traditional
version of SUMMA that rotates A and B over the blocks of
C in a coordinated manner becomes communication intensive:
an approach that moves the data of A and C above the
location of B is much more efficient. Another challenge is
that the chemistry context determines the tilings of A, B,

and C. Irregularity of the tiling creates additional scheduling
challenges for the runtime system, as each task has a different
load.

The SUMMA operation is implemented over the PTG
Domain Specific Language of PaRSEC. In PTG, there are
multiple levels of parallelism: between nodes, tasks are bound
to data, and will execute where specific data are located. This
binding is static, and decided by the developer. Inside a node,
the distribution of tasks between the cores and the accelerators
is decided dynamically by the runtime. Multiple strategies
are operating simultaneously: when tasks can be scheduled
on accelerators (like the GEMM update operation, for which
we provided a MKL-based for the CPU and a cuBLAS-based
for the GPUs), the scheduler computes the current load of
the CPUs and GPUs, and distributes ready-tasks based on the
corresponding number of floating point operations required,
the computing capability of the device, and the location of the
data. Once some data starts to be modified by an accelerator,
it remains hosted by the accelerator until the next update
requires a CPU execution, binding all subsequent local GEMM
operations on this GPU. Tasks assigned to CPUs, on the other
hand, may be executed by any computing thread bound to any
core, using a job-stealing approach. The dynamic schedulers
of PaRSEC aim at optimizing cache reuse by sorting tasks in
local queues as a function of the recent use of data by tasks,
and job stealing follows a hierarchical strategy that maps the
hardware memory hierarchy. However, these constraints are
only heuristics, and tasks assigned to CPUs may be executed
by any core.

The algorithm used for the integrated software aims at
minimizing communications and exposing the highest degree
of parallelism. As the order in which the updates of each tile
of C does not impact the quality of the result for the targeted
application, we explore the data distribution of A, B, and C

at initialization time, and build an execution plan that defines
where each GEMM kernel is going to be executed, and in
what relative order.

Input : A, matrix of M ⇥K, tiled on Mm,Kk

Input : B, matrix of K ⇥N , tiled on Kk, Nn

Input/Output: C, matrix of M ⇥N , tiled on Mm, Nn

Parallel for 1 i m {
Parallel for 1 j n {

Let Chainsi,j be a partition of [1, . . . , k];
Parallel for c 2 Chainsi,j {

Let Cc be an empty matrix of size mi ⇥nj ;
For each l 2 c {

Compute Cc = Cc +Ail ⇥Blj

}
}
Reduce the sum of Cc, c 2 Chainsi,j into Cij

}
}

Algorithm 1: Tiled Matrix Multiply Algorithm

A generic tiled matrix multiply algorithm is presented in

even improving accuracy and robustness. In computational
chemistry and material science these goals are achieved by
exploiting dynamic (i.e., discovered during the course of com-
putation) sparsity and low-rank structures that together com-
bine to greatly increase both the complexity of the software
and the irregularity of the computation, while also reducing
the granularity of computation. There is thus a fundamental
tension between adopting advanced algorithms and realizing
high-performance on current supercomputer systems, such as
hybrid systems accelerated with multiple GPUS that represent
a path to exascale simulation.

In the TESSE (Task-based Environment for Scientific
Simulation at Extreme ScalE) project we have employed
application-driven design to create a general-purpose software
framework that attacks the twin challenges of programmer
productivity and portable performance for advanced scientific
applications on massively-parallel, hybrid, many-core systems.
TESSE (1) extends the successful PaRSEC runtime and execu-
tion model [1] to support more irregular and dynamic applica-
tions, (2) defines a new programming model for composing
sparse algorithms in modern C++ that leverages concepts
of general flow-based programming and more specifically
the PaRSEC parameterized task graph [2] for dense linear
algebra [3], and (3) develops a new generation of science
applications that builds upon these tools. Crucial to success
is the appropriate partitioning of responsibilities between the
runtime, the parallel-programming model, and the application.

In this paper, we focus upon the TESSE runtime and
demonstrate, for the first time, key components of a many-
body chemistry application executing on a distributed-memory
computer with fully distributed data and utilizing multiple
GPUs per node. We describe and demonstrate progress towards
an extension to the PaRSEC runtime for irregular applications
executing on distributed memory, hybrid architectures. In
particular, contractions of 4-index block-distributed (and even-
tually block-sparse) tensors are mapped to matrix-multiply
operations with irregular tiles. Key challenges overcome and
features demonstrated are

• obtaining high-performance with matrix operations on
strongly non-square matrices,

• a model based approach starting from single node multi-
GPU benchmark data,

• an intelligent runtime for irregularly-tiled data that load
balances and routes work to CPU/GPU appropriately
based upon size/shape,

• the use of futures to integrate the new component on the
TESSE runtime into the existing application that uses the
MADNESS parallel runtime,

• experiments that demonstrate and analyze the application
performance on up to 16 nodes with multiple GPUs/node.

II. MOTIVATING SCIENCE APPLICATION

Although the objectives of TESSE runtime are domain-
neutral, a particular key science application – namely, accurate
simulation of the electronic structure of molecules and solids
– was chosen to drive the development of TESSE. Predictive

simulation of electronic structure involves first-principles solu-
tion of the quantum mechanical equation of motion for many
(potentially, an infinite number of) electrons; exact solutions
are not known for even 2 electrons (outside of few models)
and even for a finite discretization the problem is NP-hard.
Robust approximate methods exist, such as coupled-cluster [4]
and many-body Green’s function approaches, but they are
expensive, i.e. they have high-order polynomial operation
and space complexity; for the foundational Coupled Cluster
Singles and Doubles method (CCSD) these are N

6 and N
4,

respectively. The high complexity limits the applicability of
conventional (naive) formulations of predictive methods to
systems with a few (5-10) atoms on a single workstation, and
a few dozen (50-100) atoms on a supercomputer [5]. However,
recent emergence of robust fast/reduced-scaling formulations
has greatly extended the applicability of such methods to hun-
dreds of atoms on a single workstation [6]. Such formulations
replace the usual dense tensors with block-sparse and/or block-
rank-sparse tensors, generally referred to as data-sparse. Thus
one of the concrete goals of TESSE was to allow high-level
composition of performant data-sparse tensor algebra required
by the reduced-scaling electronic structure methods on modern
distributed-memory heterogeneous computer platforms.

Since there are dozens of terms in the nonlinear algebraic
equations that define even the simplest target method, CCSD,
in a finite basis number, to understand application performance
it is sufficient to focus on the representative, and usually the
most expensive term (accounting routinely 90% or more),
in the CCSD equation,1 often referred to colloquially as the
ABCD term:

R
ij

ab
=

X

cd

T
ij

cd
G

cd

ab
+ . . . , (1)

where the elements of tensor T are the model parameters to
be determined iteratively (in typically 10-20 iterations) so that
tensor R vanishes. Tensor G is fixed (does not change between
iterations). Ranges of all indices are proportional to system
size N , hence each tensor has N

4 space complexity, and the
operation has N

6 operation complexity.
The tensor contraction in Eq. (1) can be viewed as a

multiplication of matrix T (with fused indices ij and cd

playing the role of row and column indices, respectively) with
square matrix G (with cd and ab row and column indices).
In practice the range of unoccupied indices (abcd) has rank
U that’s a factor of 5-20 larger than the corresponding rank
O of the occupied indices ij, hence transposes of matricized
tensors T and R are very tall and skinny matrices, with
aspect ratios of 25-400! Optimal formulation of dense matrix
multiplication on distributed-memory systems [7], including
for rectangular matrices [8], is relatively well understood.
However, translating these advances in dense linear algebra
to advances in electronic structure involves several hurdles:

1The permutational symmetries of tensors T , G and R, which are essential
for proper physics as well as optimal operation count, are neglected for
simplicity.

Accurate simulation of the electronic structure of molecules and solids using Coupled Cluster Singles and Doubles
method (CCSD). Novel formulations replace the usual dense tensors with block-sparse and/or block-rank-sparse
tensors increasing applicability from dozen to thousands of atoms.

Application dominated (90% of execution time) by 4-index block-distributed tensor contractions.
These tensor operations can be mapped to matrix-matrix multiplications with irregular and
imbalanced tiling.

Irregular tensor contraction on Nvidia GPU

0
500
1000
1500
2000
2500
3000
3500
4000
4500

64
/16
00

96
/24
00

12
8/3
20
0

16
0/4
00
0

19
2/4
80
0

25
6/6
40
0

38
4/9
60
0

51
2/1
28
00

76
4/1
91
00

10
24
/25
60
0

736 - CPU Theoritical Peak

4700 - P100 GPU Theoritical Peak

Pe
rfo
rm
an
ce

(G
Fl
op
/s
)

Tile Size/Matrix Size (25 tiles per dimension)

CPU only
1 Stream
2 Streams
3 Streams
4 Streams

Fig. 2. Performance of double precision GEMM on P100 according to the
number of submission streams and the tile size for a fixed number of tiles per
dimension (25). CPU (Haswell) performance is according to MKL. The peak
of the respective device (CPU, P100are also represented as a dashed line).

The most straightforward approach is to provide a task
insertion application programming interface (API) and dy-
namically build the dependency graph between the developer
inserted tasks by tracking the type of usage made with the
tasks parameters. QUARK, OmpSS, and StarPU provide such a
task insertion API, supported by different methods to facilitate
the scheduling and help with the profiling and debugging. To
interact with the runtime, the developer expresses his algorithm
as a set of elementary tasks, and inserts the tasks in the
runtime. The main advantage of this approach is the ease of
porting applications to the task-based runtime, but the easiness
comes with drawbacks on distributed environments, as it forces
all participating processes to discover the entire set of tasks (in
order to identify data movements between processes), before
reducing to the set of locally executed tasks, and neighbor
tasks that deliver or acquire input or output for the local tasks.
This pruning phase limits potential scalability [12]. QUARK
has no implicit support for heterogeneous nor distributed ar-
chitectures. StarPU provides support for heterogeneous archi-
tectures, and covers distributed execution via the insertion of
explicit communication tasks [32], which places the burden of
organizing communication back on the application developer
and on the communication library. OmpSS follows a master-
slave model allowing nesting of tasks in individual nodes to
relieve the master; however the master-slave model may suffer
from scalability issues on large scale distributed systems.

Recent versions of the OpenMP specification [33] introduce
the task and depend clauses which can be employed to express
dataflow graphs. OpenMP is widely used and supports homo-
geneous, shared memory systems, and its target extension to
support accelerators is quickly gaining traction. A limitation of
the OpenMP model is that distributed memory and internode
communication needs to be explicitly described and performed
with the use of an external communication library.

OCR, still in early development stages, only supports ho-
mogeneous architectures and have some nascent capabilities
for dealing with distributed environments. Legion describes

logical regions of data and uses those regions to express the
dataflow and dependencies between tasks, and defers to its
underlying runtime, REALM [34], the scheduling of tasks,
and data movement across distributed heterogeneous nodes.

Thus far, generic dataflow runtimes have been used to
either investigate irregular algorithms on shared memory
(occasionally with accelerators), or, alternatively, to deploy
dense, regular algorithms on distributed systems. This research
provide a tangible base to address sparse irregular applications
that have so far been out of reach.

b) Chemistry: Distributed-memory algorithms for
coupled-cluster and other many-body electronic structure
methods have been in development since late 1980s and
are now available in several packages (see Ref. [5] for a
recent review of CCSD implementations), most notably in
NWChem (a flagship distributed-memory quantum chemistry
code), ACESIII, and GAMESS. Unfortunately very little
of this capability can be executed on distributed-memory
heterogeneous platforms. NWChem has a CUDA-based
implementation of perturbative triples correction to CCSD,
also known as (T), that has been demonstrated on a
GPU-equipped distributed-memory platform and can take
advantage of multiple GPUs and multiple CPU cores on
each node (however, the CCSD code is CPU only) [35].
Very recently some of us demonstrated a distributed memory
implementation of (T) in MPQC that can take advantage of
multiple GPUs per node [36]. GAMESS has demonstrated a
GPU-capable implementation of select terms in the CCSD
code on 1 node with 1 GPU [37].

VII. EXPERIMENTAL RESULTS

A. Single Node Experiments
Figure 2 presents a benchmark of the GPU engine designed

to help understanding the performance impact of using the
cuBLAS library with multiple streams, executed on a recent
NVIDIA accelerator (P100). This benchmark consists of a tiled
general matrix multiply in double precision. As described in
Section V-B, the PaRSEC GPU manager users one or more
streams to execute kernels. When using a single execution
stream, the CUDA engine serializes the kernels calls, thus, the
call overhead has little opportunity for overlap, decreasing the
SM occupancy and negatively impacting the performance. As
the tile size grows, the performance asymptotically reaches
the peak, but larger tiles are rare for the target application
(MPQC). The interesting point is that as soon as the engine
uses two execution streams, the cost of calling a kernel mostly
overlaps with the execution of a kernel on another stream,
and the performance increases up to a sizable percentage of
the peak performance. After a given tile size, increasing the
number of streams have no measurable benefits for the GEMM
operation. In conclusion, in order to extract a reasonable
amount of performance (more than 80%) from the use of
accelerators via cuBLAS we need tiles of at least 384x384
with at a minimum of 3 submission streams. On the Haswell
E5-2650 v3, the MKL library reaches 80% of the theoretical
peak for tile size of around 96x96.

0

1000

2000

3000

4000

5000

6000

7000

64
/16
00

96
/24
00

12
8/3
20
0

16
0/4
00
0

19
2/4
80
0

25
6/6
40
0

38
4/9
60
0

51
2/1
28
00

76
4/1
91
00

10
24
/25
60
0

736 - CPU Theoritical Peak

7500 - V100 GPU Theoritical Peak

Pe
rfo
rm
an
ce

(G
Fl
op
/s
)

Tile Size/Matrix Size (25 tiles per dimension)

CPU only
1 Stream
2 Streams
3 Streams
4 Streams

2 streams are dedicated to memory transfer (up and down), we study the impact of the computing streams

• 1 stream serializes calls, it will asymptotically reach peak;
• 2 streams already give enough performance by overlapping kernel calls with another kernel;
• 3 streams is enough in practice;
• 4+ might not [yet] be necessary.

Irregular tensor contraction

neither between the nodes of a distributed run or between the
threads of a single node. As a consequence, both runtimes
need to use threads simultaneously.

Instead of oversubscribing the cores with duplicate threads,
risking a high level of involuntary context switches, or space
sharing the computing resources by dedicating some cores to
PaRSEC threads and others to MADNESS threads, we provide
a PaRSEC backend runtime for MADNESS: MADNESS uses
PaRSEC to schedule tasks on different cores, and we used the
state machine of PaRSEC tasks to trigger the different steps
of a task progress in the MADNESS runtime. All computing
resource are under the control of a single runtime, that provide
computing capabilities to the other runtime system.

B

A C

N

K

K

M

k1

k2

k3

k4

m1

m2

m3

n1 n2 n3 n4 n5

Fig. 1. Example of a Irregular Tiled GEMM operation

V. RUNTIME AND ALGORITHM OPTIMIZATIONS

A. Optimized Matrix Multiply Algorithm

The ABCD operation is implemented in TiledArray as a
distributed-memory matrix multiplication (GEMM) [24] on
matrices with irregular tiles. GEMM computes C

0 = A ⇥
B + C, where A is a matrix of size M ⇥ K, B is a matrix
of size K ⇥ N , and C is a matrix of size M ⇥ N . A,B,

and C are tiled – they are divided into submatrices such
that Aij , 1 i m, 1 j k are submatrices of A of
size Mi ⇥ Kj ,

P
m

i=1 Mi = M,
P

k

j=1 Kj = K. We define
similarly Bij and Cij as the tiles of B and C, of size Ki⇥Nj

and Mi ⇥ Nj respectively. (Mi, Nj ,Kk) defines a cartesian
tiling of A,B,C such that the tiles remain compatible for the
GEMM operation: C

0
ij

= Cij +
P

k

l=1 Ail ⇥ Blj , 1 i
m, 1 j n. Figure 1 illustrates this irregular tiling for 3
matrices.

As described in Section II, the shape of the input matrices
is a consequence of the specific problem context: in typical
runs, K = N >> M . As a consequence, the traditional
version of SUMMA that rotates A and B over the blocks of
C in a coordinated manner becomes communication intensive:
an approach that moves the data of A and C above the
location of B is much more efficient. Another challenge is
that the chemistry context determines the tilings of A, B,

and C. Irregularity of the tiling creates additional scheduling
challenges for the runtime system, as each task has a different
load.

The SUMMA operation is implemented over the PTG
Domain Specific Language of PaRSEC. In PTG, there are
multiple levels of parallelism: between nodes, tasks are bound
to data, and will execute where specific data are located. This
binding is static, and decided by the developer. Inside a node,
the distribution of tasks between the cores and the accelerators
is decided dynamically by the runtime. Multiple strategies
are operating simultaneously: when tasks can be scheduled
on accelerators (like the GEMM update operation, for which
we provided a MKL-based for the CPU and a cuBLAS-based
for the GPUs), the scheduler computes the current load of
the CPUs and GPUs, and distributes ready-tasks based on the
corresponding number of floating point operations required,
the computing capability of the device, and the location of the
data. Once some data starts to be modified by an accelerator,
it remains hosted by the accelerator until the next update
requires a CPU execution, binding all subsequent local GEMM
operations on this GPU. Tasks assigned to CPUs, on the other
hand, may be executed by any computing thread bound to any
core, using a job-stealing approach. The dynamic schedulers
of PaRSEC aim at optimizing cache reuse by sorting tasks in
local queues as a function of the recent use of data by tasks,
and job stealing follows a hierarchical strategy that maps the
hardware memory hierarchy. However, these constraints are
only heuristics, and tasks assigned to CPUs may be executed
by any core.

The algorithm used for the integrated software aims at
minimizing communications and exposing the highest degree
of parallelism. As the order in which the updates of each tile
of C does not impact the quality of the result for the targeted
application, we explore the data distribution of A, B, and C

at initialization time, and build an execution plan that defines
where each GEMM kernel is going to be executed, and in
what relative order.

Input : A, matrix of M ⇥K, tiled on Mm,Kk

Input : B, matrix of K ⇥N , tiled on Kk, Nn

Input/Output: C, matrix of M ⇥N , tiled on Mm, Nn

Parallel for 1 i m {
Parallel for 1 j n {

Let Chainsi,j be a partition of [1, . . . , k];
Parallel for c 2 Chainsi,j {

Let Cc be an empty matrix of size mi ⇥nj ;
For each l 2 c {

Compute Cc = Cc +Ail ⇥Blj

}
}
Reduce the sum of Cc, c 2 Chainsi,j into Cij

}
}

Algorithm 1: Tiled Matrix Multiply Algorithm

A generic tiled matrix multiply algorithm is presented in1000

2000

4000

8000

16000

32000

1 2 4 8 12 16

P
er
fo
rm
an
ce
,G

F
lo
p/
s

of Nodes (2 x E5-2680v4 + 2 P100)

TESSE, 2xP100
TESSE, 1xP100

TiledArray, 1xP100

Fig. 5. Strong-scaling performance of the ABCD term in the coupled-cluster
doubles equation for (H2O)12 in aug-cc-pVDZ basis set.

respectively, each split into nO = 2 and nU = 12 tiles of
varying sizes.

Excellent strong scaling was demonstrated by the PaRSEC-
based SUMMA (Figure 5), both when using 1 GPU and 2
GPUs per node. A speedup of ⇥12.8 was observed when the
node count increased from 1 to 16, which translates into 80%
parallel efficiency. Good strong scaling was attained by the
native SUMMA implementation in TiledArray: a speedup of
6.8 was observed when the node count increased from 1 to
12, which translates into 57% parallel efficiency. However the
current default implementation of SUMMA in TiledArray does
not permit to efficiently utilize more than 1 GPU per MPI rank
(with 2 GPUs per node a speedup of only 3.5 was observed
when the node count increased from 1 to 16 nodes). Thus
the new PaRSEC-based SUMMA implementation is a huge
improvement over the default TiledArray implementation, and
on 16 nodes it allows to reduce time to solution by more than
a factor of 3.5, due to its efficient parallel scalability and the
ability to efficiently utilize multiple P100 GPUs as well as the
CPU cores.

The excellent strong scalability notwithstanding, there is
still room for improvement. Specifically, the absolute per-
formance of 31.3 TFlop/s on 16 nodes corresponds to ap-
proximately 20% of the peak hardware performance. As the
data in Section VII-A suggests, PaRSEC-based GEMM im-
plementation is perfectly capable of reaching high percentage
of peak. To understand the origin of lower performance of
the distributed ABCD benchmark we used the same PaRSEC-
based SUMMA implementation to evaluate product of square
matrices of various sizes. The hypothesis in this experiment
was that the performance degradation could be traced to the
“stationary” matrix in SUMMA (i.e., matrix B) no longer
fitting into the high-bandwidth memory on the GPU. Indeed,
as the data in Figure 6 suggests, for smaller problem sizes
efficiency decreases monotonically with the number of nodes,
whereas for the largest problem sizes the efficiency actually
increases with the number of nodes when the number of
nodes is small; one square matrix of size N = 65, 536 in
double precision requires ⇠34GB of space, which greatly

Fig. 6. Strong-scaling performance of SUMMA for a square matrix mul-
tiplication as a function of problem size. Constant tile size 1024 is used
throughout.

exceeds 12GB of high-bandwidth memory on a single card.
Also note than on 1 node performance reaches peak for
N = 25, 600 (5.2GB) at 5.3 TFlop/s (or > 50% of peak)
and then drops to ⇠ 2.1 TFlop/s for the largest problem size,
which is similar to the ABCD benchmark performance on 1
node. This suggests that incorporating resource awareness into
the PaRSEC-based SUMMA implementation should allow to
improve performance significantly.

VIII. CONCLUSION

In this paper, we present a new approach of increasing
applications efficiency on heterogeneous environments by the
means of an integrated software stack, supported by a task-
based runtime, PaRSEC. We depicted TESSE, the resulting
software infrastructure, as well as algorithmic modification and
runtime alterations necessary to improve the performance of
the target application MPQC, a quantum chemistry application.
The results show, for different matrix multiplication operations
(with both square and non-square matrices and regular and ir-
regular tiling), unprecedented levels of performance for tensor
product applications on a distributed heterogeneous environ-
ment, with a sustained efficiency and scalability significantly
higher that the state-of-the-art. As such it validates TESSE’s
application-driven design to create a general-purpose software
framework that attacks the twin challenges of programmer
productivity and portable performance for advanced scientific
applications on massively-parallel, hybrid, many-core systems.
This study also highlights the need to develop specialized
DSL to facilitate computational scientists interaction with
new programming concepts, and emphasize the capabilities
of the underlying runtime, PaRSEC, to efficiently handle
intricate and dynamic workloads on complex architectures
without making compromises regarding the performance of
the resulting applications. In same time this study exposed
technical issues with the current implementation that limit the
exposed parallelism and have a negative impact on perfor-
mance, limitations that will be addressed in the near future.

Strong-scaling performance in
the coupled-cluster doubles
equation for (H2O)12 in aug-
cc-pVDZ basis set.

Fig. 5. Strong-scaling performance of the ABCD term in the coupled-cluster
doubles equation for (H2O)12 in aug-cc-pVDZ basis set.

respectively, each split into nO = 2 and nU = 12 tiles of
varying sizes.

Excellent strong scaling was demonstrated by the PaRSEC-
based SUMMA (Figure 5), both when using 1 GPU and 2
GPUs per node. A speedup of ⇥12.8 was observed when the
node count increased from 1 to 16, which translates into 80%
parallel efficiency. Good strong scaling was attained by the
native SUMMA implementation in TiledArray: a speedup of
6.8 was observed when the node count increased from 1 to
12, which translates into 57% parallel efficiency. However the
current default implementation of SUMMA in TiledArray does
not permit to efficiently utilize more than 1 GPU per MPI rank
(with 2 GPUs per node a speedup of only 3.5 was observed
when the node count increased from 1 to 16 nodes). Thus
the new PaRSEC-based SUMMA implementation is a huge
improvement over the default TiledArray implementation, and
on 16 nodes it allows to reduce time to solution by more than
a factor of 3.5, due to its efficient parallel scalability and the
ability to efficiently utilize multiple P100 GPUs as well as the
CPU cores.

The excellent strong scalability notwithstanding, there is
still room for improvement. Specifically, the absolute per-
formance of 31.3 TFlop/s on 16 nodes corresponds to ap-
proximately 20% of the peak hardware performance. As the
data in Section VII-A suggests, PaRSEC-based GEMM im-
plementation is perfectly capable of reaching high percentage
of peak. To understand the origin of lower performance of
the distributed ABCD benchmark we used the same PaRSEC-
based SUMMA implementation to evaluate product of square
matrices of various sizes. The hypothesis in this experiment
was that the performance degradation could be traced to the
“stationary” matrix in SUMMA (i.e., matrix B) no longer
fitting into the high-bandwidth memory on the GPU. Indeed,
as the data in Figure 6 suggests, for smaller problem sizes
efficiency decreases monotonically with the number of nodes,
whereas for the largest problem sizes the efficiency actually
increases with the number of nodes when the number of
nodes is small; one square matrix of size N = 65, 536 in
double precision requires ⇠34GB of space, which greatly

0

5

10

15

20

25

30

35

1 2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rfo
rm
an
ce

(T
Fl
op
/s
)(
pl
ai
n
lin
es
)

Fr
ac
tio
n
of
th
e
Pe
ak

(d
as
he
d
lin
es
)

of Nodes (2 x E5-2680v4 + 2 P100)

N=16384
N=25600
N=36864
N=65536

Fig. 6. Strong-scaling performance of SUMMA for a square matrix mul-
tiplication as a function of problem size. Constant tile size 1024 is used
throughout.

exceeds 12GB of high-bandwidth memory on a single card.
Also note than on 1 node performance reaches peak for
N = 25, 600 (5.2GB) at 5.3 TFlop/s (or > 50% of peak)
and then drops to ⇠ 2.1 TFlop/s for the largest problem size,
which is similar to the ABCD benchmark performance on 1
node. This suggests that incorporating resource awareness into
the PaRSEC-based SUMMA implementation should allow to
improve performance significantly.

VIII. CONCLUSION

In this paper, we present a new approach of increasing
applications efficiency on heterogeneous environments by the
means of an integrated software stack, supported by a task-
based runtime, PaRSEC. We depicted TESSE, the resulting
software infrastructure, as well as algorithmic modification and
runtime alterations necessary to improve the performance of
the target application MPQC, a quantum chemistry application.
The results show, for different matrix multiplication operations
(with both square and non-square matrices and regular and ir-
regular tiling), unprecedented levels of performance for tensor
product applications on a distributed heterogeneous environ-
ment, with a sustained efficiency and scalability significantly
higher that the state-of-the-art. As such it validates TESSE’s
application-driven design to create a general-purpose software
framework that attacks the twin challenges of programmer
productivity and portable performance for advanced scientific
applications on massively-parallel, hybrid, many-core systems.
This study also highlights the need to develop specialized
DSL to facilitate computational scientists interaction with
new programming concepts, and emphasize the capabilities
of the underlying runtime, PaRSEC, to efficiently handle
intricate and dynamic workloads on complex architectures
without making compromises regarding the performance of
the resulting applications. In same time this study exposed
technical issues with the current implementation that limit the
exposed parallelism and have a negative impact on perfor-
mance, limitations that will be addressed in the near future.

The less appealing story is that despite the significant
reduction in time to solution, we only reach 20% of the
hardware peak for irregular problems when we are able to
reach 60% regular GEMM.
At N = 64k each node holds 34GB of data, 3 times more
than the GPU memory. Memory traffic between nodes (IB
EDR 100Gbs) is the main culprit.

Success story: Time to
solution reduced by a
factor of 3.5

Natural data-dependent DAG Composition

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

32

�

�

�� �

��� �

�

�� �

�

�� � �� �

�

�� �

�

�

�

��

�

�

�

�

�

�

��

�

�

�

��

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

��

�

� � �� �

�

�

�

�

�

�

� �

����

�

� �

�

�� ��

��

�

�

POTRF TRTRI LAUUM

Example POTRI = POTRF + TRTRI + LAUUM

• 3 approaches:
• Fork/join: complete POTRF before starting TRTRI
• Compiler-based: give the three sequential algorithms to

the Q2J compiler, and get a single PTG for POINV
• Runtime-based: tell the runtime that after POTRF is done

on a tile, TRTRI can start, and let the runtime compose

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

�

�

�� ��

�� �

�

� �

�

�

�

�

�� �

�� �� � �

�

� �

� � �

�

�

�

�

�

� ��

�

�

�

�

�

� ��

�

��

�

�� ��

�

�

�

� �� �

�

�

�

� ��

�

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

� ��

�

�

�

�

�

��

�

�

� �� �

PaRSECTraditional

Interoperability with other programming paradigms

• With OpenMP accelerator target
– Goal: improve PaRSEC portability by supporting OpenMP

accelerators
– GPU Engine modified to use OpenMP target data movement

directives/functions (i.e. support for non-CUDA devices)
– Data movement and management remains implicit from the end-

user (simplified programming)
– User provides an OpenMP target task that will be scheduled by

PaRSEC
• With Kokkos tasks

– User provides a Kokkos task that will be scheduled by PaRSEC
– No tracking data dependencies at this point

– Proof-of-concept demonstrator with C to C++ translation shim
• With MPI programs

– PaRSEC Communication insulated from application MPI
communication

– MPI programs can enter/exit PaRSEC sections
– PaRSEC does not consume resources when idle

PaRSEC can schedule data
transfers to an OpenMP

accelerator and schedule OpenMP
target task

Preliminary
results

ECP collaboration SLATE and Exa-PAPI
Providing support for SLATE C++ DSL/classes to unfold tasks over
PaRSEC. Minimize the number of known tasks, explicit data collective
patterns, batches executions, accelerator support.

Enhancing the runtime capabilities:
● mechanism for asynchronous completion of taskpools;
● multi-level task insertion to mitigate the overhead of

dependencies resolution and enable the early detection of
batched operations;

● API for explicit communication, type multicast;

● ECP Collaboration with Exa-PAPI: integration of PAPI-SDE
interface into PaRSEC

● PaRSEC presents internal events as PAPI counters for external
tools (e.g. tau, ScoreP)

● Counters exposed:
○ Number of pending tasks (in different schedulers), ready

tasks, retired tasks
○ Memory usage by internal systems (communication, task,

…)
○ Extend the DSL to provide application/library level

counters
● All counters are lock-free / wait-free / atomic-free and

introduce non-measurable slowdown during the execution

Evolution of some PaRSEC PAPI-SDE events
during a POTRF factorization

Energy consumption and performance during a
dynamic execution where the number of

computations resources is reduced

The PaRSEC ecosystem

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 11. Power Profiles of the Cholesky Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 12. Power Profiles of the QR Factorization.

smaller number of cores. The engine could then decide to
turn off or lower the frequencies of the cores using Dynamic
Voltage Frequency Scaling [16], a commonly used technique
with which it is possible to achieve reduction of energy
consumption.

ACKNOWLEDGMENT

The authors would like to thank Kirk Cameron and Hung-
Ching Chang from the Department of Computer Science at
Virginia Tech, for granting access to their platform.

Cores Library Cholesky QR

128 ScaLAPACK 192000 672000
DPLASMA 128000 540000

256 ScaLAPACK 240000 816000
DPLASMA 96000 540000

512 ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Figure 13. Total amount of energy (joule) used for each test based on the
number of cores

REFERENCES

[1] MPI-2: Extensions to the message passing interface standard.
http://www.mpi-forum.org/ (1997)

[2] Agullo, E., Hadri, B., Ltaief, H., Dongarra, J.: Comparative
study of one-sided factorizations with multiple software pack-
ages on multi-core hardware. SC ’09: Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis pp. 1–12 (2009)

[3] Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel,
J.W., Dongarra, J.J., Croz, J.D., Greenbaum, A., Hammarling,
S., McKenney, A., Sorensen, D.C.: LAPACK User’s Guide,
3rd edn. Society for Industrial and Applied Mathematics,
Philadelphia (1999)

[4] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar,
A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief,
H., Luszczek, P., YarKhan, A., Dongarra, J.: Flexible Devel-
opment of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA. In: the 12th IEEE
International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-11). ACM, Anchorage,
AK, USA (2011)

[5] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T.,
Lem arinier, P., Dongarra, J.: DAGuE: A generic dis-
tributed DAG engine for high performance computing.
Tech. Rep. 231, LAPACK Working Note (2010). URL
http://www.netlib.org/lapack/lawnspdf/lawn231.pdf

[6] Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Don-
garra, J.: DAGuE: A generic distributed DAG engine for high
performance computing (2011)

[7] Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of
parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing 35(1), 38–53 (2009)

[8] Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrou-
chov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.:
ScaLAPACK, a portable linear algebra library for distributed
memory computers-design issues and performance. Computer
Physics Communications 97(1-2), 1–15 (1996)

[9] Cosnard, M., Jeannot, E.: Compact DAG representation and
its dynamic scheduling. Journal of Parallel and Distributed
Computing 58, 487–514 (1999)

[10] Dongarra, J., Beckman, P.: The International Exascale Soft-
ware Roadmap. International Journal of High Performance
Computer Applications 25(1) (2011)

• Support for many different types of applications
• Dense Linear Algebra: DPLASMA, MORSE/Chameleon
• Sparse Linear Algebra: PaSTIX
• Geophysics: Total - Elastodynamic Wave Propagation
• Chemistry: NWChem Coupled Cluster, MADNESS,

TiledArray
• *: ScaLAPACK, MORSE/Chameleon, SLATE

• A set of tools to understand performance,
profile and debug

• A resilient distributed heterogeneous
moldable runtime

VampirTrace visualization of a POTRF execution in PaRSEC using the Open
Trace Format traces (OTF2)

Conclusions
• Programming can be made easy(ier)
• Portability: inherently take advantage of all hardware capabilities
• Efficiency: deliver the best performance on several families of algorithms
• Domain Specific Languages to facilitate development
• Interoperability: data is the centric piece

• Build a scientific enabler allowing different communities to
focus on different problems
• Application developers on their algorithms
• Language specialists on Domain Specific Languages
• System developers on system issues
• Compilers on optimizing the task code

• Interact with hardware designers to improve support for
runtime needs
• HiHAT: A New Way Forward

for Hierarchical Heterogeneous Asynchronous Tasking

