Antenna to Core: A New Approach to RF Modelling

J.C Wright Barcelona Super Computing Center March 1, 2018

Thanks to: S. Shiraiwa, P. Bonoli, J. Lee, T. Kolev, M. Stowell, and the RF SciDAC team.

Fusion is a form of nuclear energy

- A huge amount of energy is released when isotopes lighter than iron combine to form heavier nuclei, with less final mass
- It is an ubiquitous energy source in the universe
- It is not (yet) a practical energy source on earth

Terrestrial energy sources have their origin in the nuclear fusion reactions of stars

Gyro-motion Of Charged Particles Enables Magnetic Confinement, *perpendicular to B-field*

Ionized particles are deflected by the Lorentz force and bent into circular orbits.

Gyro-radius
$$ho = rac{mV_{\perp}c}{qB} \propto rac{\sqrt{mT}}{B}$$

Gyro-frequency

$$\omega_c = \frac{eB}{mc}$$

At B = 5T, T = 10keV

- $\rho_{e} = 0.067 \text{ mm}$
- ρ_i = 2.9 mm
- R/ ρ_i > 1,000
- $\omega_e = 8.8 \times 10^{11} \text{ rad/sec} (\mu \text{waves})$
- $\omega_i = 4.8 \times 10^8 \text{ rad/sec}$ (FM radio)

Close the ends, and . . .

... toroidal confinement is born (the tokamak)

"Donuts. Is there anything they can't do?" --H. Simpson

What is a tokamak?

тороидальная камера с магнитными катушками (toroidal'naya kamera s magnitnymi katushkami) "A toroidal chamber with magnetic coils"

Leading-class computers allow for modeling of RF wave heating physics in core and edge regions with great detail – but separately

Short wavelength Lower hybrid waves In TORLH – 5 x 10³ cpu-hours

Long wavelength Ion cyclotron fast waves in 3D with AORSA –10⁶ cpu-hours

- RF field in
 - Core
 - SOL/antenna
- RF boundary sheath
- However, core and edge regions are modeled separately...

RF Simulations have been progressing towards more realistic geometries.

- Need of models with realistic 3D antenna and edge geometries that also account for the plasma response.
- Several physics issues require inclusion of edge plasma and antenna with confined core plasma simulations to be understood:
 - anomalous edge losses observed in several tokamaks,
 - efficiency of antenna coupling accounting for the full 3D geometry and in small device plasmas where wavelength is comparable to the device size,
 - and experiments where the waves are weakly absorbed and reflect from the device walls.
- Individually, good simulations for each region are available. However, extending them to the entire domain is difficult.
- The approach described here is applicable to all these cases.

Solution: Hybrid (core spectral / edge FEM) simulation.

AORSA

Spectral:

- Hot plasma formulation is algebraic
- Availability of mature scientific codes
- 2D or 3D by single toroidal mode analysis
- Dense matrices
- Handling of sharp geometrical features more difficult

FEM/FV:

Accurate geometry description (antenna, wall, SOL, ...)

Vorpal (FDTD)

- Cold plasma wave with collisions are straight-forward to implement
- Sparse matrices
- Not easy to deal with hot plasma dispersion (k₁₁)

TORIC-FEM coupling retains the best of both methods

Core **Axisymmetric** flux surface regular polar grid Hot plasma conductivity **Dense Matrix Solver** Edge Unstructured mesh with complex geometry (either 2D or 3D) Cold plasma with collisions. Boundary matching technique to build integrated solution

- E_{minus} 0.4 0.2 0.0 -0.2 -0.40.5 0.6 0.7 Density in SOL
- Mode matching technique is mathematically equivalent to impedance/admittance load methods used some antenna loading calculations.

FEM solution and workflows are done with open source tools

- MFEM is a free, lightweight, scalable library for finite element methods (see <u>http://mfem.org/features</u> for details.)
- PyMFEM custom python class for constructing MFEM simulations.
- πScope workflow manager with GUI to execute physics cases, see http://piscope.psfc.mit.edu

Domain decomposition at LCF to separate regions

- Calculate the separate Green's function solutions for the core (in) and edge (out) regions for different modal excitations (full solutions in each domain are shown above).
- Superimpose the solutions so that boundary conditions are satisfied superposition principle in linear Maxwell's equations.
- This method is exact no approximations.
- Analogous to constructing particular solution from homogenous ones.

Green's function responses found for singular Fourier surface excitations

- The domains are connected through an admittance response. (η and ζ are perpendicular and parallel to equilibrium magnetic field)(admittance == B/E)
- The admittance is constructed for a Fourier poloidal and toroidal basis.

 Inner and outer electric field modes match for each mode at interface by construction.

$$\sum_{m} a_{m} E_{core\ m} = \sum_{m} a'_{m} E_{edge\ m}$$

 Matching magnetic fields in presence of antenna currents given the matching amplitudes => a small matrix system:

$$\sum_{m} a_{m} B_{core_{m}} = \left(\sum_{m} a_{m} B_{edge_{m}} + B_{ant_{m}}\right)$$

Verification: the reconstructed solution is very similar to a standalone TORIC simulation.

- In the core region, the superimposed solution (left) agrees well with the core solution of TORIC stand alone simulation (right) providing verification of the method.
- There is only vacuum outside LCF.
- Mode amplitude of superimposed solution (blue) spread wider than the antenna excitation amplitude (red).

More verification: Radial E_{ψ} continuity is retained at domain boundary

- Continuity of radial component is not given by construction and provides a way to verify the approach.
- Smoothly connected at TORIC/FEM boundary, but it is not at vacuum/plasma boundary.
- Consistent with a continuous dielectric at the former boundary, while it is not at the latter.

Warm plasma power absorption is obtained from an additional run of core code with mode matched amplitudes

- The composite field contours from the two codes are shown in the center plot.
- Left shows core field reconstruction, Right shows minority ion heating from running core solver with amplitude from matching calculation needed for kinetic effects.

Power absorption in the edge plasma from collisional resistivity

- Density SOL profiles as a function of poloidal flux with gradient scale length. Resistive power losses to electrons from collisions are calculated.
- Significant power coupled from the antenna can be lost in the SOL, even to resistive only losses loading vs efficiency.

Absorption in SOL increases in weaker absorption cases.

- Power partition: 15% edge, 85% core for Hydrogen heating.
- Loading is about 15 Ω in both cases, different than efficiency: power does not necessarily go into the core.

Absorption in SOL increases in weaker absorption cases.

- Power partition: 50% edge, 50% core for Helium heating these results are for the fairly small Alcator C-Mod device, larger devices should not suffer the same degree of edge losses.
- Note power lost in edge plasma on opposite side of plasma.

Effects of edge plasma propagation

Loading 4 Ω
 20% power lost in SOL.

- At high densities (> 2x10¹⁸ m⁻³) in SOL, fast waves can propagate.
- Accurate geometry is essential for quantitative predictions.

Extending to 3D

- Realistic Geometry
 - 60 deg vessel section x 6
 - two strap antenna
 - LCFS from EFIT
- Quadratic EDGE elements yields a linear problem with 3M DoF (one model takes 30 min.)

Meshed CAD geometry to physics model

3D simulations are a natural extension of the method

- Model permits structures in SOL that couple toroidal modes in the core.
- In this case, antenna straps are flush and determine the toroidal spectrum but produce minimal toroidal coupling – this can be seen by small but finite off-axis amplitudes.
- 1342 x 2 solutions for core and edge to produce this result.

3D simulations needed for toroidal structure of fields

- D-(H) case on Alcator C-Mod
- Voltages on antenna structures are calculated. May be used for studying losses on surfaces.
- Accurate toroidal spectrum coupled to the core can be essential for finding RF amplitudes 'far' from antenna [N. Tsujii, PhD MIT 2010].

Midplane cut field in front of antenna

Toroidal direction

Brief introduction to LAPD

- LAPD is ~18 m long plasma column
- .5-.6 m plasma diameter
- Hydrogen-helium plasma with n_e up to 1x10¹⁹ m⁻³, T_e up to 10eV, B~1000-1500G,
- Plasma pulse ~ 15 ms at 1 Hz
- 2-D (radial and axial) probe drives
 - Multiple axial locations allow for possible 3-D datasets
- ~100 kW, 2.38 MHz, 1ms pulse 1strap antenna

3D Tetrahedral Mesh of LAPD

- Includes antenna structure, two limiters, full 18 meters
- Imported from original COMSOL mesh into PetraM framework

Simulation of Fast and Slow waves in LAPD

Helium plasma 10¹³ B = 1000 Gauss f=2.4 MHz

S=0 and P=0 resonant layers in plasma

About 5 standing wavelengths axially.

Ez [1, 2, 3, 4, 5, 6]

Conclusions: A new capability in whole device RF modeling permits exploration of core – edge interactions in many areas

- Technique applies to any full wave RF simulation in any frequency regime.
- Builds upon existing code infrastructure, algorithms and methods.
- Integrates for the first time, antenna coupling, SOL propagation with realistic geometry, and propagation and deposition into core hot plasma.

 ${\bf E}_{\perp}$

Title image: rotated field aligned four strap antenna on Alcator C-Mod tokamak at MIT. ¼ of full volume is modeled. Electric fields on antenna and in plasma are shown.

Extra info on fusion and energy.

BACKUP SLIDES

Earth-dwellers want to consume more energy . . .

Fusion, like all nuclear energy, produces a tremendous amount of energy from a very small mass of reactants.

Energy Content in Different Fuels

- Typical energy scales for chemical bonds electron-volts (eV)
- Typical energy scales for nuclear reactions millions of electron-volts (MeV) (*E=mc*²)
- This means that a gigawatt-class fusion power plant will use about a pickup truck full of fuel (lithium and deuterium) per year.
 - Compare to a 1 GWe coal plant nearly 8,000 tons of coal per day!

3 days worth of coal supply for a 500 MWe plant

Two types of nuclear reactions:

- Fission split heavy nuclei
 - (e.g. Uranium)

- Fusion fuse light nuclei
 - (e.g. hydrogenic isotopes) $D+T \rightarrow He + n + 17.6 \text{ MeV}$

Fuel Supply - Fusion

- Plenty of D from the ocean
- No natural T half life = 12 years
- Need to breed T in the reactor, then burn with D.

Li-6 + n \rightarrow He + T + 4.8 MeV D + T \rightarrow He + n + 17.6 MeV

- Li-6 is 7% of natural lithium
- 1000's of years of natural lithium

Fuel for a fusion power plant:

30 t/day seawater (extract deuterium)

350 kg/yr lithium (breed to tritium)

What about the ends?

- At the temperatures involved, ions are moving at over 1,000 km/s
- For a practical device, the end losses must be eliminated

NSTX – HHFW

- AORSA simulations have uniform density outside antenna surface and no limiter surfaces.
- Difference in wave fields from TORIC+MFEM may be due to more restricted density.

Bertelli PoP 2016