The development of the application software for PEZY SC2 many-core processors

Ryutaro Himeno, **Toshikazu Ebisuzaki**, RIKEN Junnichiro Makino, Kobe Univ. Hide Sakaguchi, JAMSTEC Tadashi Yamazaki, The University of Electro-Communications Tadashi Ishikawa, KEK Ken Kurokawa, National Institute of Genetics

RIKEN

(The Institute of Physical Chemical Research) https://www.riken.jp/en/

- Only one institution, dedicated for Basic Science in Japan
- Founded in 1917 (102 years old in the next November)

E. Shibuzawa Founder

- U. Suzuki Discoverer of Vitamin B1
- Y. Nishina Kline-Nishina Formula
- H. Yukawa Meson Theory Novel Prize in Physics 1949
- S. Tomonaga QED Novel Prize in Physics 1965

- PEZY computing (Inc.)
 The first venture company for supercomputing in Japan
- Founded by Dr. Motoaki Saito, a medical doctor, who have worked for medical imaging.
- •2014 Spring: Start HPC business

PEZY stands for Peta, Exa, Zetta and Yotta

PEZY computing (Inc.)

- The **first venture company** for supercomputing in Japan
- Founded by Dr. Motoaki Saito, a medical doctor, who have worked for medical imaging.
- 2014 Spring: Start HPC business
- 2014 November: 2nd in Green500
- Green500: Eight times ranked in the past eight years

0					
• 2014.11	#2	4.95Gflops/W	Suiren	KEK	
• 2015.07	#1	7.03GFlops/W	Shoubu	RIKEN	
	#2	6.84Gflops/W	Suiren Blue	КЕК	
	#3	6.22Gflops/W	Suiren	КЕК	
• 2015.10	#1	7.03Fflops/W	Shoubu	RIKEN	
	#2	6.22Gflops/W	Satsuki	RIKEN	
• 2016.06	#1	6.67Gflops/W	Shobu	RIKEN	
	#2	6.20Gflops/W	Satsuki	RIKEN	~~~
• 2016.11	#1	6.67Gflops/W	Shobu	RIKEN	SC
• 2017.06	#1	14.05Gflops/W	Kukai	Yahoo! Japan	SC1
2017.062017.11	#1 #1	14.05Gflops/W 17.01Gflops/W	Kukai Shobu B	Yahoo! Japan RIKEN	SC2
				•	SC2
	#1	17.01Gflops/W	Shobu B	RIKEN	SC2
	#1 #2	17.01Gflops/W 16.76Gflops/W	Shobu B Suiren	RIKEN KEK	SC2
• 2017.11	#1 #2 #2	17.01Gflops/W 16.76Gflops/W 16.7Gflops/W	Shobu B Suiren Sakura	RIKEN KEK PEZY Comp.	SC2
• 2017.11	#1 #2 #2 #1	17.01Gflops/W 16.76Gflops/W 16.7Gflops/W 18.4Gflops/W	Shobu B Suiren Sakura Shobu B	RIKEN KEK PEZY Comp. RIKEN	SC2
• 2017.11	#1 #2 #2 #1 #2	17.01Gflops/W 16.76Gflops/W 16.7Gflops/W 18.4Gflops/W 16.8Gflops/W	Shobu B Suiren Sakura Shobu B Suiren 2	RIKEN KEK PEZY Comp. RIKEN KEK	SC2
2017.112018.06	#1 #2 #2 #1 #2 #3	17.01Gflops/W 16.76Gflops/W 16.7Gflops/W 18.4Gflops/W 16.8Gflops/W 16.7Gflops/W	Shobu B Suiren Sakura Shobu B Suiren 2 Sakura	RIKEN KEK PEZY Comp. RIKEN KEK PEZY Comp.	SC2

stands for Peta, Exa, Zetta and Yotta

ZettaScaler Supercomputers installed at PEZY, KEK, and Riken

Suiren (睡蓮) ZettaScaler-1.5 2014.10Install 2016.5 Upgrade (32node to 48node)

Shoubu(菖蒲) ZettaScaler-1.6 2015.6Install 2016.5 Upgrade

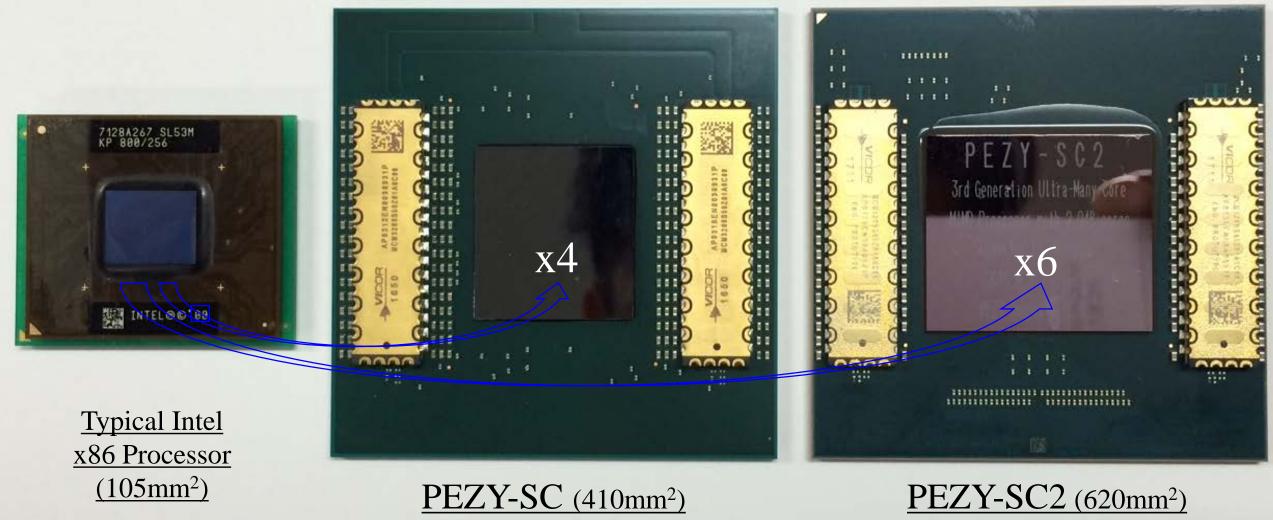
Ajisai(紫陽花) ZettaScaler-1.6 2015.10Install 2016.5Upgrade

Suiren Blue (青睡蓮) ZettaScaler-1.5 2015.5 Install 2016.5 upgrade

Sakura(さくら) ZettaScaler-1.6 2016.5 Install

Rank	TOP500 Rank	System	Rmax (TFlop/s)	Power (kW)	Power Efficieny (GFlops/watts)	
1	472	Shoubu system B - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, <u>PEZY-SC2</u> , PEZY Computing / Exascaler Inc . Advanced Center for Computing and Communication, RIKEN Japan	1,063.3	60.4	17.604	
2	470	DGX SaturnV Volta - NVIDIA DGX-1 Volta36, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, <u>NVIDIA Tesla V100</u> , Nvidia NVIDIA Corporation United States	1,070.0	97	15.113	
3	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, <u>NVIDIA Volta GV100</u> , Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	148,600.0	10,096	14.719	
4	8	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.46Hz <u>NVIDIA Testa V100 S</u> XM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	19,880.0	1,649.3	14.423	
5	394	MareNostrum P9 CTE - IBM Power System AC922, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100, IBM Barcelona Supercomputing Center Spain	1,145.0	81.0	14.131	
6	25	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	8,125.0	792.1	13.704	
7	11	PANGEA III - IBM Power System AC922, IBM POWER9 18C 3.456Hz, Dual-rail Mellanox EDR Infiniband, <u>NVIDIA Volta</u> GV100 , IBM Total Exploration Production France	17,860.0	1,367	13.065	
8	2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.16Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	94,640.0	7,438.3	12.723	
9	43	Advanced Computing System(PreE) - Sugon TC8600, Hygon Dhyana 32C 2GHz, <u>Deep Computing Processor</u> , 200Gb 6D-Torus , Sugon Sugon China	4,325.0	380	11.382	
10	23	Taiwania 2 - QCT QuantaGrid D52G-4U/LC, Xeon Gold 6154 18C 3GHz, Mellanox InfiniBand EDR, <u>NVIDIA Tesla V100 S</u> XM2, Quanta Computer / Taiwan Fixed Network / ASUS Cloud National Center for High Performance Computing Taiwan	9,000.0	797.5	11.285	

<u>Green500: The latest</u> <u>Supercomputer ranking</u> <u>list as of June, 2019</u>

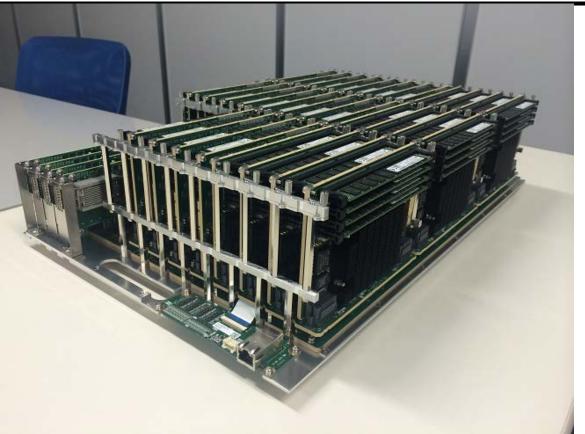

#1 is PEZY-SC2 based system with 17.6 GFLOPS/W

#2 to #8 and #9 are dominated by NVIDIA V100/GV100/P100 15.1 GFLOPS/W is the highest

Note: Unfortunately, this ranking result was later delisted by Riken due to the expiration of the joint research agreement by the time of ranking submission in June

MIMD Processor, PEZY-SC and PEZY-SC2

Extremely bigger than typical Intel x86 CPU



(4 of DDR4 DIMMs with 2 of PCIe Gen3 x16 port)

ZettaScaler-2.0 Brick

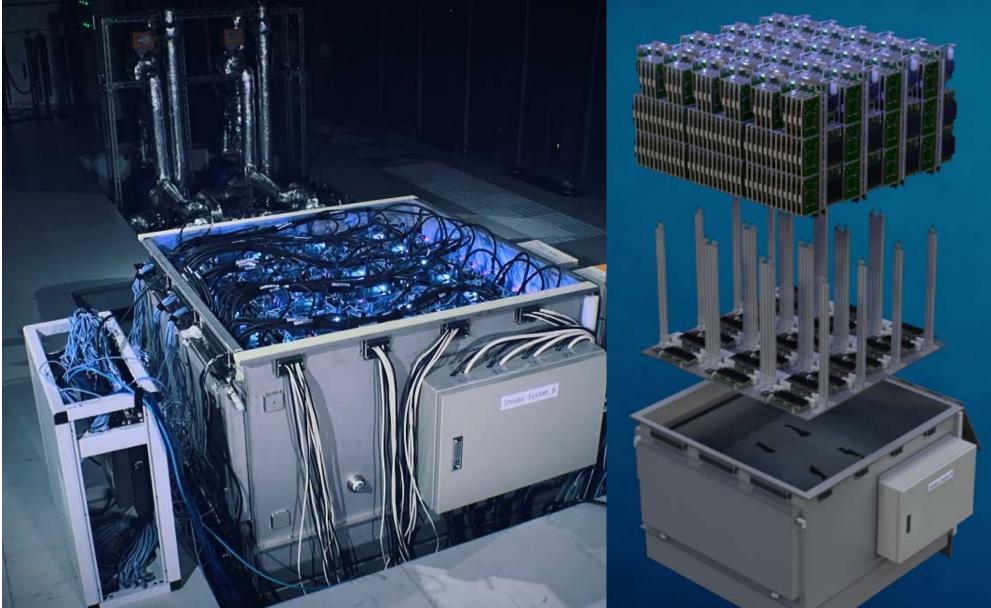
x 97 lanes) provide sufficient bandwidth and flexibility of

Rpeak) Brick with 32 of PEZY-SC2 module and 4 of EDR adaptor card

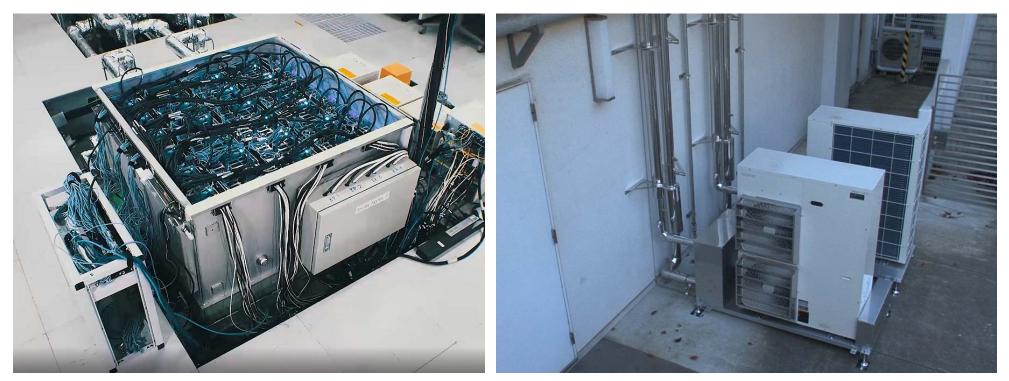
PEZY-SCx Processor History and Plan

	2012	2014	2017	-	2019
Processor	PEZY-1	PEZY-SC	PEZY-SC2	scale	PEZY-SC3
Process Node	40 nm	28 nm	16 nm		7 nm
Die Size	118 mm^2	412 mm^2	620 mm^2	1.3	780 mm^2
Core Numbers	512	1,024	2,048	2	4,096
Core Voltage	1.2 V	0.9 V	0.8 V		0.7 V
Clock Frequency	433 MHz	533 MHz	700 MHz	1.7	1,200 MHz
DRAM-IO	DDR3	DDR4	DDR4		HBM2
Memory Bandwidth	48 GB/s	51 GB/s	77 GB/s	15.6	1,200 GB/s
Interface Bandwidth	12 GB/s	24 GB/s	32 GB/s	3	96 GB/s
DP Performance	0.3 TFLOPS	0.9 TFLOPS	2.7 TFLOPS	7.3	19.7 TFLOPS
Power Consumption	60 W	100 W	130 W	3.8	500 W
Power Efficiency	5.0 GFLOPS/w	9.0 GFLOPS/w	20.8 GFLOPS/w	1.9	38.4 GFLOPS/w
System Efficiency	-	6.7 GFLOPS/w	17.6 GFLOPS/s	1.9	31.2 GFLOPS/s

Development of PEZY-SC3 has been completed and is now ready for tape out


PEZY-SC3 will be taped out by the end of 2019 and will be in volume production from mid 2020 PEZY-SC3 will be the world biggest processor ever with highest performance and efficiency

Installed Supercomputers in the past


All Installed Supercomputers developed by PEZY Computing K.K. and ExaScaler K.K.

	System Name	Configuration	Installation	Rmax	Highest Top500	Gflops/W	Highest Green500	Comment	Site		Sales amount	Purpose
1	Suiren	ExaScaler-1.0	Oct., 2014	207	#365	6.22	#2	For Quantum Physics research	KEK	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
2	Shoubu	ExaScaler-1.4	June, 2015	354	#160	7.03	#1	3 times of #1 of Green500	RIKEN (HQ)	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
3	Suiren Blue	ExaScaler-1.4	June, 2015	194	#391	6.84	#2	For Quantum Physics research	KEK	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
4	Ajisai	ZettaScaler-1.6	June, 2015	187	-	6.80	-	Various HPC applications	RIKEN (HQ)	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
5	Satsuki	ZettaScaler-1.6	June, 2016	291	#486	6.20	#2	Various HPC applications	RIKEN (Kobe)	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
6	Fujitsu Test Sytem	ZettaScaler-1.8	Feb, 2017	-	-	-	-	-	Fujitsu (HQ)	IT Conglomerate	\$8M	Not disclosed
7	Kukai	ZettaScaler-1.6	June, 2017	461	#466	14.05	#2	Commercially used sytem	Yahoo! Japan	Internet Service Provider	\$4M	For daily mission critical application of Yahoo! Auction and many others
8	Gyoukou	ZettaScaler-2.2	June, 2017	20,200	#4	14.17	#5	First 20+ PFLOPS outside China	JAMSTEC	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
9	Shoubu System B	ZettaScaler-2.2	Oct., 2017	1,063	#259	17.60	#1	4 times of #1 of Green500	RIKEN (HQ)	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
10	Suiren2	ZettaScaler-2.2	Oct., 2017	788	#307	16.76	#2	For Quantum Physics research	KEK	National Research Laboratory	Funded by Government	Wide variety of High Performance Computing application use
11	Sakura	ZettaScaler-2.2	Oct., 2017	794	#276	16.66	#3	For own R&D use	PEZY Computing	Supercomputer/HPC R&D	-	PEZY-SC3 development
12	Kukai-2	ZettaScaler-2.4	May, 2018	730	-	15.80	-	Commercially used sytem	Yahoo! Japan	Internet Service Provider	\$5M	For daily mission critical application of Yahoo! Auction and many others

<u>ZettaScaler-1.8, the first Supercomputer</u> with 1 PFLOPS+ per cubic meter in 2017

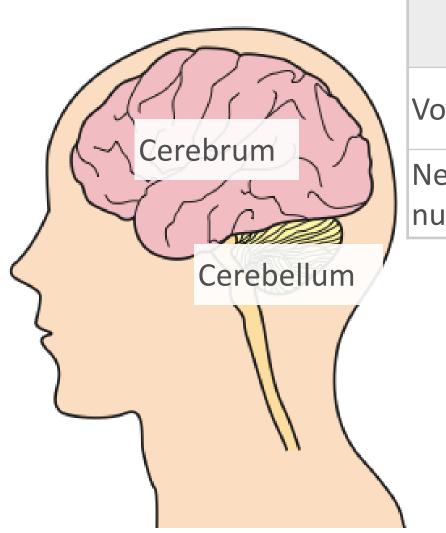
Performance increase in the same 1m³ tank

ZettaScaler-1.0: 0.15 PFLOPS/Tank (x0.4) in 2015
ZettaScaler-1.6: 0.25 PFLOPS/Tank (x1) in 2016
ZettaScaler-2.0: 1.5 PFLOPS/Tank (x6) in 2017
ZettaScaler-3.0: 3.0 PFLOPS/Tank (x12) in 2019
ZettaScaler-4.0: 6.0 PFLOPS/Tank (x24) in 2021

World 4th fastest Supercomputer (Nov, 2017) World 7th fastest Supercomputer (June, 2019, if operated) Gyoukou (暁光:The light of dawn)

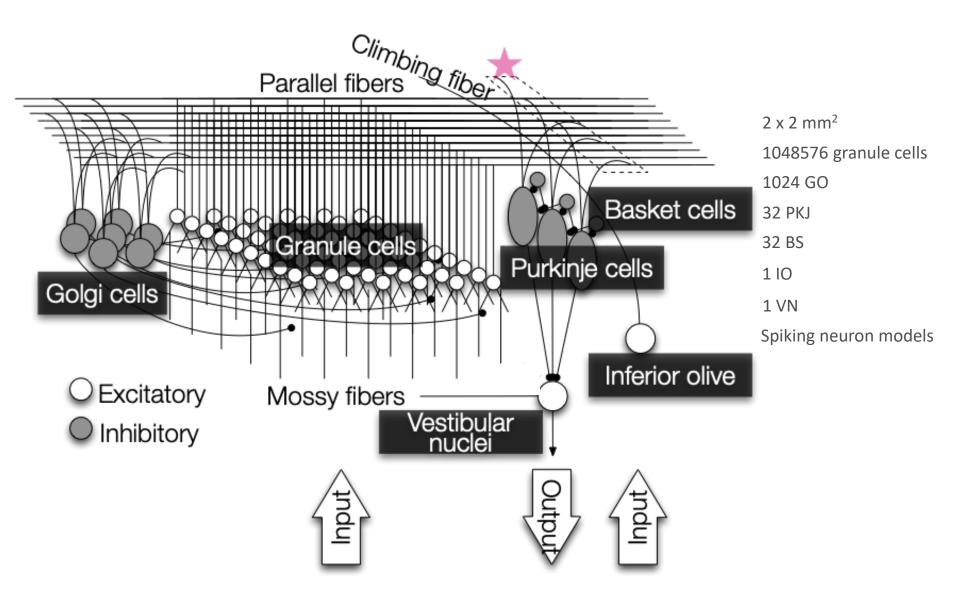
The development applications on PEZY SC2 systems

- 1. Artificial cerebellum
- 2. Simulation of Particle system for Tsunami disaster
- 3. Middleware: FDPS and Formura
- 4. Genome analysis


Large-scale simulation of the cerebellum

Tadashi Yamazaki

The University of Electro-Communications


Cerebrum vs Cerebellum

	Cerebrum	Cerebellum
Volume	80%	10%
Neuron number	1.6×10 ¹⁰ (19%)	6.9×10 ¹⁰ (80%)

Azevedo et al. J Comp Neurol (2009)

Cerebellar microcomplex model

Repeating copy-and-paste the circuit to build the entire cerebellum

Artificial cerebellum on Gyoukou

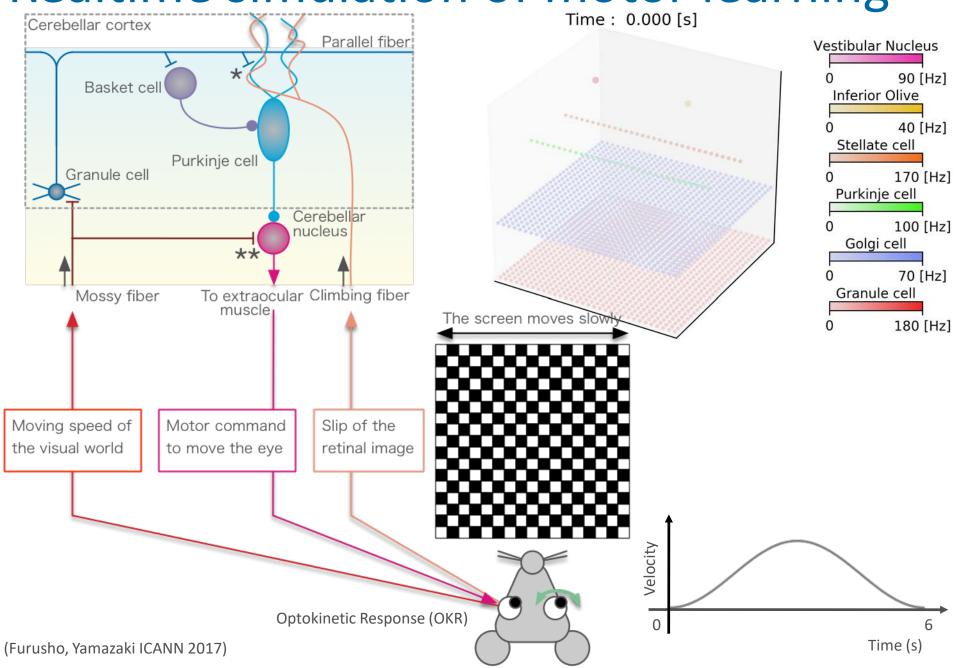
(Furusho, Yamazaki. In preparation)

Implementing 8 billion (= 8×10⁹) spiking neurons

- Comparable with 2 monkeys' cerebella
- Used 7,921 out of 10,000 PEZY-SC2 processors

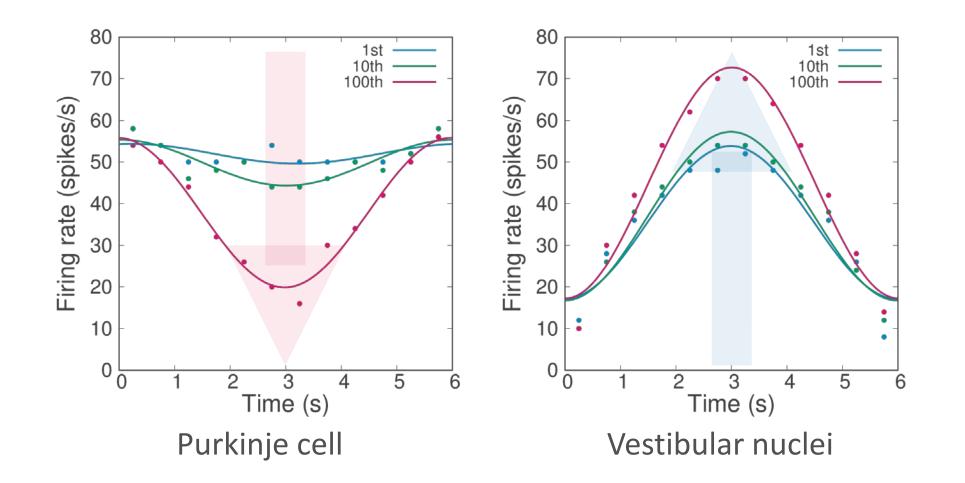
Realtime simulation

- Simulating cerebellar activity for 1 s within 1 s
- Δt = 1 ms

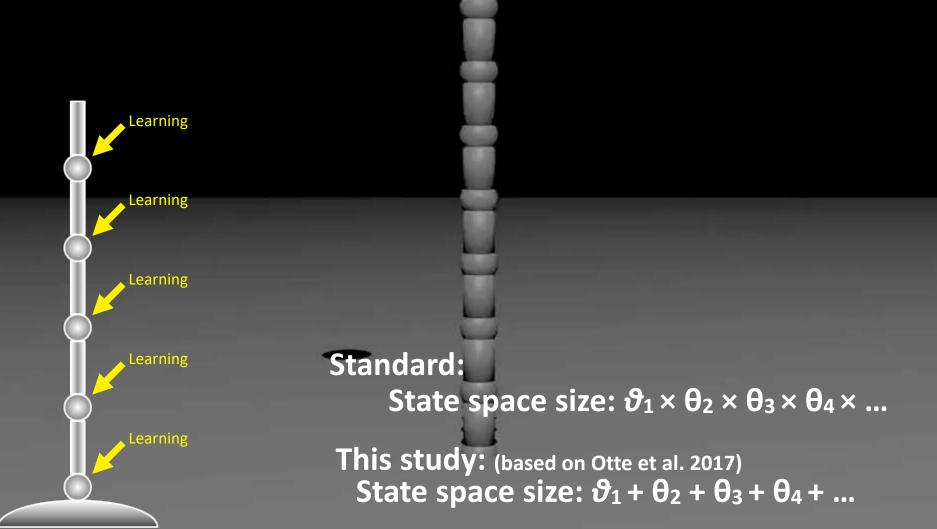

Online learning

LTD/LTP at PF-PC synapses

General supervised learning machine


• Reservoir computing (Yamazaki, Tanaka. NN 2007)

Realtime simulation of motor learning

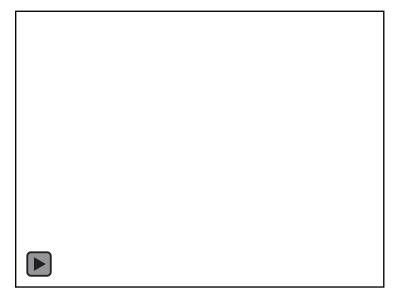

Realtime gain adaptation

(Furusho, Yamazaki. In preparation)

6 s simulation completes within 4.7 s !

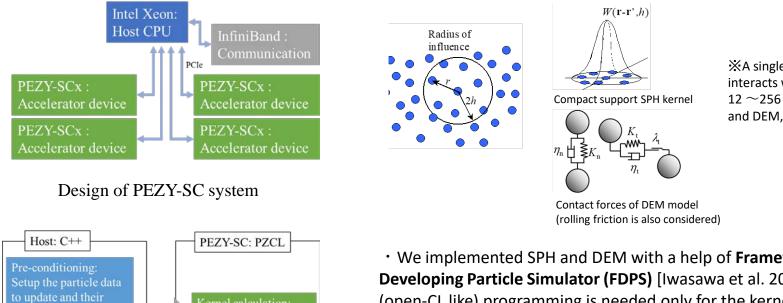
Parallel supervised learning

The development applications on PEZY SC2 systems


- 1. Artificial cerebellum
- 2. Simulation of Particle system for Tsunami disaster
- 3. Middleware: FDPS and Formura
- 4. Genome analysis

The Particle simulation method (SPH and DEM): JAMSTEC

- The Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) offer effective numerical applications of disaster, geodynamics and industrial processing simulations.
- Now, large simulation over 1 billion particles is available with dynamic load balancing method.


[e.g. Furuichi and Nishiura, Comput. Phys. Comm., 2017]

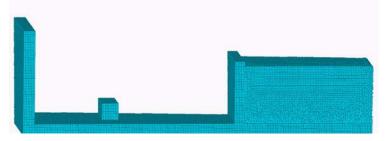
• The one of the remaining problems is the energy cost.

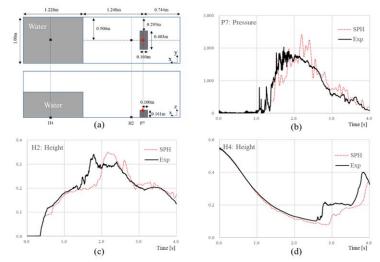
One solution is to use the energy efficient supercomputer such as PEZY-SC.

Off-load implementation of SPH and DEM with FDPS

XA single particle typically interacts with 64 \sim 512 and $12 \sim 256$ particles for SPH and DEM, respectively.

Update particles with short-range interaction forces

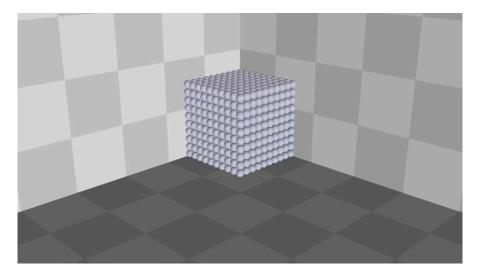

Schematic process of off-load implementation.


• We implemented SPH and DEM with a help of **Framework for** Developing Particle Simulator (FDPS) [Iwasawa et al. 2016]. PZCL (open-CL like) programming is needed only for the kernel calculation and data transfer between the host and accelerators for off-load implementation.

• The **FDPS** supports SPH by default, but not DEM. We customized the FDPS for dealing with tangential forces of DEM.

SPH result by PEZY-SC for water dam break test

*Quintic Kernel, Viscos term of Crealy 1996, EOS of Tait's equation, explicit Euler time step, double precision, 0.4M particles, h = 2.1 l



K.M.T. Kleefsman et. al., J. Comp. Phys. 206 (2005) 363-393

[Hosono and Furuichi, ICCES, 2019]

DEM result by PEZY-SC for power dam break test

* Contact force is Voigt model, which comprises the Hertz–Mindlin model with rolling friction model

- General purpose SPH and DEM application are available on PEZY-SC!
- The FDPS based source code will be shared with GitHub.

The development applications on PEZY SC2 systems

- 1. Artificial cerebellum
- 2. Simulation of Particle system for Tsunami disaster
- 3. Middleware: FDPS and Formura

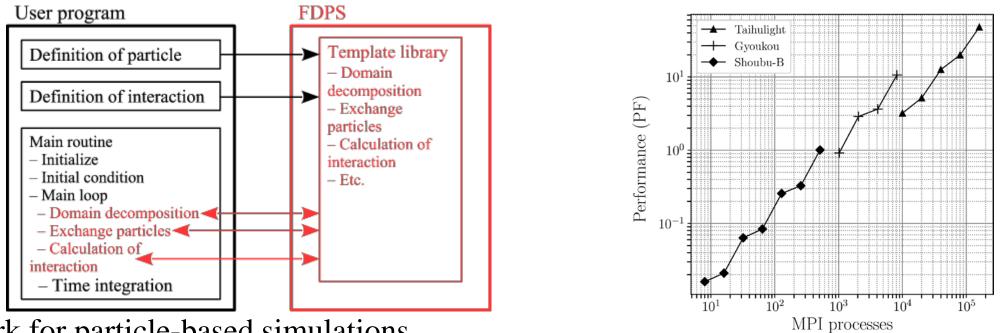
Domain specific language for particle and lattice type codes.

4. Genome analysis

2. Middleware Development

- Support for application developments for heterogenius many-core systems
 - Automatize tedious parallelization with frameworks
 - MPI, OpenMP, SIMD
 - Effective use of Cache
 - Domain decomposition, load balance

• Past/present achievements


Application developers use Middleware

- **FDPS** : Particle-based. High efficiency on both multi-core and accelerator systems: **Load balancing**
- Formura: Grid. Automatically generates codes with temporal blocking: Stencil calculation

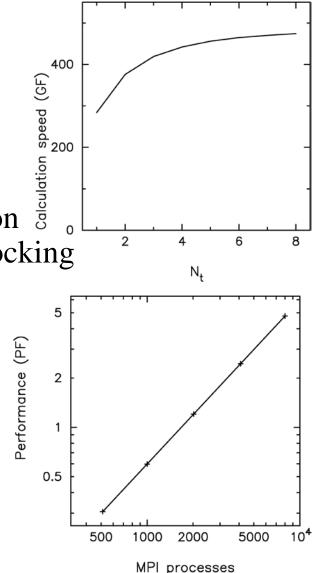
Kobe-U

Framework and DSL for large-scale simulation on PEZY-based systems

FDPS (Framework for Developing Particle Simulator)

- Framework for particle-based simulations
- Generates highly scalable and efficient library functions from particle data strructure and interaction functions
- Generated code runs can use OpenMP, MPI, accelerators (GPUs and PEZY-SC)
- Simulation of planetary ring achieved the efficiency of 40% on Shoubu System B(512node PEZY-SC2, efficiency on GYOUKOU is lower because it was sterned off just after our project started)

Kobe-U

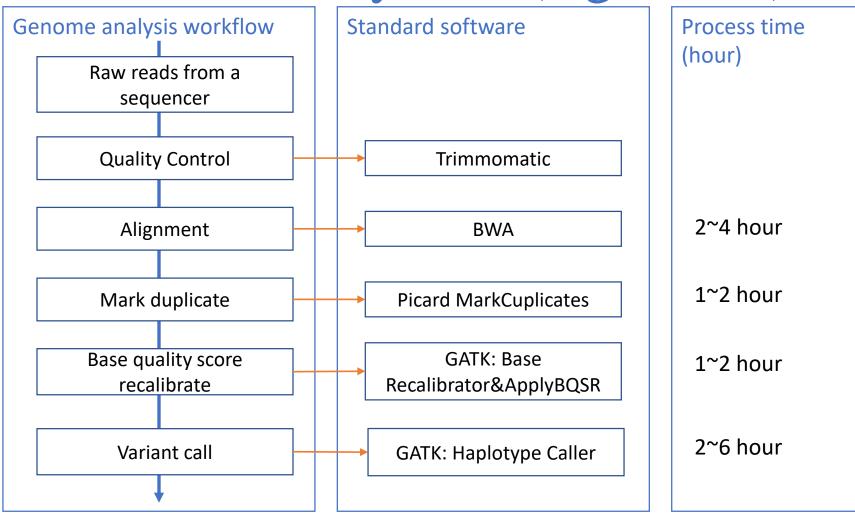

Framework and DSL for large-scale simulation on PEZY-based systems

Formura (DSL for stencil computing)

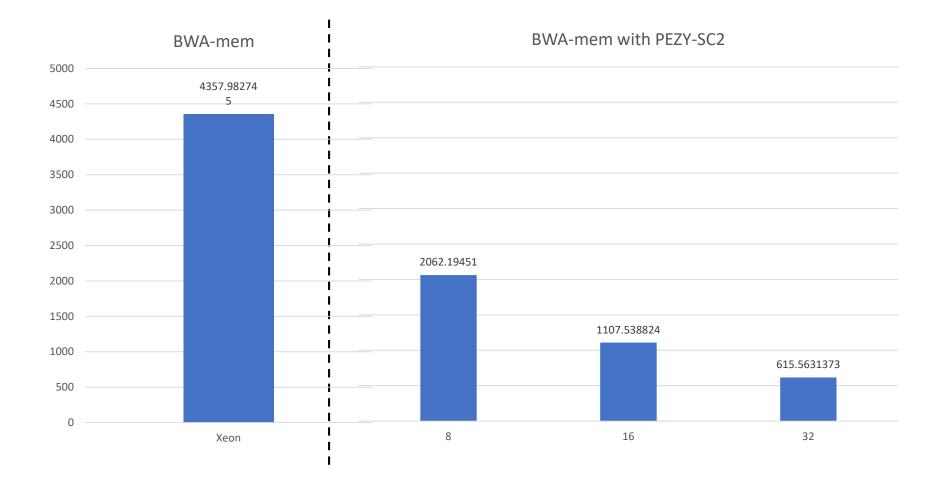
- DSL for stencil computing
- Generates highly scalable and efficient code for explicit stencil calculation from high-level description of the numerical scheme
- Efficient practical implementation of temporal blocking
- Simulation of isotropic turbulence achieved the efficienct of 21% on ⁸/₈ on ⁸/₉ Shoubu System B. 1.7x performance improvement by temporal blocking

```
Input PDE to formura:
```

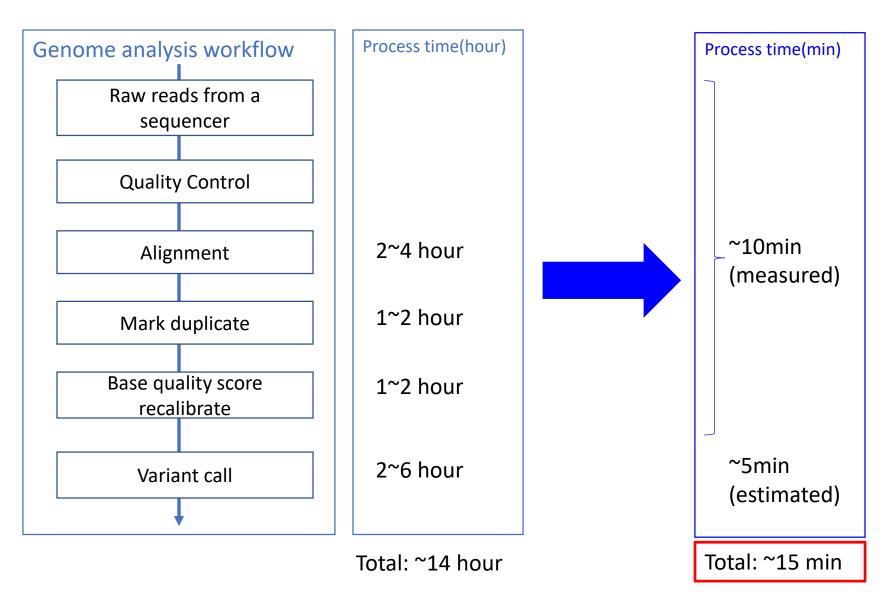
```
r[t,x,y,z]_t = -u[t,x,y,z]*r[t,x,y,z]_x - v[t,x,y,z]*r[t,x,y,z]_y
	- w[t,x,y,z]*r[t,x,y,z]_z
	- r[t,x,y,z]*(u[t,x,y,z]_x + v[t,x,y,z]_y + w[t,x,y,z]_z)
u[t,x,y,z]_t = -u[t,x,y,z]*u[t,x,y,z]_x - v[t,x,y,z]*u[t,x,y,z]_y
	- w[t,x,y,z]*u[t,x,y,z] + c*vis1[t,x,y,z]/r[t,x,y,z]
(v,w omitted)
p[t,x,y,z]_t = -u[t,x,y,z]*p[t,x,y,z]_x - v[t,x,y,z]*p[t,x,y,z]_y
		 - w[t,x,y,z]*p[t,x,y,z]_z
		 - gm*p[t,x,y,z]*(u[t,x,y,z]_x + v[t,x,y,z]_y + w[t,x,y,z]_z)
		 - c2*(u[t,x,y,z]*vis1[t,x,y,z] + v[t,x,y,z]*vis2[t,x,y,z]
		 + w[t,x,y,z]*vis3[t,x,y,z])
```



The development applications on PEZY SC2 systems


- 1. Artificial cerebellum
- 2. Simulation of Particle system for Tsunami disaster
- 3. Middleware: FDPS and Formura
- 4. Genome analysis

Full genome analysis for one human


Traditional System (e.g. Xeon)

BWA-mem comparison

Human Genome Analysis

Summary

- We have already ported alignment, mark duplicate and BQSR to PEZY-SC2.
- Aligner is BWA-mem.
 - BWA-mem performance is pretty good on our system.
- We are porting Variant Call now and will complete it within a month or so.
 - Based on GATK: HaplotypeCall.
- Quad PEZY-SC3 single board system will Complete whole genome analysis within 15 min.

Future (Next Year)

PEZY-SCx Processor History and Plan

	2012	2014	2017	-	2019
Processor	PEZY-1	PEZY-SC	PEZY-SC2	scale	PEZY-SC3
Process Node	40 nm	28 nm	16 nm		7 nm
Die Size	118 mm^2	412 mm^2	620 mm^2	1.3	780 mm^2
Core Numbers	512	1,024	2,048	2	4,096
Core Voltage	1.2 V	0.9 V	0.8 V		0.7 V
Clock Frequency	433 MHz	533 MHz	700 MHz	1.7	1,200 MHz
DRAM-IO	DDR3	DDR4	DDR4		HBM2
Memory Bandwidth	48 GB/s	51 GB/s	77 GB/s	15.6	1,200 GB/s
Interface Bandwidth	12 GB/s	24 GB/s	32 GB/s	3	96 GB/s
DP Performance	0.3 TFLOPS	0.9 TFLOPS	2.7 TFLOPS	7.3	19.7 TFLOPS
Power Consumption	60 W	100 W	130 W	3.8	500 W
Power Efficiency	5.0 GFLOPS/w	9.0 GFLOPS/w	20.8 GFLOPS/w	1.9	38.4 GFLOPS/w
System Efficiency	-	6.7 GFLOPS/w	17.6 GFLOPS/s	1.9	31.2 GFLOPS/s

Development of PEZY-SC3 has been completed and is now ready for tape out

PEZY-SC3 will be taped out by the end of 2019 and will be in volume production from mid 2020 PEZY-SC3 will be the world biggest processor ever with highest performance and efficiency

NVIDIA Voltas

	2017年		2021年		
Processor	PEZY-SC2	scale	PEZY-SC3	scale	PEZY-SC4
Process Node	16 nm		7 nm		5 nm
Die Size	620 mm^2	1.3	780 mm^2	1.0	780 mm^2
Core Numbers	2,048	2	4,096	1.5	6,144
Core Voltage	0.8 V		0.7 V		0.6 V
Clock Frequency	700 MHz	1.7	1,200 MHz	1.2	1.400 MHz
DRAM-IO	DDR4		HBM2		HBM3
Memory Bandwidth	77 GB/s	15.6	1,200 GB/s	1.7	2,000 GB/s
Interface Bandwidth	32 GB/s	3	96 GB/s	3	192 GB/s
DP Performance	2.7 TFLOPS	7.3	19.7 TFLOPS	1.9	36.9 TFLOPS
Power Consumption	130 W	3.8	500 W	1.3	640 W
Power Efficiency	20.8 GFLOPS/w	1.9	38.4 GFLOPS/w	1.5	53.4 GFLOPS/w
System Efficiency	17.6 GFLOPS/s	1.9	31.2 GFLOPS/s	1.6	48.9 GFLOPS/s

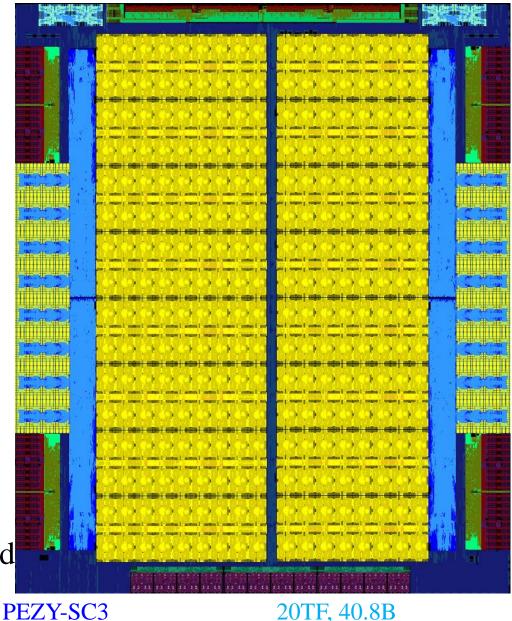
2017年	2020年		
Volta (V100)	scale	Volta2 (V200)	
10 nm		5 nm	
720 mm^2	1.0	720 mm^2	
5,120	1.6	8,192	
-		-	
-		-	
HBM2		HBM2	
900 GB/s	1.3	1,200 GB/s	
32 GB/s	2	64 GB/s	
7.8 TFLOPS	1.6	12.5 TFLOPS	
300 W	1.3	400 W	
26.0 GFLOPS/w	1.2	31.3 GFLOPS/w	
15.1 GFLOPS/s	1.2	18.1 GFLOPS/s	

PEZY-SC4 will be produced in late 2021 with TSMC **5nm** process **PEZY-SC4** will be the world first processor to enable **ExaFLOPS** system

Volta2 (V200) will be produced in 2020, but will not be able to exceed even **PEZY-SC3** both in performance and power efficiency

PEZY-SC4 will have 4 times more performance and **2.7** times more system efficiency than **Volta2 (V200)** at half cost

Volta2 (V200) specs are estimated ones and not confirmed yet

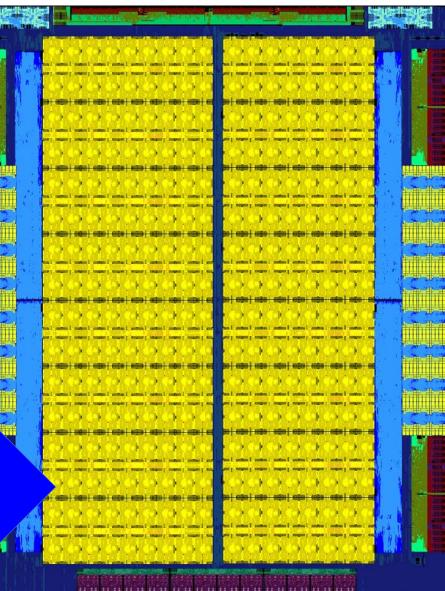


20.0 TFLOPS performance

- : The first processor with over 10 TFLOPS (DP)
- <u>786</u>mm² of monolithic silicon die size
 : about 8 times bigger than typical Intel x86 CPUs

40.8 B transistors integrated

- : about 2 times more transistor numbers than 2nd biggest processor (NVIDIA **V100**: 21.0B)
- Comparison between other competitorsFujitsu A64FX:8.8BTesla FSD:6.0B
- In Japan, there are only 2 teams who can develop 7nm based large processor and less than10 teams all over the world


Compare to FSD, the latest Tesla autopilot AI processor

PEZY-SC3 :786mm², 40.8B transistors

FSD die size is only one third of PEZY-SC3 Transistor number of FDS is one seventh

Tesla revealed the next generation original autopilot AI processor, FSD

PEZY-SC3

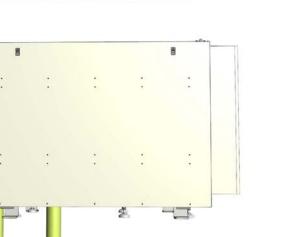
20TF, 40.8B

<u>Proprietary system board design</u> <u>PEZY-SC3 x4 + AMD EPYC2 (Rome)</u>

manufactured engineering sample board and modules for PEZY-SC3

Estimated ZettaScaler-3.0 Specs

tanks configuration will provide about 100 PetaFLOPS (Rmax) and only consumes 4MW with the system cost of around \$100M


ZettaScaler-3.0 single tank will have 40 nodes, 40 AMD EPYC2 (64 core), 160 of PEZY-SC3 with 48DC power

Single tank will have 3.2 PetaFLOPS (Rpeak) and 2.4 PetaFLOPS (Rmax) of DP performance

System power efficiency will be 30 GFLOPS/W or so and single tank requires 100kW range power

Liquid Immersion Cooling Tank (40 Node)

Summary

- PEZY many core processor **SC2**
 - Deep many core 2048 cores per chip
 - MIMD
- Application Development for PEZY SC2 systems
 - 1. Artificial cerebellum
 - 2. Simulation of Particle system for Tsunami disaster
 - 3. Middleware: FDPS and Formura
 - 4. Genome analysis

• Brand new processor PEZY SC3 and Zetta Scaler-3.0

- 19.7 Tflops/chip 38.7 Gflops/w (SC3)
- 3.2 PetaFLOPS per tank
- 30-40 tanks for a 100 Pflops system (Zetta Scaler-3.0)
- International Conference: New Horizon of Supercomputing with many-core Processors
 - May 10-11, 2020, RIKEN Wako