
SIMULATION MODELS

FORMALIZATION

Pau Fonseca i Casas; pau@fib.upc.edu

mailto:pau@fib.upc.edu

The conceptual model

Sargent, Robert G. 1998. “VERIFICATION AND VALIDATION OF SIMULATION MODELS.” In Proceedings of the

1998 Winter Simulation Conference, edited by D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Manivannan, 121–30.

Problem Entity

Conceptual Model
Computerized Model

Experimentation

Data Validity

Computer Programming and Implementation
Automatic generation of code or

Automatic execution of the model

Analysis and Modeling

Operational
Validation

Conceptual Model
Validation

Verification

Heterogeneous System

Problem definition

Acreditation

Implementation
Application of the results on the system

Solutions

Accepted Solutions

Understanding solutions
Application of Augmented reality techniques

Solution Validation

The conceptual model

Hypotheses

 What is inside the model?

 Hypotheses

 Systemic / Structural

 Simplification

Fonseca, Pau. 2011. “Simulation Hypotheses.” In Procediings

of SIMUL 2011, 114–19.

Conceptual model formalization

 Formalism must be independent from the simulation

tools.

 The formalized model must allow some analysis.

To determine relations between components.

 Formalism ,must allow an easy transformation to the

representations supported by the existing simulation

frameworks.

 Simplify the implementation process.

 To evaluate alternatives.

Conceptual model formalization

 Some aspects of the model can be no specified,
without causing problems in the transformation to
other representations. MODULARITY

 The model must be defined in terms that no
constrain its codification in a particular mechanism
of simulation clock update.

Modularity

 The capacity to describe the behavior of each

subsystem, independent from the other subsystems

that compose the model

 Incremental design of the model.

 Simplifies the verification and the validation of the

model.

Assure the Modularity

1. A module cannot access directly to the state of

other modules or components.

2. A module must own a set of ports (input/output)

to allow the interaction with the other parts of the

model.

Conceptual models

 Flow models.

 ODD.

 Queue networks.

 Petri nets

 Colored Petri nets.

 SDL

 DEVS

 Causal and Forrester diagrams.

Working with different formal

languages

 Three of the main mechanisms for doing this:

 Meta-formalism.

 Common formalism.

 Co-simulation.

 Vangheluwe, H. L. (2000). DEVS as a common

denominator for multi-formalism hybrid systems

modelling. IEEE International Symposium on

Computer-Aided Control System Design (pp. 129--

134). IEEE Computer Society Press.

Meta-formalism

 A formalism that incorporates the different formalisms of

the various sub models that makes up the system.

 ATOM3: http://atom3.cs.mcgill.ca/

http://atom3.cs.mcgill.ca/

Common formalism

 A mechanism that converts all formalisms to a common

formalism.

 Transforming algorithms from:

 SDL→DEVS→Petri Nets…

Fonseca i Casas, Pau. 2015. “Transforming Classic Discrete Event System Specification Models

to Specification and Description Language.” SIMULATION 91 (3): 249–64.

https://doi.org/10.1177/0037549715571623.

Co-simulation

 Independent simulators that work together

 HLA: The High Level Architecture (HLA) is a

general purpose architecture for distributed

computer simulation systems. Using HLA, computer

simulations can interact (that is, to communicate

data, and to synchronize actions) to other computer

simulations regardless of the computing platforms.

The interaction between simulations is managed by

a Run-Time Infrastructure (RTI).

Co-simulation with SDL

Other tools

Submarine nuclear reactor flow

diagram

"SUB REACTOR SYSTEM FLOW". Licensed under Public Domain via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:SUB_REACTOR_SYSTEM_FLOW.jpg#mediaviewer/File:SUB_REACTOR_SYSTEM_FLOW.jpg

ODD

Queue networks

 M|M|1

 Distribution of arrival

time.

 Distribution of service

time.

 The number of parallel

servers.
By Maxtremus - Own work, CC0,

https://commons.wikimedia.org/w/index.php?curid=44460399

Specification and Description Language

SDL

Outline

 Introduction to SDL

 Purpose & Application

 Key SDL features

 SDL grammar

 SDL history

 Static SDL Components

 Description of the System Structure

 Concepts of System, Block and Process

 Communication Paths: Channels, Signals

 SDL to represent simulation models

 Discrete simulation models.

 Agent based models.

Why SDL exists?

Introduction to SDL

Why SDL exists ?

 Specification and Description Language (SDL) is a

specification language targeted at the unambiguous

specification and description of the behaviour of

reactive and distributed systems.

http://en.wikipedia.org/wiki/Specification_language

Fig. 8 The new T1 building areas related to the different passenger typologies in one of the proposed configurations.

P. Fonseca i Casas , J. Casanovas , X. Ferran

Passenger flow simulation in a hub airport: An application to the Barcelona International Airport

Simulation Modelling Practice and Theory, Volume 44, 2014, 78 - 94

http://dx.doi.org/10.1016/j.simpat.2014.03.008

An exemple of reactive and distributed

system

An example of reactive and

distributed system

The new

terminal of

the Barcelona

International

Airport is a

reactive and

distributed

system.

Why SDL exists ?

 The initial purpose of SDL is to be a language for
unambiguous specification and description of the
structure, behavior and data of telecommunications
systems.

 The terms specification and description are used
with the following meaning:

 a specification of a system is the description of its
required behavior

 a description of a system is the description of its actual
behavior, that is its implementation

Standarization

 The three largest and most well-established such
organizations:

 International Organization for Standardization (ISO),
founded in 1947

 International Electrotechnical Commission (IEC), founded in
1906

 International Telecommunication Union (ITU), founded in
1865

 All based in Geneva, Switzerland.

 These three organizations together comprise the World
Standards Cooperation (WSC) alliance.

http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/International_Telecommunication_Union
http://en.wikipedia.org/wiki/Geneva
http://en.wikipedia.org/wiki/Switzerland
http://en.wikipedia.org/wiki/World_Standards_Cooperation

SDL

 O.O Language.

 Defined by the International Telecommunications

Union–Telecommunications Standardization Sector

(ITU–T) (formerly Comité Consultatif International

Telegraphique et Telephonique [CCITT]) as

recommendation Z.100.

Series Description

A Organization of the work of ITU-T

B Means of expression: definitions, symbols, classification

C General telecommunication statistics

D General tariff principles

E Overall network operation, telephone service, service operation and human factors

F Non-telephone telecommunication services

G Transmission systems and media, digital systems and networks

H Audiovisual and multimedia systems

I Integrated services digital network

J Cable networks and transmission of television, sound programme and other multimedia signals

K Protection against interference

L Construction, installation and protection of cables and other elements of outside plant

M Telecommunication management, including TMN and network maintenance

N Maintenance: international sound programme and television transmission circuits

O Specifications of measuring equipment

P Telephone transmission quality, telephone installations, local line networks

Q Switching and signalling

R Telegraph transmission

S Telegraph services terminal equipment

T Terminals for telematic services

U Telegraph switching

V Data communication over the telephone network

X Data networks, open system communications and security

Y Global information infrastructure, Internet protocol aspects and next-generation networks

Z Languages and general software aspects for telecommunication systems

SDL ITU Recommendations

 The ITU-T Specification and Description Language

(SDL) is defined by the following ITU-T

Recommendation publications

 Z.100 (11/99) Specification and description

language (SDL) including various annexes and

appendices

 Z.105 (11/99) SDL combined with ASN.1modules;

 Z.107 (11/99) SDL with embedded ASN.1;

 Z.109 (11/99) SDL combined with UML.

Where SDL may be used ?

 SDL may be used for producing

 Specification and Design of diverse applications: aerospace,
automotive control, electronics, medical systems,

 Telecommunications Standards and Design for (examples):

◼ Call & Connection Processing,

◼ Maintenance and fault treatment (for example alarms, automatic
fault clearance, routine tests) in general telecommunications systems,

◼ Intelligent Network (IN) products,

◼ Mobile handsets and base stations,

◼ Satellite protocols,

 Increasingly used to generate product code directly with
help of tools like ObjectGeode, Tau/SDT, Cinderella

SDL tools (some)

 PragmaDev Real Time Developer Studio (COMMERCIAL)

 SDL Suite by IBM (acquired from Telelogic) an SDL Design
Tool (COMMERCIAL)

 Cinderella SDL Design Tool (COMMERCIAL)

 SanDriLa SDL Design Tool (COMMERCIAL)

 SAFIRE Integrated Development & Run-Time Environment
(COMMERCIAL)

 SDL tool from Humboldt University of Berlin

 OpenGEODE, a free and open-source SDL editor from ESA

 PlantUML beta release includes support for a subset of the
SDL

http://www.pragmadev.com/
http://en.wikipedia.org/wiki/Real_Time_Developer_Studio
http://www-01.ibm.com/software/awdtools/sdlsuite/
http://www.cinderella.dk/
http://www.sandrila.co.uk/visio-sdl/
http://www.safire-world.com/
http://www.informatik.hu-berlin.de/SITE
http://www.opengeode.net/
http://plantuml.sourceforge.net/qa/?qa=1232/sdl-input-and-sdl-output-in-activity-beta

SDL

SDL History (1)

 1976 Orange Book SDL

 Basic graphical language

 1980 Yellow Book SDL

 Process semantics defined

 1984 Red Book SDL

 Structure, data added.

 Definition more rigorous.

 Start of tools. User guide.

 1988 Blue Book SDL (SDL-88)

 Effective tools.

 Syntax well defined - formal definition.

 Language much as 1984.

SDL History (2)

 1992 White Book SDL-92

 Object SDL. Types for blocks, processes, services with inheritance and
parameterisation.

 Methodology guidelines.

 1995 SDL with ASN.1 (Z.105)

 1996 Addendum 1 to SDL-92

 Language stable. Some relaxation of rules.

 SDL+ Methodology.

 Tools offer SDL-92 features.

 1999 SDL-2000

 Object modeling support.

 Improved implementation support.

 Data model revised

 2012 SDL-2010

Static & Dynamic SDL

 SDL has a static component, and a dynamic component.

 The Static component describes/specifies system
structure

 Functional decomposition to sub-entities

 How they are connected

 What signals they use to communicate

 The Dynamic component describes/specifies system
operation - behavior

 SDL Transitions, Transitions Actions

 Communications

 Birth, Life and Death of Processes

System & Environment

 The SDL specification defines

how Systems reacts to events

in the Environment which are

communicated by Signals sent

to the System

 The only form of

communication of an SDL

system to environment is via

Signals

SDL

System

ENVIRONMENT

signals

Fig. 1 SDL levels.

P. Fonseca i Casas , J. Casanovas , X. Ferran

Passenger flow simulation in a hub airport: An application to the Barcelona International Airport

Simulation Modelling Practice and Theory, Volume 44, 2014, 78 - 94

http://dx.doi.org/10.1016/j.simpat.2014.03.008

SDL Overview - Process

 A process is an agent that contains an extended finite
state machine, and may contain other processes.

 A System is composed of a number of communicating
process instances

System Instance

Process

Instance
Process

Instance

signals

signals

signals

SDL Overview - Blocks

 Large number of process without structure leads to loss of overview

 Blocks are used to define a system structure

 Signal routes transfer signal immediately while channels may be
delaying

Block System (or another block)

Process

Instance
Process

Instance

signal routes

Block

Block

channels

Block

Key SDL Features (1 of 2)

 Structure

 Concerned with the composition of blocks and process agents.

 SDL is structured either to make the system easier to understand or
to reflect the structure (required or as realised) of a system.

 Structure is a strongly related to interfaces.

 Behavior

 Concerns the sending and receiving of signals and the interpretation
of transitions within agents.

 The dynamic interpretation of agents and signals communication is
the base of the semantics of SDL.

 Data

 Data used to store information.

 The data stored in signals and processes is used to make decisions
within processes.

Key SDL Features (2 of 2)

 Interfaces

 Concerned with signals and the communication paths for signals.

 Communication is asynchronous: when a signal is sent from one agent
there may be a delay before it reaches its destination and the signal may
be queued at the destination.

 Communication is constrained to the paths in the structure.

 The behavior of the system is characterized by the communication on
external interfaces.

 Types

 Classes can be used to define general cases of entities (such as agents,
signals and data).

 Instances are based on the types, filling in parameters where they are
used.

 A type can also inherit from another type of the same kind, add and
(where permitted) change properties.

SDL Representations

 SDL has two representation forms

 SDL-GR - graphical representation

 SDL-PR - textual, phrase representation

 SDL-PR is conceived as for easily
processed by computers - common
interchange format (CIF)

 SDL-GR is used as a human interface

 SDL-GR has some textual elements which are
identical to SDL-PR (this is to allow specification
of data and signals)

 Z.106 recommendation defines CIF with
purpose of preserving all graphical
information

SDL-GR SDL-PR

Common

Syntax

Static SDL

 System is the highest level of abstraction

 A system can be composed of 1 or more blocks

 A block can be composed of processes and blocks

 Processes are finite state machines, and define

dynamic behavior
System
Block

Process

Static SDL Terms

 agent

 The term agent is used to denote a system, block or process that contains
one or more extended finite state machines.

 system:

 A system is the outermost agent that communicates with the environment.

 block

 A block is an agent that contains one or more concurrent blocks or
processes and may also contain an extended finite state machine that
owns and handles data within the block

 process:

 a process is an agent that contains an extended finite state machine,
and may contain other processes

 Procedure

 A procedure is a piece of programming code.

Static SDL Terms

 Source:

 http://www.iec.org/online/tutorials/sdl/topic04.html

http://www.iec.org/online/tutorials/sdl/topic04.html

System Diagram

 Topmost level of abstraction - system level

 Has a name specified by SYSTEM keyword

 Composed of a number of BLOCKs

 BLOCKs communicate via CHANNELs

 Textual Descriptions/Definitions

 Signal Descriptions

 Channel Descriptions

 Data Type Descriptions

 Block Descriptions

Example System Diagram

SYSTEM s

SIGNAL S1, S2, S3,

S4,S5 ;

B1

B1

C1 [S1,S2]

C4 [S5]

C2 [S3]

C3 [S4]

BlocksChannels

Signal Lists

Signal

Descriptions

in text

symbol

Frame symbol -

boundary between

system and

environment

System Decomposition

 When dealing with large and complex systems it is

best to decompose down to the manageable size

functional components: BLOCKs (“Divide and Rule”)

 Follow natural subdivisions: BLOCKs may correspond

to actual software/hardware modules

 Minimise interfaces between BLOCKs in terms of the

number and volume of signals being exchanged

Decomposition Rules:

No Limit in number of Block levels

Communication Related SDL Terms

 signal:

 The primary means of communication is by signals that

are output by the sending agent and input by the

receiving agent.

 stimulus:

 A stimulus is an event that can cause an agent that is in

a state to enter a transition.

 channel:

 A channel is a communication path between agents.

Text Symbol

 Text Symbol is used to group various textual

declarations

 It can be located on any type of diagram

Concrete graphical grammar

<text symbol> ::=

package defs

/* Signals betw een users
 * (internal) */
SIGNAL
 connReq,
 connFree,
 connBusy,
 connEstablish,
 connEnd;

/* Signals from a user (ENV) */
SIGNAL
 offHook,
 onHook,
 num (num_t);

Text Box Example

Signals

 Signals are the actual messages sent between

entities

 Signals must be defined before they can be used:

<signal specification> ::= signal <signal name> [(<sort

name>{,<sort name>}*)]

{, <signal name> [(<sort

name>{,<sort name>}*)]}*;

Example:
SIGNAL

doc (CHARSTRING), conf,
ind (MsgTyp), req (MsgTyp);

Signals with parameters

 Signals can have parameters known as a sortlist

 The signal specification identifies the name of the signal
type and the sorts of the parameters to be caried by
the signal

 Example: signal Status(Boolean);

 When signals are specified to be carried on certain
channels only signal names are required

 When signals are actually generated in the process the
actual parameters must be given

 Example:

Status(True)

Signal Lists

 A signal lists may be used as shorthand for a list of

signal identifiers
system localExchange

/* Signals from a user (ENV) */
SIGNAL
 offHook, onHook,
 num (num_t);

SIGNALLIST userSigs =
 offHook, onHook,
 num;

/* Signals to a user (ENV) */
SIGNAL
 dialTone, ringTone, busyTone,
 shortBusyTone, connectTone,
 msg (CharString);

SIGNALLIST tones =
 dialTone, ringTone,
 busyTone, shortBusyTone,
 connectTone;

userCh

(tones),
msg(userSigs)

localExchange

Example:

Examples from: Cavalli, Ana, and Amardeo Sarma, eds. 1997. SDL ’97: Time for Testing. Elsevier.

https://doi.org/10.1016/B978-0-444-82816-3.X5000-X.

Channel

 CHANNEL is connected between Blocks or Block and

the Environment.

 May be uni- or bi-directional

 It may have an identifier (C1) and may have list of

all signals it caries

 It is an FIFO queue which may introduce an variable

delay

Delaying Channels

 Delaying channels introduce a delay in transmission

of signals.

 Delaying channel is specified by a channel symbol

with the arrows at the middle of the channel.

 The delay of signals is non-deterministic, but the

order of signals is maintained.

C1 [S1,S2]

C2[S1,S2] [S3,S4]

Uni-directional delaying Channel

Bi-directional delaying Channel

Non-Delaying Channels

 Non delaying channels do not introduce any delay in
transmission of signals

C1 [S1,S2]

C2[S1,S2] [S3,S4]

Uni-directional non-delaying

Channel

Bi-directional non-delaying

Channel

Block Diagram

 Has a name specified by BLOCK keyword

 Contains a number of Processes

 May also possibly contain other BLOCKs (but not mixed
with Processes)

 Processes communicate via Signal Routes, which connect
to other Processes or to Channels external to the Block

 Textual Descriptions/Definitions

 Signal Descriptions for signals local to the BLOCK

 Signal Route Descriptions

 Data Type Descriptions

 Process Descriptions

Example Block Diagram

Process

Signal Routes

PROCESS

 PROCESS specifies dynamic behaviour

 Process represents a communicating extended finite state
machine.

 each have a queue for input SIGNALs

 may output SIGNALs

 may be created with Formal PARameters and valid input
SIGNALSET

 it reacts to stimuli, represented in SDL by signal inputs.

 stimulus normally triggers a series of actions such as data
handling, signal sending, etc. A sequence of actions is described
in a transition.

 PROCESS diagram is a Finite State Machine (FSM)
description

Example Process Diagram

PAGE 2(3)
PROCESS TYPE Game
fpar play PId

odd

T1 Probe

Set(Now
+1ms,T1)

even

Win to
player

count := count +1

odd

Packages & Libraries

 Since SDL 92 reusable components may be defined

as types and placed into libraries called packages

 This allow the common type specifications to be

used in more then a single system

 Package is defined specifying the package clause

followed by the <package name>

 A system specification imports an external type

specification defined in a package with the use

clause.

Package Example

system localExchange

USE defs;

userCh

(tones),
msg(userSigs)

localExchange

package defs

/* Signals from a user (ENV) */
SIGNAL
 offHook,
 onHook,
 num (num_t);

SIGNALLIST userSigs =
 offHook,
 onHook,
 num;

/* Signals to a user (ENV) */
SIGNAL
 dialTone,
 ringTone,
 busyTone,
 shortBusyTone,
 connectTone,
 msg (CharString);

SIGNALLIST tones =
 dialTone, ringTone,
 busyTone, shortBusyTone,
 connectTone;

Additional Structural Concepts in SDL

 A tree diagram can be constructed to illustrate the
hierarchy of the entire SYSTEM .

 Macros can be used to repeat a definition or a
structure. They are defined using the
MACRODEFINITION syntax .

 Paramaterised types exist using the generator construct

 Gates

 A gate represents a connection point for communication with
an agent type, and when the type is instantiated it
determines the connection of the agent instance with other
instances

ATM Example - System Diagram

system ATM

use bank_lib;
/* This model corresponds to an Automated
Teller Machine (ATM). Banking transactions
are performed by means of cash card.
This ATM allow s cash w ithdraw al only.
Withdraw als must be authorized by the
consortium, and in case of success, must
be reported to the consortium. */

Consortium

r_accept,
go_ATM,

stop_ATM

q_accept,
wdrok

ce_ui

display_wait,
print,
cash,
eject,

go_ATM,
stop_ATM

card,
entry,
cashtaken,
quit

Customer

card,
entry,
cashtaken,
quit

Central UI

ATM Example - Central Block Diagram
block Central

Consortium

ce_ui

co_spv

go_ATM,
stop_ATM

co_tr

q_accept,
wdrok

r_accept

spv_tr

tr_end

stop_tr

spv_ui

card

go_ATM,
stop_ATM

tr_ui

display_wait,
print, cash,

eject

entry,
cashtaken,
quit

Supervisor
(1,1)

Tr (0,1):
Transaction

spv

cns

ui

ATM Example - UI Block Diagram
block UI

ce_ui Customer
ce_ui0

display_wait,
print,
cash,
eject,

go_ATM,
stop_ATM

card,
entry,
cashtaken,
quit

cu_ui

card,
entry,
cashtaken,
quit

Eco_UI

UI (1,1):
Eco_UIcent cust

ATM Example - Hierarchy Diagram

ATM

Pr Declaration Pr Declaration Central

Supervisor

Pr Declaration

Tr

UI

Eco_UI UI

ATM Example - Package Bank_lib
package bank_lib

/* This SDL components library
contains SDL block and process
types w hich are useful to
develop banking systems. */

/* Types used by the Transaction Process */
newtype CashCard
struct
 id Integer;
 expirDate Integer;
 pssw d Charstring;
operators
 checkCard: CashCard -> Boolean;
 checkPssw d: CashCard, Charstring -> Boolean;
operator checkCard;
 fpar cc CashCard;
 returns res Boolean;
 start;
 task res := (cc!expirDate > 9701) and (cc!id /= 0);
 return;
endoperator;
operator checkPssw d;
 fpar cc CashCard, cpw Charstring;
 returns res Boolean;
 start;
 task res := (cc!pssw d = cpw);
 return;
endoperator;
endnewtype ;

QuestConso::= sequence {
 cardData CashCard,
 amount Charstring};

RespConso ::= sequence {
 cardData CashCard,
 accept Boolean,
 amount Charstring optional};

/* This implements a
simplif ied banking
transaction. */

/* Signals received by the
Transaction Process Type */
signal
entry (Charstring),
cashtaken,
quit,
r_accept (RespConso),
stop_tr;

/* Signals sent by the
Transaction Process Type */
signal
display_w ait (Charstring),
print (Charstring),
cash (Charstring),
eject,
tr_end,
q_accept (QuestConso),
w drok (CashCard, Charstring);

/* Additional signals for
Basic_ATM_UI */
signal
card (CashCard),
go_ATM,
stop_ATM;

/* This implements a
basic terminal
interacting w ith the
customer. */

/* This package contains:
- ASN.1 declarations (QuestConso, RespConso)
mixed into SDL declarations
- Process types (Transaction, Basic_ATM_UI)
- Virtual transitions (in Transaction)
- Axioms (New type CashCard)
*/

Transaction

Basic_ATM_UI

Dynamic SDL

Specification & Description

Language (SDL)

Outline

 Dynamic SDL Component

 State, Input, Output, Process, Task, Decision, Procedure

…

 Data in SDL

 Inheritance

 Block and Process Sets

 Examples

Dynamic Behavior

 A PROCESS exists in a state, waiting for an input
(event).

 When an input occurs, the logic beneath the current
state, and the current input executes.

 Any tasks in the path are executed.

 Any outputs listed are sent.

 The state machine will end up in either a new state,
or return to the same state.

 The process then waits for next input (event)

Process Diagram Example

process calling 1/5

wait_for_connection

connectTone

reset (T1)

connectTone

VIA uG

connected

Connected

onHook

reset (T1)

connEnd

TO

otherPid

idle

T1

busyTone

VIA uG

connEnd TO

otherPid

set (NOW

+ T_10sec, T2)

wait_for_onHook

Process diagram

 Describes for each state of each object its

behavior on receiving different events.

 An object can react in a different way receiving the

same event, depending on the port used to receive

the event.

Process Diagram Components

 STATEs: point in PROCESS where input queue
is being monitored for arrived SIGNALs

 subsequent state transition may or may not have
a NEXTSTATE

 INPUT: indicates that the subsequent state
transition should be executed if the SIGNAL
matching the INPUT arrives

 INPUTs may specify SIGNALs and values within
those SIGNALs

 Inputs can also specify timer expiry

 OUTPUT: specifies the sending of a SIGNAL
to another PROCESS

state_a

sig_a

state_a

sig_c

Some Additional Process Diagram

Components

 TASK: description of operations on
variables or special operations

 The text within the TASK body can
contain assign statements.

DECISION: tests a condition to determine
subsequent PROCESS flow

 JOIN: equivalent to GOTO.

 No effects on the semantics.

do_something

make_

decision

true false

A

A

More Process Diagram Components ...

 SAVE: specifies that the consumption of a
SIGNAL be delayed until subsequent SIGNALs
have been consumed

 the effect is that the SAVEd SIGNAL is not consumed
until the next STATE

 no transition follows a SAVE

 the SAVEd SIGNAL is put at the end of the queue
and is processed after other SIGNALs arrive

 START: used to describe behavior on creation as
well as indicating initial state

 Similar shape to state only with semi-circular sides

 On Petri Nets this defines the initial marking!

sig_c

Procedure

 PROCEDURE: similar to a subroutine

 allow reuse of SDL code sections

 reduce size of SDL descriptions

 can pass parameters by value (IN) or by reference

(IN/OUT)

sigA

stateC

ProcB

(SENDER)

PROCEDURE ProcB

fpar player PId;

Gameid to
player

Priority & Internal Inputs

 Priority inputs are inputs that are given priority in a
state

 If several signals exist in the input queue for a given
state, the signals defined as priority are consumed
before others (in order of their arrival)

sig_a

• Internal Input/Outputs signals are used for
signals sent/received within a same FSM or
SW component

• There is no formal definition when they
should be used.

sig_a

sig_c

Shorthands - All Other Input/Save

 The Save with an asterisk covers all
possible signals which are not explicitly
defined for this state in other input or
save constructs

*

*

• The input with an asterisk covers all
possible input signals which are not
explicitly defined for this state in other
input or save constructs

Comment Example

procedure EjectCard

Writeln
('Take your card')

TakeCard_rq

SET(tCard) This is a comment

CardEjected

One Very Simple FSM (VS-FSM)

VS-FSM Process Diagram

Specification of Data in SDL

 SDL diagrams can contain variables

 Variables are declared using the DCL

statement in a text box.

 Variables can set in a task box and

read in decisions

 A data type is called a sort in SDL

DCL numthings INTEGER;

StateA

SigA

numthings =

numthings

+1;

numthings > 7

Specification of Timers in SDL

 Timer is an object capable
of generating an input
signal and placing this
signal to the input queue of
the process. Signal is
generated on the expiry of
pre-set time.

 SET(NOW+20ms,T7): sets
a T7 timeout in 20ms time.

 RESET(T7): cancels the
specified timeout.

Timer T7;SET(NOW

+20ms,T7)

T7 SigA

WaitForTimer

RESET(T7)

Time in SDL2010

Dynamic Processes

 Processes can be created and destroyed in
SDL

 Each process has a unique process id. The
self expression returns the process id of the
current process.

 Processes are created within a SDL process
using the CREATE symbol. The Create body
contains the type of the process to create

 The offspring expression returns the process
id of the last process created by the
process.

 The PROCESS that is created must be in the
same block as the process that creates it.

 The Stop symbol is used within the SDL
PROCESS to signify that the process stops.

ProcessA

offspring

> 0

true false

Process Sets

 Dynamically created processes become part of an instance set.

 The instance set in the block diagram contains two variables, the number initial

process instances and the maximum number of instances.

 The following Describes a set of Identical Processes

 Initially there are no members of the set

 Can be up to 7 members in the set

BLOCK ExampleProcessSet

bidders (0, 7) :

S2[***,***,****]

S1[***,***,****]C1

C2 Bidder

Block Sets

 The following Describes a set of Identical Blocks

 Initially there is one member of the set

 There is no limit to the number of members in the set

SYSTEM ExampleBlockSet

bidders (1,) :

C2[***,***,****]

C1[***,***,****]

Bidder

Formal Parameters

 Dynamic processes can have data passed into them

at creation time using Formal Parameters

 Similar to C++ constructor

PROCESS TYPE Proc1

fpar player PId,

numtries Integer;

Gameid to
player

Idle

Proc1

(offspring,3)

sig1

Idle

PROCESS Proc2

Addressing Signals

 The destination of an output can be defined in a number of

ways:

 Implicit when only one destination is possible

 An explicit destination can be named using the keyword to X,

where X is of type Pid.

 SELF, giving the address of the process itself

 SENDER, giving the address of the process from which the last consumed

signal has been sent;

 OFFSPRING, giving the address of the process that has been most

recently created by the process; and

 PARENT, giving the address of the creating process.

sig_c
sig_c

to X
Implicit Addressing Explicit Addressing

Addressing Signals

 The term “via” can be used followed by a signal

route or channel. This means it can be sent to all

process attached to a particular channel or signal

route(multicasting).

 Or it can be sent everywhere it possibly can using

the “via all” qualifier (broadcasting).

sig_c via G3

sig_c via all

The chemical container.

SDL simulation example

Chemical container example

 A chemical container containing an inflammable

product

 A sensor controls the temperature and shows if this is

normal, high or critical.

 If temperature is high the doors of the room are

closed and a reaction with a B product starts in order

to reduce the temperature.

 If the temperature is critical a controlled explosion is

initiated.

SYSTEM FireContainer

Container Sensor
channel

T_OK, T_HI, T_CR

T_MOD

States diagram for the sensor

MONITORING

MONITOR,
T_MOD

This is not an SDL diagram,

since is not complete!

BLOCK Sensor

BLOCK Sensor

P_Sensor
channel

T_OK, T_HI, T_CR

T_MOD

PROCESS Sensor

PROCESS P_Sensor

MONITORING

MONITOR

TemperatureStatus(temp)

DCL
int temp=0;

temp

T_OK T_HI T_CR

0

1

2

MONITOR MONITOR MONITOR

MONITORING MONITORING MONITORING

T_MOD

TemperatureStatus(temp)

temp

T_OK T_HI T_CR

0

1

2

MONITORING MONITORING MONITORING

TemperatureStatus(int temp)

PROCEDURE TemperatureStatus

PROCEDURE TemperatureStatus(int temp)

temp=Iuniform(0,2);

Diagrama d’estat del contenidor

NORMAL

CLOSE
DOORS

REACTION
B

EXPLOSIO
N

T_OK

T_OK

T_HI

T_HI

T_CR

T_CR

T_CR

T_OK

T_HI, START_B

DOORS_CLOSED

This is not an SDL diagram,

since is not complete!

Block Container

BLOCK Container

P_Container
channel

T_OK, T_HI, T_CR

T_MOD

PROCESS P_Container

PROCESS P_Container

NORMAL

CLOSE DOORS

T_HI

DOORS_CLOSED

T_OK

NORMAL EXPLOSION

T_CR

CLOSE DOORS

REACTION B

DOORS_CLOSED

START _B

T_OK

NORMAL EXPLOSION

T_CR

CLOSE DOORS

T_HI

REACTION B

START_B

Modifying temperature

T_MOD

REACTION B

T_OK

NORMAL EXPLOSION

T_CR

REACTION B

T_HI

START _B

DCL
int qttBUsed=0;

qttBUsed++;

qttBUsed++;

PROCESS P_Container

PROCESS P_Container

NORMAL

CLOSE DOORS

T_HI

DOORS_CLOSED

T_OK

NORMAL EXPLOSION

T_CR

CLOSE DOORS

REACTION B

DOORS_CLOSED

START _B

T_OK

NORMAL EXPLOSION

T_CR

CLOSE DOORS

T_HI

REACTION B

START_B

Modifying temperature

T_MOD

REACTION B

T_OK

NORMAL EXPLOSION

T_CR

REACTION B

T_HI

START _B

DCL
int qttBUsed=0;

qttBUsed++;

qttBUsed++;

Petri Net definition for the sensor

m1

P

MONITOR

0

T_MOD

0

m2

P

m3

P

T

0

T

0

T

0

m4

P

m5

P

T

0

T

0

T

0

m6

P

T

0

Ph. D. Pau Fonseca i Casas

InLab FIB, Head of Environmental Simulation

pau@fib.upc.edu

http://necada.com/

http://project.necada.com/

Questions?

mailto:pau@fib.upc.edu
http://necada.com/
http://project.necada.com/

