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Non-coding DNA is transcribed
into RNA
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INCRNAS resemble mRNAs
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IncRNASs differ from mRNAs In

certain properties

expression
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A IncRNA is responsible for
tortoiseshell cats
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IncRNASs can regulate gene expression
via RNA- and DNA-based mechanisms
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Enhancers also regulate gene
expression via DNA-based mechanisms

“biotypes:
eRNAs
IncRNASs

enhancer



Long non-coding RNAs are mostly
uncharacterized

IncRNA
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Studying IncRNA biology en masse
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Studying IncRNA biology en masse

massively parallel
dissection
of IncRNA evolution

screening for INcRNAs

evolution INnvolved in differentiation

analysis of INncRNA pre-
and post-transcriptional
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massively parallel
characterization of IncRNA
tissue-specificity
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LNncRNAs have conserved
transcription factor binding
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LncRNAs are inefficiently spliced
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Efficient splicing Is associated with
functional IncRNAs
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LNncRNAs are tissue-specific
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Regulation of gene expression
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TF binding is enriched In core promoter region
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Do sequence features in core promoters
contribute to expression patterns?
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Examining the effect of DNA
sequence on transcription is hard
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Reporter assays
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Massively parallel reporter assays
(MPRA)
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Massively parallel reporter assays
(MPRA)
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MPRA on endogenous core promotersin 3
diverse cell lines

ctlssyvpespperiac
eRNAs Hela (cervix)
IncRNAs | > 2,000 total @
_ )

MRNAS

K562 (blood)
ubiquitous \

HepG2 (Ilver)



MPRA recapitulates endogenous
expression and specificity
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What sequence features in core
promoters drive their specificity?
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1) cell-type specificities of the TF
proteins themselves
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2) number of basepairs covered by a
TF motif
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3) number of overlapping motifs

~1GTTTA< 2



HepG2 &
Hela Q

Q Hep G2
& Hela
K562

t oy

cell-type specificity of TFs

P

AGATAAg| | cACGT

bp covered by motifs

R

cACCT
~TGTTTAs

b

overlapping motifs

MPRA cell-type specificity

0% 5% 10%  15%  20%
fraction of variance explained

Mattioll et al. Genome Research 2019



Overlapping motifs are associated
with ubiquitous expression

MPRA cell-type specificity
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Does perturbing overlapping motifs
result in strong effect sizes?
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Scanning mutagenesis MPRA
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core promoter sequence CCGCCECACCAAACCECC TACTATAAAAGTCGCT
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Scahhing single C-GCCCECACCAAACCGECC

nucleotide deletions CG-CCGCACCAAACCECC
CCG-CCGCACCAAACCGCC

TACTATAAAAGTCGCT
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TACTATAAAAGTCGCT
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log2(deletion/WT)

Single-nucleotide deletions reveal TF

binding sites
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log2(deletion/WT)

Single-nucleotide deletions reveal TF

binding sites
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Perturbing overlapping motifs
results in higher effect sizes
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What do the motif profiles of
tissue-specific genes look like?
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Genome-wide, mRNAs have more
overlapping motifs than IncRNAs
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Defining expression profiles

o dynamic : oc
ubiquitous expressed in <10% of samples, tlssqe-spemﬁc
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Ubiquitously-expressed promoters within
a biotype have more overlapping motifs

IncRNAs
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Are these overlapping motifs
redundant?
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Clustering similar motifs to control
for redundancies
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Genome-wide motif observations
hold after removing redundant motifs
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Are these overlapping motifs
redundant?

non-redundant

~

motifs dominate
L 1



Ubiquitously-expressed genes have
diverse overlapping motifs

MRNA W@W
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Ubiquitously-expressed genes have
diverse overlapping motifs

tissue 1
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Ubiquitously-expressed genes have
diverse overlapping motifs

tissue 2 ubiquitous
expression
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Studying IncRNA biology en masse

massively parallel
dissection
of IncRNA evolution
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Different species have different gene
pression patterns




Different species have different
non-coding DNA

g mRNA

*sequence changes
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Different species have different
non-coding DNA

CIENCE '©."
. vor. 188, No. 4184

Evolution at Two Levels Iin

Humans and Chimpanzees
Mary-Claire King and A. C. Wilson




Different species have different
non-coding DNA
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Mechanisms of gene expression
evolution
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Cis effects are proximal sequence
changes to the transcripts they affect
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Trans effects are other, distal changes
that affect the cellular environment
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How do cis and trans effects differ
across biotypes?
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How do cis and trans effects differ
across biotypes?
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How do cis and trans effects differ
across biotypes?
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How do cis and trans effects differ
across biotypes?
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MPRA to cis and trans effects between
human and mouse in embryonic stem cells
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Measuring cis effects in MPRA
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cis effects: compare activities of
core promoters from two species



Cis effects are common
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Cis effects are uniform across
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Measuring trans effects in MPRA
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Trans effects are rare
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Trans effects are highest in eRNAs
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Which TFs are driving trans effects?
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Many TFs are differentially expressed
between hESCs and mESCs

higher in hESCs higher in mESCs
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Finding the TFs that most likely
drive trans effects

test whether
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Trans effects are driven by a subset
of TFs
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Cis effects are common across all
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But trans effects are specifically

high iIn eRNAs
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Does enhancer redundancy buffer
trans effects?

Z’eRNA
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enhancer enhancer

yes! l[ook out for our BioRxIv paper
coming soon :)



Studying IncRNA biology en masse

massively parallel
dissection
of INcRNA evolution

screening for IncRNAs

evolution involved in differentiation

analysis of INncRNA pre-
and post-transcriptional
regulation
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Several known IncRNAs act in
development

IncRNA\/ MRNA
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Several known IncRNAs act in
development

IncRNA\/ MRNA
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Finding IncRNA loci that function In
differentiation: individual knockdowns
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Finding IncRNA loci that function In
differentiation en masse using CRISPRI

dCas9-KRAB silences genes
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Designing an sgRNA library to target
IncRNAs that may act in differentiation

target any
INcRNA
expressed In
hESCs or
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transcripts
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CRISPRI screen for IncRNA loci
functioning in endoderm differentiation

2 biological replicates

112,000 sgRNAs:
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collaboration with Jeff Haswell (Slack Lab)



CRISPRI screen reveals IncRNA loci
required for endoderm differentiation

empirical p-value O ® O best hits
calculated by ® IncRNA
sampling negative
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Comparing hits to RNA-seq data

® non-hit IncRNA
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Many differentially-expressed
IncRNASs are not hits
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Many IncRNA hits are not
differentially expressed
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InNcRNA hits are close to eRNAs
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Many DNA-based IncRNAs acting In
endoderm differentiation?
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Conclusions from studying IncRNA
biology en masse

analysis of IncRNA pre-
and post-transcriptional
regulation
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Conclusions from studying IncRNA
biology en masse
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Conclusions from studying IncRNA
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Conclusions from studying IncRNA
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INcRNAS have less
complex motif profiles




Conclusions from studying IncRNA
biology en masse

massively parallel
dissection
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Conclusions from studying IncRNA
biology en masse

INcRNAS are not as
evolutionarily volatile
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LNcRNAs and eRNAs are similar

INCRNA eRNA

conserved TF
binding %
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less complex
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profiles INcRNASs affecting differentiation
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... but also different

INCRNASs are less evolutionarily volatile

INCRNA | eRNA |

INncRNASs are long,
stable RNA speciles



LNcRNASs: eRNAS, but where the act
of stable transcription is necessary?

RNA product
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Towards decoding the human
genome

"
DNA
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Towards decoding the human

r
DNA
LWOTUITQUIVGTUIT VTV
3% l
0 IncRNA
o079 - —P Noise
functional functional functional
DNA transcr iption RNA
Coding |

Noncoding



Towards decoding the human
genome
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Questions?
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