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Energy is Real Limit of AI
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30 GFLOPS / Watt (32-bit Float)

15.1 GFLOPS / Watt (64-bit Float)

200 PFLOPS @ 13.3 MW
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IBM AC922
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IBM AC922

Where does the energy go?
How efficient is it really?
Can we do better?
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Summary

 5

C4-bumps

TSV

C4-bumps

fine-pitch 
solder balls

PCB solder balls

SoC package

DRAM die stack

chip-scale package

15
 m

m

SoC die

heat sink

= 11 inches280 mm 15.0 mm
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Cache Coherent Parallel 
Phone Processor

• 2× — near-data processing 

• 1.6× — SoC/DRAM 3D 
layout/package co-design 

• 1.6× — vector accumulator 

• 1.4× — best consumer 
electronics process 

• 1.4× — 10nm → 7nm 

10x more energy efficient 
             i.e. 150 GFLOPS/W 64-bit Float 
                   600 GFLOPS/W 16-bit Float
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IBM AC922
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Misc 414W
TOTAL 
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CPU
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42%
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Misc
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Arithmetic
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14%
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24%

Cell Array
1%

0.54pJ
12%

2.31pJ
52%

1.48pJ
33%

112fJ
3%

21.8 mm
37.3 mm

GPU Subsystem and Full Server Energy (pJ) Power (W)
Component Operation per Op per MADD per Op Chip System

HBM2 
DRAM

read row activation (per bit) 0.54 1.0

8.9

3.9

35 209
0.025 data transfer within a chip 1.48 2.7 10.6
dword /
MADD

data transfer within a stack 2.3 4.2 16.6
data transfer across interposer 0.5 1.0 3.9

NVIDIA
V100 
GPU

cache 
miss

global wire (35mm x 1 bit) 2.7 5.0
5.1

19.6

215 1,293

write L2 cache (72-bit SRAM) 2.7 0.1 0.3

dload /
MADD

read L2 cache (72-bit SRAM) 2.7 2.7
17.6

10.6
local wire (2.5mm x 1 bits) 0.2 12.5 49.0
write vector register file (64-bit) 2.4 2.4 9.4

MADD
read 3 vector operands (SRAM) 7.2 7.2

18.3
28.2

floating-point MADD (64-bit FP) 8.7 8.7 34.1
write 1 vector result (SRAM) 2.4 2.4 9.4

other memory interface, control, etc. 14.0 14.0 14.0 55

PCIe 
Card

VRM conversion efficiency 85% 9.6 9.6 38 225
2 fan (12V, 0.5A) or water pump 6 3.1 3.1 12 72
6 GPU Card Subtotal 300 76.6 76.6 300 1,800

DDR4 
DRAM 16

row activation (per bit) 0.54 2.5
10

0.7
3.0 48

data transfer within chip, I/O 1.71 7.9 2.3

IBM 
Power 
9 CPU

2
SRAM

just 
guesses

3.4
16

40
190 380wires & buffers 4.3 50

other 8.5 100

Chasis

2 CPU power VRM 85% 2.5 29 58 58
⬆ misc.—PCIe, fans/pumps, etc. 18 414 414
#of primary power supply 85% 17.2 405 405
15.1 GFLOP/W                       550 140 Grand Total 3,105
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21.8 mm
37.3 mm

Where does the energy go?
How efficient is it really?
Can we do better?

most of
⋏

8% DRAM access  & 
arithmetic datapath 

38% moving data & 
staging in SRAM

CPU
12%

GPU
42%

DRAM
8%Power

22%

Misc
16%

Other
17%

Arithmetic
7%
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14%

Wires & Buffers
24%

Cell Array
1%
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cell array
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I/O

DRAM Power 9
out-of-
order 
core

PCIe

last level 
cache

cell array
HBM2

V100

register 
file

level-2 
cache

arithmetic
NVMe SSD

Data-Streaming Architecture

3W x 8
190W

300

Misc 
TOTAL 
3,105W

300300300300

3W x 8
190W

300

CPU+GPU 
Architecture

NOTE:  coherence ≠ always 
communicating through shared memory

i.e. asynchronous DMA memcpy
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SSD to Main 
Memory

Main Memory to 
Working Memory

cell array

I/O

DRAM
cell array
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I/O

DRAM Power 9
out-of-
order 
core

PCIe

last level 
cache

cell array
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V100

register 
file

level-2 
cache

arithmetic
NVMe SSD

4 
Cards 
= 32 
GB/s

PCIe 
Gen3 
8Gt/s 

x8
340 GB/s

5,376 
GB/s

1 TB Main Memory

96 GB 
Working 
Memory

12 
NVLINKS 75 

GB/s

Core MemoryDisk DriveTape Storage Logic Gates

Example
IBM 7094, $2M USD
0.5 MHz clock cycle
0.15 MB main memory

1962

Data-Streaming Architecture
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Architectures
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UFS 2.1 
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X 4266

8,737 
GB/s

1 TB Main Memory

Oracle Labs RAPID parallel computer

data-streaming
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Cache Coherent Parallel Phone 
Processor
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4 GB DRAM, 30GB/s BW
0.567 TFLOPS 16-bit Float

Intel PC SGI Origin 2000

Industry has much experience with 
CC-NUMA, 256 nodes just bigger 

number than usual

= 11 inches280 mm 15.0 mm

15.0 mm

280 mm

DRAM
+CPU

FLASFLASH 
SSD

Power 
VRM

Airflow

Metric AC922 This Unit
DRAM Capacity 1.1 1.0 TB
DRAM Bandwidth 5.7 7.6 TB/s
16-Bit Compute 145 TFLOPS
64-Bit Compute 47.0 36.3 TFLOPS

16×16

Gen 4 PCIe
• 16 Gt/s @ 10-12 inches 
• Power efficient (≈5pJ/bit) 
• Strong industry support 
• Volume manufacturing

Power & Cooling
• Like 800W processor 
• But already spread out
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Advantages
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near-data processing

Use cache coherency to make physically 
partitioned memory easy to program
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Best Consumer Technology
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72.3mm2

27 March 2017

= 11 inches280 mm 15.0 mm

15.0 mm

280 mm

7 December 2017
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Processor over Memory
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C4-bumps

TSV

C4-bumps

fine-pitch 
solder balls

PCB solder balls

SoC package

DRAM die stack

chip-scale package
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m
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1 GB DRAM
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LPDDR4Y 
interfaceBest of both worlds
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Vector Accumulator Architecture
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∑=1.82pJ

r1 = A[1: N] 
r2 = B[1:N] 
r3 = C[1:N] 
r7 = r1 * r2 + r3 
r4 = D[1:N] 
r5 = E[1:N] 
r8 = r4 * r5 + r7 
r6 = F[1:N] 
r9 = r5 * r6 + r8 
G[1:N] = r9

DRAM main memory

L2 Cache

0.9pJ

×

+

Vector 
Register File

3.25pJ

0.9pJ x 2.5%

0.9 pJ x 4

DRAM main memory

0.9pJ0.9pJ

+

vac

×
3.25pJ

Vector Register File

0.9pJ x 2.5%

CRAY-1 GPU

∑=4.52pJ

C2P3

v1 = A[1: N] 
v2 = B[1:N] 
vac = v1 * v2 
v3 = C[1:N] 
vac += v3 
v4 = D[1:N] 
v5 = E[1:N] 
vac += v4 * v5 
v6 = F[1:N] 
vac += v5 * v6 
G[1:N] = vac

SRAM main memory

×

+

Vector 
Register File
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Vector Accumulator Architecture

 16

DRAM main memory

0.9pJ0.9pJ

+

vac

×
3.25pJ

Vector Register File

0.9pJ x 2.5%

C2P3

Block floating-point DNN training

Mario Drumond 
Tao Lin

Martin Jaggi
Babak Falsafi

MSR Contact: Eric Chung

February 20th, 2018

Custom arithmetic for DNN
Prior work shows mixed results

§ Half-precision floating-point (FP16):
§ 10x worse area/power than fixed-point 

§ Fixed-point:
§ Limited range
§ Complex techniques to select quantization points
§ Quantization points are static

Key observation:
§ Large fraction of DNN computations appear in dot products

3

Custom arithmetic for dot products is enough

Block floating-point (BFP) for DNNs
Compromise between fixed- and floating-point

§ Limits range of values within a single tensor
§ Wide range of values across tensors
§ Dynamically pick quantization points

ü Dot products in fixed-point
✗ Other operations degenerate to floating-point (FP)

4

Great candidate for custom DNN representation
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Dragonfly Network
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280 mm 15.0 mm

15.0 mm

280 mm

256×256=65,536 processor SoC chips

Key idea:  leverage 
on-chip and off-chip 
coherence networks
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UFS 2.1 
1.2GB/s

307 
GB/s

Gen4 
PCIe 16Gt/s 

x30

64 GB/s 
Bisection 

(peak)

LPDDR4
X 4266

8,737 
GB/s

1 TB Main Memory
Together

2.6×

C2P3 SoC and System Energy Power (W)

Component Operation pj pJ/MADD per Chip System

LPDDR4X 
DRAM

read row activation (per bit) 0.54 0.91
5.3

0.07
0.4 1060.026 data transfer within a chip 1.93 3.3 0.25

DW/MADD off chip I/O SERDES 0.7 1.2 0.09

C2P3 
Processor

load DW
local wire (0.5 mm x 1 bits) 0.03 0.9 0.9 0.07

1.8 468

write register file (64-bit 
SRAM)

1.8 0.05 0.05 0.00

MADD 
instruction

read 2 operands (64-bit 
SRAM)

3.6 3.6
10.1

0.28
floating-point MADD (64-bit) 6.5 6.5 0.51

other
memory interface, control, etc. 1.17 1.17

4.4
0.09

coherency directory, switch 3.19 3.19 0.25
PCIe 30 links @ 10% (12GB/s) 5 6.2 6.2 0.48
Ethernet 1 link (10 Gb/s) 15 1.9 1.9 0.15

Power VRM conversion efficiency 85% 4.0 4.0 0.31 0.3 80

Chasis
256 misc—fans, etc. 0.05 12
SoC primary power supply 0.85 0.39 100

TOTAL 52.0 GFLOPS / Watt 3.4 33 32.9 3.00 767



Copyright ©2018 Peter Hsu, All Rights Reserved C2P3 @ BSC

Together
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• 2× — near-data processing 

• 1.6× — SoC/DRAM 3D 
layout/package co-design 

• 1.6× — vector accumulator 

• 1.4× — best consumer 
electronics process 

• 1.4× — 10nm → 7nm 

10x more energy efficient 
             i.e. 150 GFLOPS/W 64-bit Float 
                   600 GFLOPS/W 16-bit Float
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Conclusion

       (1 ExaFLOPS / 80%)
    ———————————  =  8.3 MW
           150 GFLOPS/W

280 mm 15.0 mm

15.0 mm

280 mm

C2P3

Cache Coherent Parallel Phone Processor
• 2× — near-data processing 

• 1.6× — SoC/DRAM 3D 
layout/package co-design 

• 1.6× — vector accumulator 

• 1.4× — best consumer 
electronics process 

• 1.4× — 10nm → 7nm 

10x more energy efficient 
             i.e. 150 GFLOPS/W 64-bit Float 
                   600 GFLOPS/W 16-bit Float
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Thank You

280 mm 15.0 mm

15.0 mm

280 mm

C2P3

To Build The Fastest Computer In The World
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Abstract:  It is said artificial intelligence is going to change the way we live, work and play in 2018.  
Certainly the market for AI technology is growing rapidly.  Some of us believe excessive energy 
consumption is holding back even more revolutionary advances in AI software.  This talk begins by looking 
at how energy is consumed in the IBM AC922 server, marketed for enterprise AI computing and used in 
the world’s fastest supercomputer, US DOE Summit.  The AC922 is a CPU+GPU data-streaming 
architecture.  This talk proposes a near-data processing architecture using low-power consumer cellphone 
technology.  By combining architecture and 3D SoC/DRAM chip layout/packaging co-design ideas, I 
suggest it may be possible to improve energy efficiency by an order of magnitude within one process 
generation.  This talk presents on-going work I hope to continue during my visit to EPFL University.
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Bio:  Peter Hsu was born in Hong Kong and moved to the United States as a teenager. He received a B.S. 
degree from the University of Minnesota at Minneapolis in 1979, and the M.S. and Ph.D. degrees from the 
University of Illinois at Urbana-Champaign in 1983 and 1985, respectively, all in Computer Science. His first 
job was at IBM T. J. Watson Research Center from 1985-1987, working on code generation techniques for 
superscalar and out-of-order processors with the 801 compiler team. He then joined one of his former 
professor at Cydrome, which developed an innovative VLIW computer. In 1988 he moved to Sun 
Microsystems and tried to build a water-cooled gallium arsenide SPARC processor, but the technology was 
not sufficiently mature and the effort failed. He joined Silicon Graphics in 1990 and designed the MIPS 
R8000 TFP microprocessor. The R8000 was released in 1994 and shipped in the SGI Power Challenge 
servers and Power Indigo workstations. Fifty of the TOP500.org list of supercomputer systems used R8000 
chips in 1994. Peter became a Director of Engineering at SGI, then left in 1997 to co-found his own startup, 
ArtX, best known for designing the Nintendo GameCube. ArtX was acquired by ATI Technologies in 2000. 
He left ArtX in 1999 and worked briefly at Toshiba America, where he developed advanced place-and-route 
methodologies for high frequency microprocessor cores in SoC designs, then became a visiting Industrial 
Researcher at the University of Wisconsin at Madison in 2001. Throughout the 2000’s he consulted for 
various startups, attended the Art Academy University and the California College of the Arts in San 
Francisco where he learned to paint oil portraits, attended a Paul Mitchell school where he learned to cut 
and color hair. In the late 2000’s he consulted for Sun Labs, which lead to discussions about the RAPID 
research project, a power-efficient massively parallel computer for accelerating big data analytics in the 
Oracle database. He was with Oracle Labs as an Architect from 2011 to 2016.  In 2017 Dr. Hsu founded 
CAVA Computers, Inc. in an attempt to bring to market high-performance hyper-converged storage with 
computing.  Peter will be a visiting researcher at EPFL University in Lausanne, Switzerland fall of 2018.


