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Speed-Up Solving Systems  
on 16 Nodes 
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Key Features 

• Speed-up solving (especially Diophantine) 
systems of linear algebraic equations 

• Sparse systems of specific form, namely 
“well decomposable into clans” 

• Concept of a sign forms clans of equations 

• Applicable to other algebraic structures 
with sign 

3 



Form of Obtained Matrix 
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Divide and Sway 

• Decompose a given system into its clans 

• Solve a system for each clan 

• Solve a system of clans composition 

• Or collapse the decomposition graph 
solving a system for each contracted edge 

• Obtain a result in feasible time 
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A Clan – Transitive Closure  
of Nearness Relation 

Two equations are near if they contain the same  
variable having nonzero coefficients of the same sign  
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Decomposition into Clans 
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Systems and Directed Bipartite Graphs 

Equation –  
transition (rectangle) 

Variable –  
place (circle) 

Positive sign –  
incoming arc of 
a place 

Negative sign –  
outgoing arc of 
a place 
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Decomposition Graph 

x1, x2, x3, x4, x5, x11, x12, x13, x15, x18 

x1, x10, x17 x6, x8, x16 

x7, x9, x19 
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Collapse of Decomposition Graph 

I. II. 
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Decomposition into Clans as  
Matrix Reordering 

• Clan – subset of equations 

• Decomposition into clans – reordering of 
rows 

• Linear complexity in the number of 
nonnegative elements 

• Classification of variables into contact and 
internal (on clans) reorders columns 

• Combination of a block-column and a block 
diagonal matrices  
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Systems of Equations (Inequalities) 

bxA 

its general solution 

yGxx 
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Consider a system as a predicate 

}{ iL
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Relations on the Set of Equations 

Relation of nearness: ,ji LL 

:Xxk  ,0, ,, kjki aa )()( ,, kjki asignasign 

Statement. The relation of nearness is reflexive and symmetric. 

Relation of clan: ji LL 
:,...,,

21 klll LLL jlli LLLL
k
 ...

1

Theorem. The relation of clan is an equivalence relation 
(reflexive, symmetric, and transitive). 

Corollary. Relation of clan defines a partition of the set of equations; 
an element of this partition is named a clan. 
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Classification of Variables 

Variables of a clan: 
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Internal variables of a clan: 

),( j

i CXx  l
i Xx :, jlC l 

jX


jX

Contact variables:  0X
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Contact variables of a clan: jX
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Theorem. A contact variable belongs to two clans exactly entering 
one clan with sign plus and the other clan with sign minus. 
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Decomposition of System Matrix 
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Composition of Clans 

1. Solve the system separately for each clan: 
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2. Solve a system of composition of clans for contact variables: 
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3. Recover sought solutions: 
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General Solutions Obtained via 
Composition of Clans 

Theorem 1. A general solution of homogeneous system is:  

,zHx  RGH 

Theorem 2. A general solution of heterogeneous system is:  

,zHyx  ,yGxy  RGH 

Statement. Speed-up of computations is about:  

)2( pqO 
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k nz k M p  

For exponential methods – exponential speed-up:  
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Example: Decomposition into Clans 

0000011000

1100010000

1120010000

2011000010

0011000010

0100001100

0100201100

0001100001

0001100201
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Example: Renumeration of  
Equations and Variables 

 95472110863nx

 987436521nL

0110000000
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1100000200

1010000001

1010000021

0001102100

0001100100

0001010010
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Example: Solution of Systems for Clans 
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Example: Solution of System for Contact 
Variables 
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T

G

1110000000

1000000000

0001110000

0000101100

0001100011



T

G

1110000000

1000001111

0001110000

0000100000

0001100000

or 

T

GRH
1110000000

0001110000

1001201111



Example: Composition of Source System 
Solution 
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Sequential Contraction of Graphs as a 
Scheme of Solving System 

Graph of system decomposition into its clans: ),,( WEVG 

},{vV  Cv  vertices correspond to clans 

VVE  edges connect clans having common contact variables 
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Collapse of graph: 
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Collapse of Subgraphs 
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Edge collapse of graph 
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Collapse width 15 – dimension of systems. 
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An Exhaustive Search of Edge Collapse 
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A Partial Lattice of Collapse 
iiiiiii eeeeeee 21
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31  

tpp ii   11 t - number of triangles - number of edges 

Statement. Each edge on a step of a collapse is a sum of some 
edges of the source graph. 
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Comparing 
Heuristic Strategies of 
Edge Collapse 
 
(maximal, random, 
and minimal edge) 
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Comparison of Collapse Strategy for Random Graphs 
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Software 

• Deborah – decomposition into clans, 2004 

• Adriana – solving a homogenous system 
via (a) simultaneous or (b) sequential 
composition of clans, 2005 

• ParAd – solving a homogenous system via 
(a) simultaneous or (b) parallel-sequential 
composition of clans on parallel 
architectures, 2017 

 
30 



Composition of Clans on Parallel 
Architectures 
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Parallel-sequential Composition of 
Clans 
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ParAd – Parallel Adriana 
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Protocols of Master-Worker 
Communication 

(a) Sending system (b) Receiving solution 
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Master-Worker Basic 
Communication Model 

35 



Parallel-Sequential Composition 
Communication Model 
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Run ParAd 

• Run with mpirun 
>mpirun -n 5 ./ParAd -c -r zsolve tcp.spm tcp-pi.spm 

>mpirun -n 10 ./ParAd -s -t -d 1 tcp.spm tcp-ti.spm 

• Run with Slurm 
>srun -N 10 ./ParAd -s -t -d 1 tcp.spm tcp-ti.spm 

• SPM – simple sparse matrix format: 
i j a[i][j] 

• Check decomposability (Matrix Market Format) 
>toclans lp_cre_d.mtx 
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Aggregation of Clans for  
Workload Balancing 

• A clan is a sum of minimal clans 

• The maximal clan size restricts granulation 

• Many small clans lead to heavy 
communication load 

• Balancing: create clans having size close to 
the maximal 

• Key: -a val  

• Aggregation steeds-up about 20%  
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Solving Systems over Real Numbers 

• How to solve a linear system for a non-square 
matrix (what software to use)? 

• A variant: LAPACK, SVD  

• A problem – accumulation of errors 

• Preference to simultaneous composition 

• Clans with SVD speed-up about 2 times on 16 
nodes 
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Conclusions 

• Composition of clans speeds-up solving linear 
systems of equations 

• Decomposition into clans is linear in the 
number of nonnegative elements 

• Technique is applicable to sparse-matrices 
decomposable into clans 

• Many application area matrices are 
decomposable into clans 
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Project proposal 

• A library that implements composition of 
clans independently from data types and 
solvers 

• Multi-core implementation of decomposition  

• Multi-core implementation of sparse matrix 
multiplication 

• Solve heterogeneous systems and inequalities 

http://member.acm.org/~daze  
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