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Why do we need lossy compression for scientific data?
How lossy compressor works for scientific data?

What is user primary request?

8 Use-cases

What's next?
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When the Scientific Data Becomes Too Big

* Today’s scientific simulations produce extremely large of datasets,
often too large to save, process and analyze

e Cosmology Simulation (Space&Performance argument):
° A total Of >20PB Of data When , T I T TR «-‘ : ﬁarticle-'pased visualization,

tiny sub-volume, -high resolution

. Petascale - To solve th.eS(—T* !oroblems, |
. We need significant data reduction to:
(you will r _
. On currer * Reduce storage size
 Reduce I/O overhead
20 X 1071 . :
* Reduce relative cost of storage in systems
* Climate Simulation (Cost argument): PO —
« IPCC Coupled Model Comparison Projects (CMIPs) ?“ <Y igh Y
* The relative cost of storage is increasing... .
“5 0 05
E * Previous NCAR platform (2013): ~20% of hardware budget

e Current NCAR platform (2017): ~50% of hardware budget
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Architectural trends worsen the situation
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Architectural trends worsen the situation

2012

10000000
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100

More cores

ftcores _ »
(20x since 2012)

Higher Flops/I0 BW

=— — > (6Xsince 2012)
— = ~ “Flops/IO BW

Memory (TB) More total memory

— To solve these problems,
We need significant data reduction to:
e Reduce memory footprint

10 /\/§

1

Roadrunner Jaguar

——

Tianhe-1A K computer Blue

Waters

Titan

Trinity

(4x-5x since 2012)

Cori

Storage Bandwidth

* Projected value for FS

—_— —
Summit

Terr — <ouk o, L€SS memory/core
(~1/5 since 2012)

* If we can exploite all the memory = run larger problems that will generate more 1/Os
* +Higher flops/I0 BW - need to compute more for each I/O byte (x6 in 7 years)

—
o~

OCP

EXASCALE COMPUTING PROJEC

* Less memory per core makes weak scaling more difficult WRT previous generations
If reducing reduce the Flops/communication byte ratio possible
« > unable to exploit the full scale because required problem size will not fit in memory 8ONNE

b

NATIONAL LABORATORY



Ok we need to reduce the data, but how?

* Lossless compression:

* The data is compressed and decompressed in such a way that the decompressed
data is identical to the initial data (there is no alteration, deviation, distortion)
* Popular example: Gzip

* Lossy reduction:

* The data is altered during reduction: some piece of information is removed (lost):
the original data cannot be retrieved.

* Noise is added to the original data. Knowing the nature of the noise is critical for
users of the reduced data.

* If user can control the accuracy of the reduced data, then lossy reduction is a
trade-off between reduction ratio and loss of accuracy

* Popular example: JPEG

AAAAAAAAAAAAAAAAAA



Why lossless compression does not help?
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What about decimation in time (lossy reduction)?

N body simulation (large scale phenomena: cosmology, small scale phenomena: MD)
Cosmology: HACC code simulates the formation of the universe (halo, galaxies, etc.)
Molecular Dynamic: EXAALT code simulates behavior of atoms in a nano-crystalline sample of
copper under the influence of a strong electric field.

Temporal decimation (1/2, 1/5, 1/10, etc.) + linear interpolation
Lossy Compression with SZ (spatial only and temporal)

Snapshots Variables Particles (million)
HACC 100 T,Y, 2, Vg, Vy, Vz 15-20
EXAALT 83 T,Y, 2 1
130 : HACC
Rate distortion of . < >
HACC and EXAALT 129 I
data on variable x 110 PR
A A Rd
. 100 K
C /
)] ’
< 90 .
£ « » k-4 SZ vict
S. Li, S. Di, X. Liang, Z. Chen, F. Cappello, 80 /' S ¢ <-< SZ prestep|]
Optimizing Lossy Compression with Adjacent 70l / / /<§/<> ¢ »-» SZ single
Snapshots for N-body Simulation Data, IEEE L0 ¢—¢ Decimation
BigData 2018 60, 5 7 6 5 10

bit rate

12

psnr

> i’a’rticle-‘pased visualization,
tiny sub-volume, -high resolution

140 ‘EXYAAI‘_T |

120 e Ptied

100} Pl i

30! ’a /,V

60 R | (4 |
<+-< SZ prestep

40} — N >-> SZ_§|nnga
¢—¢ Decimation

25— 4 6 8 10 12 14 16 18

bit rate



Why this is not already solved?

* Problem did not really exist 5-10 years ago
* No investment from application and CS people to develop lossy compressors for
scientific data (no research on impact of lossy compression error)
* Lossy compression of scientific data is a hard problem
* The mantissas of floating point data in scientific datasets are fairly random

e Scientific users are worried about the error/noise introduced by lossy

compression

* >40 years old (Lz77), >70 years (Shannon’s information theory - 1948)
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How modern lossy compressors look like?

* Three main stages (each stage may use multiple sub-stages)

+ potentially additional preconditioning of the data + post processing

Input

—N
—/

Lossless

Decorrelation

Convert the dataset into another

less correlated one
(exploit autocorrelation).
_ e.g. concentrate signal energy on less data

EEEEEEEEEEEEEEEEEEEEEEEE

Where the compression

error is introduced (e.g.

removing coefficients of

a transformed matrix)

Lossy
Approximation
(Quantization)

E (error)

Lossless or lossy

> Coding

Output

Use the minimum number
of bits to represent a string

of symbols
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Where the research is in lossy compressors for

scientific data?

Decorrelation stage that leverages redundancy:
Similarities, Autocorrelation, Smoothness of

the data in the dataset

Orthogonal Prediction
Transform
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Decomposition
(e.g. HOSVD: Tucker Tensor
Decomposition)

*
0

A

Tucker-decomposition (Tucker, 1966)

X = L1ty Ty Ty EimndiBjmein =: [[G: A, B, C]].

o G is called core tensor.

o Tucker-rank = (r, r2, r3)
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What’s the most important feature for a lossy
compressor of scientific data?

* Providing a guarantee of data accuracy after decompression
* Users want the same results from analysis run on decompressed data

* Lossy compressors provides point wise error controls (bounds)
* Two main types of error bounds (E: error, V: initial dataset, V’: decompressed

dataset): \\;; I3
* Absolute error bound: E.=|V-V'|
(absolute quantities. Ve
E.g. position in mesh), v
* Relative error error bound: E.=|V-V]

(e.g. velocity, temperatures), V )



Ok but how can we assess accuracy?

e User analysis code

Metric of distance between analysis results from initial and decompressed dataset
Not always doable: analysis to expensive to compute only before storage

* Error Metrics (amount of error)

Respect of error bounds 1 point wise metrics
RMSE

PNSR Statistical metrics
Rate distortion

* Advanced Error Metrics (nature of the error)

Error distribution

Pearson correlation of the initial and decompressed data

Autocorrelation of the compression error

Correlation between the initial data and the error

Spectral alteration

Structural Similarity Index (SSIM)

Preservation of derivatives | Jeé

7 s A |
D NATIONAL LABORATORY



Example: PSN

R

Peak signal to noise ration

X :A{xl_,xg,.:.,xN} —>

Value range:

psnr = 20 - log1o(———

RX — Lmax — Lmin
Point wise error:  €qbg, — Lj — Ly

Decompression

rmse =

1 N
N Z(eabsi)Q

RX)

Trmse
Rate distortion i:g
diagram 160
_ 140
S 120 S
cc 100
S 8o —
® 60
40 40dB:x100
— 20 e
=P : —
\(\__ | 0 2 a 6 8 10 12 14 16

EXASCALE COMPUTING PROJECT

Rate (bits/value)

Compression |:> X = {fl, fQ, ---‘7‘x§\f}

sJossaidwo)

dB
-100 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

-6 dB

-3dB

-2dB

-1dB

> odB
1dB

2dB

3dB

> edB
10dB

20 dB

30 dB

40 dB

50 dB

‘ 100 dB

Amplitude ratio

10
0.00316
0.010
0.032
0.1
0.316
0.501
0.708
0.794
0.891

1

1.122
1.259
1.413
2~1.995
3.162
10
31.623
100
316.228

10°



Example: Structural Similarity Index (SSIM)

SSIM is a perception-based model that considers image degradation as perceived change in structural information
SSIM is the product of 3 components that assess differences between two signals: Luminance, Contrast, Structure
The closer to 1, the better match between signals in terms of mean, variance, and covariance.

. the average of z;

2 + C 20' —|— C u, the average of y;
SSIM(Q?, y) = ( fa uy ! ) ( Y 2 ) o2 the varianie of z;

('U,% + ,Ll,gzl -+ Cl)(O';% + 0':3 + Cz) o2 the variance of y;

oy the covariance of = and v;

(Source: geophysical simulation data from atmospheric model)

lum: 1 cont: 0.947 struc: 0.305 SSIM: 0.289  lum: 0.999 cont: 0.994 struc: 0.328 SSIM: 0.326 lum: 0.999 cont: 0.985 struc: 0.961 SSIM: 0.946

25 30 35 40 45 50
25 30 35 40 45 50

Signals have the same

= mean, but different co-
\

Signals have
similar properties

[~ variability

EXASCALE COMPUTING PROJECT MSE=309, SSIM=0.580 MSE=309, S5IM=0.641 MSE=309, 55IM=0.730



Let’s look at ANL SZ

* Multi-stages, Prediction based lossy compressor

* Current version: SZ 2.0  (Previous versions: SZ 1.1, SZ 1.4)

Decorrelation Coding
Initial Data Input o L sIe?/ Output Loss
+ Prediction Variable length coding y
. X Compressed
Compression (Huffman) Data
Parameters / \

2\

(strict error control)

Linear Quantization of
prediction errors

—_— Approximation

—\

\(\ \)l D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets Aroon ne°
exmscae comrumns procecr | Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017 g AT G LA SR




SZ Prediction stage

* Multi-stages, Prediction based lossy compressor

 Current version: SZ 2.0

. Input
Initial Data

+ $
Compression
Parameters

/-_?\

\(\__ =

EXASCALE COMPUTING PROJECT

Blocking

Decompose
the input in
blocs of the

same structure
(1D, 2D, nd)

Sampling

Example (3D):

6Xx6x6

-

Pick a subset of
points in each
block

(Previous versions: SZ 1.1, SZ 1.4)

Compare
Prediction

Example (3D):

-

Perform different
prediction types
and compare
prediction
performance

Apply Prediction

Example (3D):

P1

P2

-

Perform the best
prediction
method on
each block

To quantization

—

X. Liang, S. Di, D. Tao, S. Li, S. Lix, H. Guo, Z. Chen, F. Cappello, Error-Controlled Lossy Compression
Optimized for High Compression Ratios of Scientific Datasets, IEEE Big Data, 2018

Argonne°
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SZ 2.0 Prediction Method 1

Example for 2D:
(k17k2)#(070)
flio,jo) = > (=D)MHRHICRCEV (ig—ky, jo—k2)
0<k1,ka<n .
1) Multi-dimensional
Multi-layer Prediction YV 1 1T 7T 7T YT
(extension of Lorenzo) P x (gl
2D example (9X9 bIOCk) ® % % ® ® ® ® ® % ® Processing data point
% First layer
Input bloc of ¥ F % —%— % socond layer Produces floating point
Floating point ‘ I S 7N % Tordtoyer ‘ Numbers (predictions
data L/ « Fourth layer for each data of the bloc)
b4 1-layer
XN 2-layer

% KR 3-layer
® X xRX Alayer

The prediction function is known by the decompressor.
—_ - No need to store its description in the compressed file.

\
\(\ \)I_J D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets Ar Onne@
exracre commoms rroeer | Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017 g NATIONAL LABORATORY




2) Regression

SZ 2.0 Prediction Method 2

The regression coefficients of a 3D dataset with
dimensions n1, n2, n3 can be calculated as:

Compute hyperplane coefficients By = 6 (Ve _ V)

7’1/171,2713(77,14-1) 71,21V—1
_ 6 v
52 - nlngng(n2+1) ('I’LQ—I ‘/0)
_ 6 2V, _
53 - nlngng(n3+1) (n3—1 ‘/0)

BO — nlxo - (7112—1 51 + n22—162 + 7132—163)

213

The objective of the regression model is to
minimize the squared error (SE) between
predicated and original values

ny—1lng—1ng—1 ny—1lngo—1ng—1

where Vo= 37 5 S fe Vo= 35S i
=0 j=0 k=0 i=0 j=0 k=0
nyi—lng—1ng—1 ni—1lnog—1ng—1

Vy:Z Z Zj*fiﬂ.n VZZZ Z Zk*fu’\

i=0 j=0 k=0 i=0 j=0 k=0

2D example (6x6 block)

. @&
A O . ,’I . .
Input bloc of S ey o Produces floating point
Floating point ‘ Values Y .: / Numbers (predictions
data ‘om0 0%/ for each data of the bloc)
¢ ° ﬁ'y

The coefficients resulting from the regression are NOT known by the decompressor.

- Need to store the coefficients for each block in the compressed file.

’:\\ X. Liang, S. Di, D. Tao, S. Li, S. Lix, H. Guo, Z. Chen, F. Cappello, Error-Controlled Lossy Compression :
—\( )l—J Optimized for High Compression Ratios of Scientific Datasets, IEEE Big Data, 2018
\= Argonne

EXASCALE COMPUTING PROJECT
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SZ Design Principles
* Multi-stages, Prediction based lossy compressor

* Current version: SZ 2.0  (Previous versions: SZ 1.1, SZ 1.4)

Decorrelation Coding

Initial Data |nput o L§\S|e?/ OUtpUt Loss
. Prediction X Variable length coding :> Comy eced
Compression 'l: (Huffman) ’

Parameters / \ Data
Lossy 2\

(strict error control)

Linear Quantization of

prediction errors

— Approximation
—\

\(\ \)l D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets Aroon ne°
exmscae comrumns procecr | Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017 g NATIONAL LABORATORY




S/ 2.0 Quantization Stage

2) Linear Quantization of prediction error (map data into quantization bins, #bins defined by users or SZ)

Quantization Code

i 2m.1
2*Error Bound—= 2m1+2
— ——
¢<— Real Value omiyq
2*Error Bound==
First-phase —_¢ 2m1
Predicted Value Error
Bound
2*Error Bound—= 2m1]
> ——
2*Error Bound—= 2m1-2
1

Prediction Hitting Rate

14%
12%
10% -
8% -
6% -
4% -
2% -

0%

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%

0.0%

Example for err: 104, for ATM

We need much less
than 256 intervals
(8bits)

T

B . SRS IE. ok e T I e

TANOSTOLOMNOOOTANNMTUOOMNOIOIOT NM
rrrrrrrrrr NANNN

Error-bounded Uniform Quantization Code

Example: hit rate for ATM

VW 4] Al P
k] e p

99% hit rate
with 16k intervals
at e=10°

1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08
Relative Error Bound

~

Quantization
Intervals #

={=64

(=512
4096
16384
65536

- °

Transforms each predicted
data into 1 integer value
(with loss)

* If data is out of scale,

keep it in a separate array

Initial data (FP numbers)

P p MY P

Array of quantization (integers)

1 2 3
Array of unpredictable data (FP)

1,2,3

Data are ordered in the arrays
in their initial order



SZ Design Principles
* Multi-stages, Multi-algorithm Prediction based Lossy compressor

* Current version: SZ 2.0  (Previous versions: SZ 1.1, SZ 1.4)

Decorrelation Coding

Initial Data |nput o L§\S|e?/ . ) OUtpUt Lossy
+ :l> Prediction X Variable length coding Combressed
Compression (Huffman) Datap
Parameters / \

Lossy

(strict error control)

Linear Quantization of
prediction errors

Approximation

—

-
—\

_\(\ \)I_J D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets Ar onneo

EXASCALE COMPUTING PROJECT Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017 g NATIONAL LABORATORY




SZ 2.0 Coding Stage

3) Variable length coding (Huffman)

We built the Huffman tree using a symbol size corresponding [19] [23 1.2:410 2 11"34<[] a1 [37] [a
to the number of bits needed to code the bin numbers 1l 1] ,r;'{-”.-
L] (1] Q)|
‘ Reduce the number of bits needed to represent values }’@)\7
| 0
(s) |s
4) Unpredictable data analysis 1/\/‘1 .
LIIIIIIIIIIOIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIL

‘ Reduce the number of bits needed to represent unpredictable data (<1%)

5) Optional Zstandard (L77 + Finite State Entropy): improve the compression by about 10%
(Zstandard much faster than GZIP, improves speed of SZ 2.0 compared to SZ 1.4)

- Argon ne'®

EXASCALE COMPUTING PROJECT NATIONAL LABORATORY



SZ Use-cases

We are seeing an increasing diversity/number of use-cases Goals:

* Show the diversity
of uses cases
through real life

“Classic” use-cases:

1) Visualization

2) Reducing storage footprint (offline compression) applications
3) Reducing I/O time (on-line, in-situ compression) * Present real-life
Recently identified use-cases: performance gains

* Inspire potential
new use-cases

4) Reducing streaming intensity (recent for generic floating-point compressors)
5) Lossy checkpoint/restart from lossy state

* reduce checkpoints footprint on storage — adjoint, accelerate checkpointing

Source:

6) Accelerate computation Most examples from

* By improving the memory-byte/flop ratio (reducing the pressure on memory the Exascale

bandwidth) Computing Project

7) Re-computation Avoiding (ECP).

* By reducing the memory footprint
8) Running larger simulations Most example use the

* By reducing the memory footprint SZ compressor.

ATEUTTI |E'_'

NATIONAL LABORATORY




X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, F. Cappello, Error-Controlled Lossy

1 ) VI S u a | I Za t I O n Compression Optimized for High Compression Ratios of Scientific Datasets, IEEE BigData 2018
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100

200 B

300

400

500

NYX (velocity x:slice 100) CR=156:1 (e8: 0.03) CESM ATM(CLDHGH) CR=295:1 (e8: 0.06)

Cosmology: Adaptive mesh hydrodynamics + N-body simulation Climate Atmospheric mode (High cloud cover): fluid dynamics

0 1 0

200 200

400 08 400 0.8

600 600

g } od b 0.6

800 800
¥ Y

1000

Lossy compression is s well adapted to visualization where ultlmately the N
requirement in terms of accuracy are low (determined by vis. resolution) B

* Very high compression ratios could be obtained with modern lossy o0 m
compressors O

* Lossy compressors are progressing in performance (in particular noise and
artifact reductlon at high compressmn level)

.‘ - _
0 100 200 300 400 500 0 100 200 300 400 500 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500

SZ 1.4 PSNR=39) (d) ZFP (PSNR=31) SZ 1.4 (PSNR=27,SSIM=0.8842) (d) ZFP (PSNR=15,SSIM=0.3168)




Rx

2) Reducing Storage Footprint psnr =20 - loguo(70)

Goal for this use-case is to keep a ratio of about 1000 between
the initial signal and the noise introduced by the lossy compression

error.

And comnare with the classic techniaue aof snatial camnling X, Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, F. Cappello,
; } for High

andre{+ Modern lossy compressors can reduce drastically the footprint on storage |05 0.

compr

while keeping a very high accuracy

Hurrical e They are also very competitive compared to tricubic interpolation in
= decompression speed M '
T »\w N : w-ignal

£ 3 and noise
B’cr P NREJNJ dB [k
°_ IM: 0.77

-10

.+ C+D tim 9045
- PR S 2 o

E;'“"

11

-12

“‘ y P -
500 E— : — 13 '
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Original SZ 2.0 Spatial sampling + tricubic interpolation



3) Accelerating I/O

ECP HACC: N-body problem with domain decomposition, medium/long-range force solver
(particle-mesh method), short-range force solver (particle-particle/particle-mesh algorithm).

Particle dataset: 6 x 1D array (X, V, z, VX, vy ,vz)

SZ 2.0: CR ~5 (~6bits/value) at
10-3 error bound

f d I . - Select Database:
P re e rre e rro r CO nt ro S ° Clnema: Explorer Metrics (Feb 15, 2019) - Scaling Absolute Error Input on Positions Load
* Point wise max error (Relative) bound T
Compressor_field__params absolute_error mse psnr Max C i Max DeC: i Min C i Min DeC ion Through ~ C ion Ratio
o, . . . z_tolerance:0.001_pcnt:30 — . 0012 ~ 205 — . 80— _
* Absolute (position), Relative (Velocity) B i
754
190 80 €39
100 4
70 el
180 - 50 -
70 90 65
170+ 454
60 2]
160 60 80 74l
55+
150 -
ol s 35 ] 10
140
30 5=}
130 ol 60 - od
120 - 7 &4
fp lerance: | s
ﬂ%:i:'eﬁliiiﬂﬁizgigl ] 110 20+ 35| 6
L 21X _tolerance:0.01
] 100+ = 15+ 30
Compressor_field__params: SZ_x__tolerance:0.001 E o
absolute_error: 0255783 90| \o 25
mse: 0.00710903 7
psnr: 69.6467 el 10 sl
Max Compression Throughput: 50.003 5
Max DeCompression Throughput: 112.998 2081 N
Min Compression Throughput: 36.7068 fe i i i 157 i
Min DeCompression Throughput: 53.1952
Compression Ratio: 16.5391 .
eSS Figures from Cbench (ECR.EXASKY)
out of results sel e




Counts

)
o)
o
o
o

3) Accelerating I/O g5 compressio

)
£ B \\riting data
ECP HACC = 3000 J
go)
o 2
3
Results validation o 1
3kpc absolute error bound L
105?“_\_‘ﬂ
E : : : , %
] * Modern lossy compressors reach high enough compression ratios and high| ~
10° . g . . . . res
enough speed to significantly reduce I/0 time, while keeping a high
103_:. dCCcuracy
3 s = o b
. * File-per-process mode with
,| = original POSIX I/O for reading/writing
"] —— sz_abs:0.003 datain //
* *  Each core has 3.14GB to write
1013 =\_ 512 cores 1024 cores 2048 core:
LI Illlllll L] LI Illllll2 T LI Illlll13 L] LI IIIIII14 1 1 . ~ ~
10 we 1 10 /0O time reduced by ~5x-~6x
i \\ — The writing and reading times without compression are estimations (too long for experiment)
=L : vy
exmecmced S. Li, S. Di, X. Liang, Z. Chen, F. Cappello, Optimizing Lossy Compression with Adjacent Snapshots for N-body Simulation Data, IEEE BigData 2018  |,,0x




New SCRF linac
and injector i in 15'

4) Reducing Streaming Intensity SRS

= - “énd LCLS:II Upgrade 7
ECP EXAFEL.: Context of LCLS-II P N e (1Stl|ght 2019)

« X-ray crystallography to determine the atomic and molecular , R N e,
structure of a crystal Electron Trﬁirfqé (340 BN -2

 Crucial for medical applications (e.g. understand membrane protein wico Ry
Structure) . ’ BN ‘\u aF'Expe.nmentHa\H

- Aliquid jet injects the crystal and an Xray pulse strikes the molecules. S _N’\\ , \ SN

» This produces diffraction patterns on the detector

Patterns are analyzed to discover the structure of the ; /
CrySta I/m O | eCU Ie T.O. Raubenheimer for the LCLS-II Collaboration, SLAC, Menlo Park, CA 94025, USA

6th International Particle Accelerator Conference, VA, USA, 2015, JACoW Publishing

LCLS-Il Data System

Detector |
o DAQ Data Reduction Pipeline FFB : Offline {5 s U
Liquid Jet g (PET hutch) | (shared - 1 for NEH, : (shared - 1 for NEH) | (shared by all) | T
(input) g partitionable) \ i o
‘a il
ke M >-
irrors :
0 D1
Primary = B
Interaction
Point  yndulator §5Li°ﬂ ]
(420 m upstream) b

Diffraction before destruction
Number of pulses/sec: 120
Millions of diffraction patterns from crystals i Ouline !
~ — P Y 1 MHz acquisition ::: :Z:ig:‘m Noaes " | 25GBIs 1 Oftine Analysis
EXASCALE COMPUTING PROJECT 250 GB/s . Data written in HDF5 format |
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4) Reducing Streaming Intensity

-Detector produces 2D images:

Experiment cxic0415 run 90 event 104859

Decompressed image from SZ-LCLS

_4M pixel/event Image from the detector 0 Comepression ratio: 30

200

-All LCLS-II area detectors per
experiment: 250GB/s Data from detector

400

'

600

-Today technology: ~x1000s . ] o
disks = e — - . -
to sustairl * Lossy compression can be considered for effectively reducing streaming

Dataisd  intensity.

(RAW, C{* May needsmore stages than “generic” lossy
XTC2 forrmat

compression

w=.g Yoon, Stanford

Qo -7

g Low pass filter (adaptive)

@)

- -
Compression goa|s: O | Compress background (SZ 2.1)

- P

. N

-Goal: CR of 10 with error n Rebuild image

bound -7
-Speed 500 MB/s/core

- True Co-Design (algorithm,
hardware)

Image from Chun ang quri',':-St'anfo._rd‘ "Image from Chun Hong Yoon, Stanford

850 200 950 1000 1050 1100 1150 1200 850 900 950 1000 1050 1100 1150 1200



5) Accelerating Checkpoint/Restart “

ECP NWCHEM: Particles are represented by wave functions 27 original -0.095440748811744
Coupled-cluster approaches are some of the most 10417  1E-8 ~9 -0.095440748697882
successful methods used to solve quantum states of 10417 1E-6 ~11 -0.095440744046987
complex many-body systems. 10417  1E-4  ~40  -0.095440297611173
> — 6T ‘(I)O T1 T2 .+ TN Dumping time on PFS (no compress.): ~10k seconds
Wovetncton Cluster Loading time on PFS (no compress.): ~11k seconds.

of the CC theo|

* Lossy compression can be considered for accelerating checkpoint/restart
* Understanding the level of acceptable compression error is critical
: éaoragf  There is currently no established link (mathematical) between the

conrcljr compression error and the error of the numerical method
1D , : owo

Improved NWChemEx performance = tackle larger problems L 0
%, %, %, 05
ANL Bebop Cluster % QO/;) /") O/’,) /’) 2, 0/’,)
2 x Intel Xeon E5-2670 ’/)0 © ”) © o ©
54 b DbRamemory EB: 1€-6 EB: 1e- 7 EB:1e-8
GPFS CR: 11.5 CR:7.32 CR:5.31

Accelerate the dumping and loading time 10x at
acceptable error bound (10E-6).

EXASCALECC. = o S



6) Avoiding re-Computation 1/2

ECP GAMESS: Quantum Chemistry

—>The goal is to obtain the wavefunction of a
chemical system by solving the Schrodinger
equation.

"i ‘g ‘ ' r ‘zQ

p-type basis functions p-shell

Solving the Schrodinger equation requires a huge
amount of Electron Repulsion Integrals (ERIs)

The number of ERIs is so large that they cannot fit
in memory. They need to be recomputed at each
iteration.

Compression is used to reduce the size of the
ERIs to make them fit in memory, removing the
need for re-computation.

W=

EXASCALE COMPUTING PROJECT

1D dataset, preferred error controls:
* Point wise max error (absolute) bound
* Extremely low error bounds: 10-10

4E-07

Sub-Block =  Sub-Block . Sub-Block . Sub-Block . Sub-Block . Sub-Block .
. . . . .

2E-07 %

oe+00 &

2E07 =

4E07 : . . . . :
" [0:35] % [36:71] % [72:107] % [108:143] % [144:179] * [179:215] *

Data points are generated in blocks. Typically four nested FOR
loops traverse all different types of orbital shells of each atom.
— Produces periodic behavior in the output data, where the
periodicity is defined by the shell types in atom couples.

4E-7 1E-7 4E-7 1E40
L ’
n H 1E-2
o \
"‘ l'iio “l"‘fl ". A A 1E-4
']
o RN 2 :
]
' ':: (K " ' 168 M’WW
v Yy
) ¢ 1E-10
-4E-7 ! -1E-7 -4E-7 v v Wy U
1E-12

New SZ capability: Pattern based predictor
-> PaSTRI algorithm (developed at ANL)

Argonne =¥
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6) Avoiding re-Computation 2/2
e ECP GAMESS
 16.8X compression ratio,

° 61 * Lossy compression can be accelerate computation via re-computation

| avoidance if some data need to be recomputed at each iteration because
. 1.| theydo notfitin memory
dd * The data should be write once/read many time to be beneficial
 Decompression need to be fast enough to not increase the overall

computation time ward
2r 2018
©
3 060 |
TEU 0.40 Certificate. of Best Paper ,fo‘r
B A et g?(l L 3' Frandk C :{ﬁ‘:
= 020 . . Entitled 4
0.00 n— — — — — — e slac it Iitegglg i ;su
EB = EB = EB = EB = EB = EB = “% st Paper presentedicE i Y
1E-11  1E-10  1E-9 1E-11  1E-10  1E-9 | ERy i
: \(C Original PaSTRI infras. Original PaSTRI infras. | ‘
= Argon ne

EXASCALE COMI (dd |dd) (fflff) NATIONAL LABORATORY



7) Reducing Memory Footprint

One of the problem in quantum computing simulators is the

storage of the quantum state. The quantum state is a vector of '™ Full amplitude-vector update 45 High Al
cpeas .- . . . Tensor-slicing with minimized 7x7 27 All
probabilities (1 probability for each quantum bit configuration). IBM communication 7x8 ’3 937 out of 256
The size of the vector state is 2”n, with n being the number of Preprocessing using undirected
. . hical model
quantum bits to simulate. 1D dataset. Google S 78 30 !
Qubit partition with partial vector
USTC update 8x9 22 1
Simulating 50 qubits would require 2250 x 224=16PB of RAM Dynamic programming qubit 7237 39 All
. . . . . Sunway partition 7x7 55 1
So compromises are made: lower #qubits, Depth, #amplitudes: T ——————
Alibaba parallelization 9x9 40 1
Use lossy compression of the Message Passing Interface Data Compression
. Memo Amplitude | Rank 0 Memo
the number of Qubits that i b e - it S e
. . . ¥ ate vector, ompresse #. i
could simulated with given 000. 01 : 5 | Vecton, ]| | vector,
000...010 B|0Cko ________________________________
memory size 0.0t | | Rank1 Compressed
State Vector, Block,
n-qubit Compressed State Vector
State Vector Block, Update
111..100 Rankr-1 Rt et ke ol e e i ot
—_ 111,101 Compressed Compress
\ ‘—L ! ’ ’
._\(\ P . State Vector,; e | vector, || Vector, |;
Lo
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7 ) Re d U CI n g I\/I e m O ry FO Ot p rl ﬂt QAOA: polynomial time algorithm for finding “a ‘good’

solution to an optimization problem (NP-Hard problem)

FIdElItyZ 2" -1 Grover: Find entries in unsorted databases in O(square
: : — 2 — t of the number items in the data base).
F(ideal, sim) = : ; >Za-1—5—1—5. rooto
( ’ ) |<‘//zdeal|l//Sll‘H>| o =0 l( ) QFT: Quantum Fourier transform
1=

ANL Theta full size: 4&nodes, 768 TB
N

Benchmark - — ' ' Sttty QFT
Nt o ® Lossy compression can be considered for running problems that cannot fit
umber of Qu 36

(MemoryRequ}1 in memory (run larger problem) (1 TB)
EEEE: foﬁﬂ  The application need to tolerate the introduction of compression error at 32158
Total Systeml\:j each load from the memory. 192 GB
(Sys Mem /Req o Execution speed might decrease significantly because the (18.75%)
Total Time (Hol compression/decompression happen for each store/load 7698
Compression T 57.86%
Decompression Time 1.87% 3.73% 4.08% 31.47% 22.19% 33.78% 30.59% 27.64% 25.52% 37.68%
Communication Time 32.7% 20.98% 36.73% 0.12% 0.57% 0.02% 0.03% 0.22% 0.23% 2.56%
Computation Time 63.47% 70.70% 57.15% 12.60% 36.97% 7.08% 10.8% 27.16% 33.22% 1.9%
Time per Gate (Sec) 93.34 40.49 5.78 64.69 119.22 173.65 107.86 61.02 92.64 87.27
Simulation Fidelity I 0.996 0.996 1 0.987 0.993 0.933 0.985 0.999 0.999 0.962 I
Compression Ratio 7.39 x 10*  8.26 x 10*  1.06 x 10* 6.03 9.40 8.16 10.05 4.35 9.25 21.34

Ty

X. Wu, S. Di, M. Dasgupta, F. Cappello, Y. Alexeev, H. Finkel, F. Chong, Full State Quantum Circuit Simulation by Using Data Compression, ACM/IEEE SC2019
Y

X.-C. Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeey, F. T. Chong, Memory-Efficient Quantum Circuit Simulation by Using Lossy Data Compression, PMES workshop at IEEE/ACM SC18, 2018
X.-C. Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeey, F. T. Chong, Amplitude-Aware Lossy Compression for Quantum Circuit Simulation, DRBSD-4 workshop at IEEE/ACM SC18, 2018




H. Fu, et al., “18.9-Pflops Nonlinear Earthquake Simulation on Sunway TaihuLight:

AC C e | e ra t i n g C O m p u ta t i O n Enabling Depiction of 18-Hz and 8-Meter Scenarios”, Proceedings of SC17

2017 Gordon Bell Award: 18.9-Pflops Nonlinear == et -
Earthquake Simulation on Sunway TaihulLight: Enabling T LR oo, |I”H
. . _ . (a) Collect statistic from coarse gri (b) Computation workflow
Depiction of 18-Hz and 8-Meter Scenarios ot o D —
o PO RN
: " sign exp (8b) frac (24b) (str, r1,r2,...,r6,sigma2,yldfac) sign_exp (0-
Finite dlfference non- Ilnear scheme : ;}p— - 2 “mHHHHHMHHHHH Yoo lonli )

L2 At = oA Soae o) ! iRl

Optimizatiot
. Lossy compression can be con5|dered to accelerate computation through

Designedall  the reduction of pressure on the memory bandwidth
Benzel‘f;m:: * The application need to tolerate the introduction of compression error at Ifssed
. double t each load from the memory.

Additional hardware structure are needed (scratch pad)

On-The-Fly .
M1: Directly conversion to half precision IEEE 754 standard. However, dynamic is
too large for 5 bits of exponent, for some variables.

M2: Determines the required exponent bit-width according to the recorded
maximum dynamic range, and uses the remaining bits for mantissa.

M3: Normalize all the values of the same array to the range between 1 and 2,

which corresponds to an exponent value of zero (small dynamic). W

\\)I - Seismograms comparison for | _______ I T -
2 stations, Ninhe and Cangzhou 20s 405 60g 80s 100S 1205
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ANL SZ Lossy compressor today

Key features:

Production quality lossy compressor for scientific data respecting user set error
bounds

For 1D, 2D, 3D structured and unstructured datasets. E.g. 3D simulation fields, 2D
instruments data, time series.

For floating point and integer data

Strict error controls (absolute error, relative error, PSNR, error distribution)
Thorough testing procedures, bug tracking, tests on the CORAL systems
Integrated in the ADIOS, HDF5 and PnetCDF 1/0 libraries.

Reader/Writer for ADIOS, HDF5, netCDF

Optimized compression ratios (transforms, decompositions, multiple predictors,
compression in time, lossless compression, etc.)

High compression/decompression speed (MPIl + OpenMP)

HHHHHHHHHHHHHHHHHHHH
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ANL SZ Application domains

Application domains:
* Fluid dynamics: climate/weather (ECP)
 Particle physics: cosmology, molecular dynamics (ECP)
* Fusion energy: plasma simulation (ECP)
e Seismology: Oil and Gas
* Quantum chemistry (ECP)
* Quantum Computing simulation
* Medical imaging
* Physics instruments: light sources (LCLS, APS) (ECP)

* Deep learning (models and training sets)

EEEEEEEEEEEEEEEEEEEEEEEE
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What’s next 1/2

Need to improve SZ:

 Structure (more flexible):
* lossy compression framework instead of lossy compressor
 Ultimate: auto-composition/tuning of compression stage/parametrization

* Prediction algorithms (compress more):
* DNN based,
* Transform based

* Error control (higher fidelity):
* Shape of the error distribution
e Auto-tuning of the compressor error bound

* Performance (compress faster):

* FPGA implementations
* Much faster/reduced SZ for compression between memory and CPU/GPU

EEEEEEEEEEEEEEEEEEEEEEEE



Gradient Vector: 15t order derivatives

W h at,S ﬂ EXt 2/2 Hessian Matrix: 2"d order derivatives

Need to improve fld@llty assessment Compute vector 2-norm (1st order derivatives)

Some analysis Compute derivatives: e.g. Compute FrObeniUS'Norm (Z”d Order derivativeS)
streamlines in fluid dynamics

-

Compute PSNR (15t order derivatives)

No §ystgmat|c way to assess preservation of Compute PSNR (27 order derivatives)
derivatives
New metrics: Preservation of derivatives d1 M, d2 M

EB PSNR SSIM EB PSNR S5IM

0 INF 1 1E-5,114.80, 1

d1_M = INF, d2_M = INF dl_M=285.29,d2_M=53.45

1E-7,154.92,1
dl_M=125.32,d2_M =93.47

16-4,94.81, 1
d1_M =65.29,d2_M = 33.38

-
) @

b 163, 75.27,0.999968

dl_M=46.02 ,d2 M =
Argonne

NATIONAL LABORATORY

1E-6,134.94,1
dl_M=105.37,d2_M=73.51




/-checker reduction error assessment tool
(google z-checker github)

e Visualization Engine: local visualization, web visualization . T :
8 Data Visualization Engine

* Analysis kernel : (1) Data property (2) Compression quality

* Input engine: Adios, HDF5, NetCDF, plain binary stream of data Z-server Output Engine

* Qutput engine
* Single value of a specific metric Analysis Kernel

O

&

@©

ol

' ' : c

(such as entropy and compression ratio) Data Property Compression 5

* Sequence of values (such as distribution and auto-correlation Analyzer Checker o
of compression errors) 5

* Generate report (in the form of .pdf file) 3rd-party E’
: : Input Engine o

» Configuration parser Connecter|| &

» Switch on/off the assessment metrics

Data Source (stream, file, etc.) || 3rd-party
with formats (HDF5, NetCDF, Library
3rd-party connector ADIOS, binary data format, etc) (R, FTTW)
f;y\ Support R, FFTW, etc.

1l et

» Specify the error bounds and comparison cases, etc.

= Argomcneé
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On-line Z-checker: Video

Example: heat distribution test (Jacobi algorithm simulating the heat diffusion in a flat board over time)
All metrics computed in parallel using MPI

bin — hguo@mcswl114 — -zs
vim ..hecker/public avg Re I Err anAbS Err anVaI ue
bin X mpiexec -np 4
fig zc.config temp sz 0.002 0.2 22

0.0019 0.19
20
- = o LS
w w =
& 0.0018 2 018 3
2 o e
£ o =
18
0.0017 0.17
0.0016 0.16 16
1750 2000 2250 2500 1750 2000 2250 2500 1750 2000 2250 2500
avgPWRErr compressRate compressRatio
0.02 600M 27
0.0175 500M
. g S 26
= 4 v}
4 N b
Z 0.015 @ 400M 2
S 3 g
s o =
o S 25
0.0125 300M
0.01 200M 24
1750 2000 2250 2500 1750 2000 2250 2500 1750 2000 2250 2500
\ compressTime mpr iz
. ( \)l ) p compressSize snr
\ 0.0004 3700 43
EXASCALE COMPUTING PROJECT 0.00035

2200 42.75



SDRBench: Scientific Data Reduction Benchmarks

Google (SDRBench)

Scope and objectives

e A community repository providing reference scientific datasets, compressors
(lossless and lossy), and error analysis tools

e Significance: Improve the methodology in the domain by providing reference
information for scientific data

compressor users and developers

Impact

Opened on July 15t 2018. Already recognized as a
reference source of information for the developers of the
main lossy and lossless compressors

Project accomplishment

* Collection of representative datasets from ECP and other applications via direct
communication with application developers and users

» Storage of the datasets on the Petrel server at Argonne with Terabytes of
storage capacity

* Fast access to the datasets using Globus and GridFTP

* Access open to public

EXASCALE COMPUTING PROJECT

-> C @

Comment m 1201 S Prairie Ave, ...

@ @ hitps://sdrbench.github.io

# [ société Générale - ... @) portail SSL

Scientific Data Reduction Benchmarks

This site has been established as part of the ECP CODAR project.

This site provides reference scientific datasets, data reduction techniques, error
metrics, error controls and error assessment tools for users and developers of

scientific data reduction techniques.

Important: when publishing results from one or more datasets presented in this

webpage, make sure to:

o If the purpose is comparisons between compressors listed in this
page, make sure to contact the compressor authors to get the correct
compressor configuration according to each dataset and each

comparison metrics

e Reference: Scientific Data Reduction Benchmarks (authors are the
contributors/maintainers), https://sdrbench.qithub.io/ and
e Acknowledge the source of the dataset you used and the DOE

NNSA ECP project and the ECP CODAR project.

e Check the condition of publications (some dataset sources request

prior check)
Data sets:
Name Type Format Size Link
(data)
CESM-ATM Climate 79 fields, 2D, 1.47 Dataset
Source: simulation 1800 x 3600, GB Metadata
Mark Taylor (SNL) single precision,
binary
EXAALT Molecular 6 fields: 60 MB  Dataset
Source: dynamics X,¥,Z,VX,VY,VZ, Metadata
hi EXAALT tsam simulation Each field stored
lis dataset has been
approved for unlimited . separate.IyJ
release by Los Alamos Single precision,
National Laboratory and has Binary, Little-
been assigned LA- 0
UR-18-25670. endian
EXAFEL Images from the 2D, 51MB  Dataset
Source: LCLS Single precision Metadata
LcLS instrument ~ HDF5 and binary
HACC Cosmology: 1 snapshot: 6 19GB  Dataset
" :ggffﬂ particle fields Metadata
eam simulation X,Y,Z,VX,VY,VZ)
(ECP EXASKY) Each field stored 5gg ~ Dataset
separately, Metadata
Single precision,
Binary, Little-
endian
NYX Cosmology: 6 fields, 3D, 2.7GB Dataset
Lok S{asﬂye-'m o Adaptive mesh = 512 x 512 x 512 Metadata
"u‘;tfﬁ;‘z ',.m’;',‘;a;’a;,:c hydrodynamics ~ Single precision,
medium, quasars: absorption + N-body Binary, Little-
lines, large-scale structure of  cosmological endian

universe”, journal of Monthly
Notices of Royal Astronomical
Crpints

simulation
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7 D. Tao, S. Di, Z. Chen and F. Cappello. Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization. IEEE IPDPS, May 2017

6. D. Tao, S. Di, Z. Chen and F. Cappello. Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets. 1st International Workshop on Data Reduction for Big Scientific
Data as part of ISC2017, Frankfurt DE, June 2017

5. A. Murat Gok, D.Tao, S. Di, V. Mironov, Y. Alexeev and F. Cappello. PaSTRI: A Novel Data Compression Algorithm for Two-Electron Integrals in Quantum Chemistry. Poster at IEEE/ACM SC17, Denver, CO US,
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4.S. Di, D. Tao, Z. Chen, F. Cappello, Towards Efficient Error-controlled Lossy Compression for Scientific Data, [Poster], Greater Chicago Area Systems Research Workshop, 2017

3. D. Tao, S. Di, H. Guo, F. Cappello, Z-checker: A Framework for Assessing Lossy Compression of Scientific Data, International Journal of High Performance Computing Applications, JHPCA, 2019 (2017)
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