
Use-cases of lossy compression for 
floating-point data

Franck Cappello
Argonne 

National Laboratory

• Why do we need lossy compression for scientific data?
• How lossy compressor works for scientific data?
• What is user primary request?
• 8 Use-cases
• What’s next?

F. Cappello, S. Di, S. Li,2 X. Liang, A. Murat Gok, D. Tao, X.-C. Wu,6 Y. Alexeev, F. T. Chong, 
Use-cases of lossy compression for floating-point data in scientific datasets, 
IJHPCA, to be published, 2019



When the Scientific Data Becomes Too Big
• Today’s scientific simulations produce extremely large of datasets, 

often too large to save, process and analyze

• Cosmology Simulation (Space&Performance argument):
• A total of >20PB of data when 

simulating trillion of particles (500-1K snapshots)
• Petascale systems FS ~20PB

(you will never have 20PB of scratch for one application)
• On current file systems (1TB/s), it would take 

20 X 10^15 / 10^12 seconds (5h30) to store the data

• Climate Simulation (Cost argument):
• IPCC Coupled Model Comparison Projects (CMIPs)
• The relative cost of storage is increasing...

• Previous NCAR platform (2013): ~20% of hardware budget
• Current NCAR platform (2017): ~50% of hardware budget 

à To solve these problems,
We need significant data reduction to:
• Reduce storage size
• Reduce I/O overhead
• Reduce relative cost of storage in systems



0.1

1

10

100

1000

10000

100000

1000000

10000000

Roadrunner Jaguar Tianhe-1A K computer Blue Waters Titan Trinity Cori Summit Sierra Post K

Architectural trends worsen the situation

Perf (Tflops)

Flops/IO BW

Storage Bandwidth

2008

2012

* Projected value for FS

#cores

Memory (TB)

Storage/Mem size

Mem GB/core

Storage TB



0.1

1

10

100

1000

10000

100000

1000000

10000000

Roadrunner Jaguar Tianhe-1A K computer Blue Waters Titan Trinity Cori Summit Sierra Post K

Architectural trends worsen the situation

Perf (Tflops)

Flops/IO BW

Storage Bandwidth

Higher Flops/IO BW
(6X since 2012)

2008

2012

* Projected value for FS

#cores

Memory (TB)

Storage/Mem size

Mem GB/core

Storage TB

More cores
(20x since 2012)

More total memory
(4x-5x since 2012)

• If we can exploite all the memory à run larger problems that will generate more I/Os
• +Higher flops/IO BW à need to compute more for each I/O byte (x6 in 7 years)
• Less memory per core makes weak scaling more difficult WRT previous generations

• If reducing reduce the Flops/communication byte ratio possible 
• à unable to exploit the full scale because required problem size will not fit in memory

Less memory/core
(~1/5 since 2012) 

à To solve these problems,
We need significant data reduction to:
• Reduce memory footprint



Ok we need to reduce the data, but how?

• Lossless compression:
• The data is compressed and decompressed in such a way that the decompressed 

data is identical to the initial data (there is no alteration, deviation, distortion)
• Popular example: Gzip

• Lossy reduction:
• The data is altered during reduction: some piece of information is removed (lost): 

the original data cannot be retrieved. 
• Noise is added to the original data. Knowing the nature of the noise is critical for 

users of the reduced data.
• If user can control the accuracy of the reduced data, then lossy reduction is a 

trade-off between reduction ratio and loss of accuracy
• Popular example: JPEG



Why lossless compression does not help?

Slide content from Peter Lindstrom, LLNL



What about decimation in time (lossy reduction)?

Rate distortion of 
HACC and EXAALT 

data on variable x

HACC EXAALT

N body simulation (large scale phenomena: cosmology, small scale phenomena: MD)
Cosmology: HACC code simulates the formation of the universe (halo, galaxies, etc.)
Molecular Dynamic: EXAALT code simulates behavior of atoms in a nano-crystalline sample of 
copper under the influence of a strong electric field.
Temporal decimation (1/2, 1/5, 1/10, etc.) + linear interpolation
Lossy Compression with SZ (spatial only and temporal)

S. Li, S. Di, X. Liang, Z. Chen, F. Cappello, 
Optimizing Lossy Compression with Adjacent 
Snapshots for N-body Simulation Data, IEEE 
BigData 2018 



Why this is not already solved?
• Problem did not really exist 5-10 years ago 

• No investment from application and CS people to develop lossy compressors for 

scientific data (no research on impact of lossy compression error)

• Lossy compression of scientific data is a hard problem

• The mantissas of floating point data in scientific datasets are fairly random

• Scientific users are worried about the error/noise introduced by lossy 

compression

• >40 years old (LZ77), >70 years (Shannon’s information theory - 1948)



How modern lossy compressors look like?
• Three main stages (each stage may use multiple sub-stages)
+ potentially additional preconditioning of the data + post processing

Decorrelation Coding
Approximation
(Quantization)

Input Output

Where the compression
error is introduced (e.g. 
removing coefficients of 
a transformed matrix)

Use the minimum number
of bits to represent a string
of symbols

Convert the dataset into another
less correlated one 
(exploit autocorrelation).
e.g. concentrate signal energy on less data

Lossless Lossy Lossless or lossy

E (error)



Where the research is in lossy compressors for 
scientific data?
Decorrelation stage that leverages redundancy: 
Similarities, Autocorrelation, Smoothness of
the data in the dataset

X

Y

X

Y

Orthogonal
Transform

Decomposition
(e.g. HOSVD: Tucker Tensor

Decomposition)
Prediction

total positive linear correlation. APAX profiler suggests
that the correlation coefficient between the original and the
reconstructed data should be 0.99999 (“five nines”) or better
[16].

Metric 4: To evaluate the size reduce as a result of the
compression, we choose to use the compression factor CF :

CF (F ) =
filesize(Forig)

filesize(Fcomp)
(5)

or the bit-rate (bits/value):

BR(F ) =
filesizebit(Fcomp)

N
(6)

where filesizebit is the file size in bit and N is the data
size. Bit-rate represents the amortized storage cost of each
value. For a single/double floating-point data set, the bit-
rate is 32/64 bits per value before a compression, while
the bit-rate will be less than 32/64 bits per value after
a compression. Also, CF and BR has a mathematical
relationship as BR(F ) ⇤ CF (F ) = 32/64 so that lower
bit-rate means higher compression factor.

Metric 5: To evaluate the speed of compression, we
will compare the throughput (bytes per second) based the
execution time of both compression and decompression with
other compressors.

III. PREDICTION MODEL BASED ON
MUTI-DIMENSIONAL SCIENTIFIC DATA SETS

In the section III and IV, we will propose our novel
compression algorithm. At a hight level, the compression
process includes three steps: (1) predict every data value
through our proposed multi-layer prediction model; (2)
adopt error-controlled quantization encoder with adaptive
number of intervals; (3) perform a variable-length encoding
technique based on the fairly uneven distributed quantization
codes. In this section, we will first present our new multi-
layer prediction model designed for multi-dimensional HPC
data sets. Then, we will give a solution to choose the best
layer for our multi-layer prediction model. We will illustrate
how our prediction model works using two-dimensional data
sets as an example.

A. Prediction Model for Multi-Dimensional HPC Data Sets
Given a two-dimensional data set on a uniform grid of the

size of M ⇥ N , where M is the size of second dimension
and N is the size of first dimension. We give each data a
global coordinate (i, j), where 0 < i  M and 0 < j  N .

In our compression algorithm, we process the data point
by point from the low dimension to the high dimension.
Assume the coordinate of the current processing data point
is (i0, j0) and the processed data points are (i, j), where
i < i0 or i = i0, j < j0, as shown in Fig 1. We denote the
data subset Si0j0 and Ti0j0 by:

Sn

i0j0
= {(i0 � k1, j0 � k2)|0  k1, k2  n} \ {(i0, j0)}

Tn

i0j0
= {(i0 � k1, j0 � k2)|0  k1 + k2  2n� 1, k1, k2 � 0}

Now we are trying to build a prediction model using the
n2 � 1 symmetric processed data points in Sn

i0j0
to predict

data (i0, j0).

(including	all	colors)	
Processed	data	point�

Processing	data	point�

First	layer�

Second	layer�

Third	layer�

Fourth	layer�

1-layer�
2-layer�

3-layer�

4-layer�

Figure 1. An example of 9 ⇥ 9 two-dimensional data set showing the
processed / processing data and the data in different layers of the prediction
model.

First, let’s define a three-dimensional surface, named
“prediction surface”, with the maximum order of 2n � 1
as follow:

f(x, y) =
i,j�0X

0i+j2n�1

ai,jx
iyj (7)

The surface f(x, y) has n(2n+1) coefficients, so that we
can construct a linear system with n(2n + 1) equations by
using the coordinates and values of n(2n + 1) data points,
and then solve this system for these n(2n+ 1) coefficients,
consequently, we build the prediction surface f(x, y). How-
ever, the problem is that not any linear system has a solution,
which also means not any set of n(2n+1) data is able to be
on the surface at the same time. Fortunately, we demonstrate
that the linear system constructed by the n(2n + 1) data
in Tn

i0j0
can be solved with an explicit solution. Also, we

demonstrate that f(i0, j0) can be expressed by the linear
combination of the data values in Sn

i0j0
.

Now let’s give the following theorem and proof.
Theorem 1: The n(2n + 1) data in Tn

i0j0
will determine

a surface f(x, y) shown in equation (7), and the value of

f(i0, j0) equals to
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (i0 �

k1, j0 � k2), where Ck

n
is the combination number of

n!/k!(n� k)! and V (i, j) is the data value of (i, j).
Proof: We transform the coordinate of each data point

in Tn

i0j0
to a new coordinate as: (i0�k1, j0�k2) ! (k1, k2).

Then, using their new coordinates and data values, we can
construct a linear system with n(2n+ 1) equations as:

V (k1, k2) =
i,j�0X

0i+j2n�1

ai,jk
i

1k
j

2 (8)

where 0  k1 + k2  2n� 1, k1, k2 � 0.
Let’s denote F by

F =

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (k1, k2) (9)

For any coefficient al,m,
i,j�0P

0i+j2n�1
ai,jk

i

1k
j

2 only has

one term containing al,m, which is k
l

1k
m

2 · al,m.
Also, due to equation (8) and (9), F contains

(
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)
k1+k2+1Ck1

n C
k2
n k

l

1k
m

2 ) · al,m.

And because
(k1,k2) 6=(0,0)

X

0k1,k2n

(�1)
k1+k2+1

C
k1
n C

k2
n k

l

1k
m

2

=

(k1,k2) 6=(0,0)
X

0k1,k2n

(�1)
k1+k2+1

C
k1
n C

k2
n k

l

1k
m

2 + 0
l+m

= �
(k1,k2) 6=(0,0)

X

0k1,k2n

(�1)
k1+k2

C
k1
n C

k2
n k

l

1k
m

2 + 0
l+m

= �
X

0k1n

(�1)
k1
C

k1
n k

l

1

X

0k2n

(�1)
k2
C

j

nk
m

2 + 0
l+m

For l+m  2n+1, either l or m is smaller than n, also due
to the theory of finite differences:

P
0in

(�1)
i
C

i

nP (x) = 0

for any polynomial P (x) of degree less than n [6], so eitherP
0k1n

(�1)
k1Ck1

n k
l

1 = 0 or
P

0k2n

(�1)
k2Ck2

n k
m

2 = 0.

Therefore, F contains 0
l+m

· al,m so that F =
l,m�0P

0l+m2n�1
0
l+m

· al,m = a(0, 0) and f(0, 0) = a0,0 =

F =
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)
k1+k2+1Ck1

n C
k2
n V (k1, k2).

Finally, we transform the current coordinate to the previ-
ous one reversely, i.e., (k1, k2) ! (i0 � k1, j0 � k2), thus,

f(i0, j0) =
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)
k1+k2+1Ck1

n C
k2
n V (i0�k1, j0�

k2).
After obtaining this theorem, we know that the value

of (i0, j0) on the prediction surface, i.e. f(i0, j0), can be
expressed by the linear combination of the data values in
S
n

i0j0 , so that we can use the value of f(i0, j0) as our
predicted value for V (i0, j0). In other words, we build our
prediction model using the data values in S

n

i0j0 as follow:

f(i0, j0) =

(k1,k2) 6=(0,0)
X

0k1,k2n

(�1)
k1+k2+1

C
k1
n C

k2
n V (i0�k1, j0�k2)

(10)
Figure 1 also shows our definition of “layer” around

processing data point (i0, j0). Since the data subset S
n

i0j0

contains the layer from the first one to the n-th one, we call
the prediction model using S

n

i0j0 n-layer prediction model,
consequently, our proposed model can be named as multi-
layer prediction model.

Also, we can derive the general multi-layer prediction
model for any dimensional data sets. Due to space limi-

tations, we only give the formula as follow:

f(x1, ..., xd) =

(k1,...,kd) 6=(0,...,0)
X

0k1,...,kdn

(�1)
k1+...+kd+1

C
k1
n ...C

kd

n

· V (x1 � k1, ..., xd � kd)
(11)

where d is the dimensional size of the data set and n presents
“n-layer” used in the prediction model.

B. In-Depth Analysis of Best Layer for Multi-layer Predic-
tion Model

In the subsection III-A above, we developed a general
prediction model for multi-dimensional data sets. Based on
this model, we need to figure out another critical question:
how many layers should we use for the prediction model
during the compression process? In other words, we want to
find the best n for equation (11).

Why there has to exist a best n? We will keep using
two-dimensional data sets to explain. We know that a better
n can result in a more accurate data prediction, and a
more accurate prediction will bring us a better compression
performance, including improvements in compression factor,
average error and compression/decompression speed. On
one hand, a more accurate prediction can be achieved by
increasing the number of layers, which will bring more
useful information along multiple dimensions. On the other
hand, we also note that data from further distance will bring
more uncorrelated information (noises) into the prediction,
which means that too many layers will degrade the accuracy
of our prediction. So we infer that there has to exist a best
number of layers for our prediction model.

How to get the best n for our multi-layer prediction
model?

For a two-dimensional data set, we first need to get
prediction formulas for different layers by substituting 1,
2, 3 and etc. into our general model (as shown in equation
(11)), the formulas are shown in Table I.

Then we want to introduce a term called “prediction
hitting rate”, which is the proportion of the predictable
data in the whole data set. And we define a data point as
“predictable data” if the difference between its original value
and predicted value is not larger than the error bound. The
“prediction hitting rate” can be denoted by RPH =

NPH

NTotal ,
where NPH is the number of predictable data and Ntotal is
the size of the data set.

In the ATM data sets example (from climate simulation),
the hitting rates are calculated in Table II, based on the pre-
diction methods described above. Here the second column
shows the prediction hitting rate by using the original data
values, denoted by R

orig

PH . In this case, 2-layer prediction
will be more accurate than other layers if performing the
prediction on the original data values. However, in order to
guarantee the compression error (absolute or relative) falls
into the user-set error bounds, the compression algorithm
must use the preceding decompressed data values instead
of the original data values. Therefore, the last column of
Table II shows the hitting rate of the prediction by using
preceding decompressed data values, denoted by R

decomp

PH .



What’s the most important feature for a lossy
compressor of scientific data?
• Providing a guarantee of data accuracy after decompression
• Users want the same results from analysis run on decompressed data

• Lossy compressors provides point wise error controls (bounds)
• Two main types of error bounds (E: error, V: initial dataset, V’: decompressed 

dataset): 

• Absolute error bound:                        Ea = |V – V’|
(absolute quantities. 
E.g. position in mesh), 

• Relative error error bound: Er = |V – V’| 
(e.g. velocity, temperatures), V

Ea

Er

V

V

V’

V’



Ok but how can we assess accuracy?
• User analysis code

• Metric of distance between analysis results from initial and decompressed dataset
• Not always doable: analysis to expensive to compute only before storage

• Error Metrics (amount of error)
• Respect of error bounds 
• RMSE
• PNSR
• Rate distortion

• Advanced Error Metrics (nature of the error)
• Error distribution
• Pearson correlation of the initial and decompressed data
• Autocorrelation of the compression error
• Correlation between the initial data and the error
• Spectral alteration
• Structural Similarity Index (SSIM)
• Preservation of derivatives

Point wise metrics

Statistical metrics



Example: PSNR

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

Compression
Decompression

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

Peak signal to noise ration

Value range:

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

Point wise error:

40dB:x100 

130dB: 

90dB: 

Rate distortion
diagram



Example: Structural Similarity Index (SSIM)

2 4 6 8 10 12

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

stations

m
ea

n 
wi

nd
 s

pe
ed

Obs
Pred

lum: 1  cont: 0.947  struc: 0.305  SSIM: 0.289

2 4 6 8 10 12

3
4

5
6

stations

m
ea

n 
wi

nd
 s

pe
ed

Obs
Pred

lum: 0.999  cont: 0.994  struc: 0.328  SSIM: 0.326

2 4 6 8 10 12

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

stations

m
ea

n 
wi

nd
 s

pe
ed

Obs
Pred

lum: 0.999  cont: 0.985  struc: 0.961  SSIM: 0.946

Signals have the same 
mean, but different co-

variability

Signals have 
similar properties

(Source: geophysical simulation data from atmospheric model)

SSIM is a perception-based model that considers image degradation as perceived change in structural information
SSIM is the product of 3 components that assess differences between two signals: Luminance, Contrast, Structure
The closer to 1, the better match between signals in terms of mean, variance, and covariance. 



Let’s look at ANL SZ
• Multi-stages, Prediction based lossy compressor 
• Current version: SZ 2.0    (Previous versions: SZ 1.1, SZ 1.4)

Decorrelation Coding

Approximation

Input Lossless Output

Lossy
(strict error control)

Prediction

Linear Quantization  of 
prediction errors

Variable length coding
(Huffman)

Initial Data
+ 
Compression
Parameters

Lossy
Compressed
Data

D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets 
Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017



SZ Prediction stage
• Multi-stages, Prediction based lossy compressor 

• Current version: SZ 2.0    (Previous versions: SZ 1.1, SZ 1.4)

Blocking
Input To quantizationDecompose

the input in 
blocs of the 

same structure 
(1D, 2D, nd)

Initial Data
+ 
Compression
Parameters

X. Liang , S. Di, D. Tao, S. Li, S. Lix, H. Guo , Z. Chen, F. Cappello, Error-Controlled Lossy Compression 
Optimized for High Compression Ratios of Scientific Datasets, IEEE Big Data, 2018

Sampling

Pick a subset of 
points in each 

block

Example (3D):

6x6x6

Example (3D):

Compare
Prediction

Perform different 
prediction types

and compare
prediction 

performance

Example (3D):

P1

P2

?

Apply Prediction

Perform the best 
prediction
method on
each block



SZ 2.0 Prediction Method 1

total positive linear correlation. APAX profiler suggests
that the correlation coefficient between the original and the
reconstructed data should be 0.99999 (“five nines”) or better
[16].

Metric 4: To evaluate the size reduce as a result of the
compression, we choose to use the compression factor CF :

CF (F ) =
filesize(Forig)

filesize(Fcomp)
(5)

or the bit-rate (bits/value):

BR(F ) =
filesizebit(Fcomp)

N
(6)

where filesizebit is the file size in bit and N is the data
size. Bit-rate represents the amortized storage cost of each
value. For a single/double floating-point data set, the bit-
rate is 32/64 bits per value before a compression, while
the bit-rate will be less than 32/64 bits per value after
a compression. Also, CF and BR has a mathematical
relationship as BR(F ) ⇤ CF (F ) = 32/64 so that lower
bit-rate means higher compression factor.

Metric 5: To evaluate the speed of compression, we
will compare the throughput (bytes per second) based the
execution time of both compression and decompression with
other compressors.

III. PREDICTION MODEL BASED ON
MUTI-DIMENSIONAL SCIENTIFIC DATA SETS

In the section III and IV, we will propose our novel
compression algorithm. At a hight level, the compression
process includes three steps: (1) predict every data value
through our proposed multi-layer prediction model; (2)
adopt error-controlled quantization encoder with adaptive
number of intervals; (3) perform a variable-length encoding
technique based on the fairly uneven distributed quantization
codes. In this section, we will first present our new multi-
layer prediction model designed for multi-dimensional HPC
data sets. Then, we will give a solution to choose the best
layer for our multi-layer prediction model. We will illustrate
how our prediction model works using two-dimensional data
sets as an example.

A. Prediction Model for Multi-Dimensional HPC Data Sets
Given a two-dimensional data set on a uniform grid of the

size of M ⇥ N , where M is the size of second dimension
and N is the size of first dimension. We give each data a
global coordinate (i, j), where 0 < i  M and 0 < j  N .

In our compression algorithm, we process the data point
by point from the low dimension to the high dimension.
Assume the coordinate of the current processing data point
is (i0, j0) and the processed data points are (i, j), where
i < i0 or i = i0, j < j0, as shown in Fig 1. We denote the
data subset Si0j0 and Ti0j0 by:

Sn

i0j0
= {(i0 � k1, j0 � k2)|0  k1, k2  n} \ {(i0, j0)}

Tn

i0j0
= {(i0 � k1, j0 � k2)|0  k1 + k2  2n� 1, k1, k2 � 0}

Now we are trying to build a prediction model using the
n2 � 1 symmetric processed data points in Sn

i0j0
to predict

data (i0, j0).

(including	all	colors)	
Processed	data	point�

Processing	data	point�

First	layer�

Second	layer�

Third	layer�

Fourth	layer�

1-layer�
2-layer�

3-layer�

4-layer�

Figure 1. An example of 9 ⇥ 9 two-dimensional data set showing the
processed / processing data and the data in different layers of the prediction
model.

First, let’s define a three-dimensional surface, named
“prediction surface”, with the maximum order of 2n � 1
as follow:

f(x, y) =
i,j�0X

0i+j2n�1

ai,jx
iyj (7)

The surface f(x, y) has n(2n+1) coefficients, so that we
can construct a linear system with n(2n + 1) equations by
using the coordinates and values of n(2n + 1) data points,
and then solve this system for these n(2n+ 1) coefficients,
consequently, we build the prediction surface f(x, y). How-
ever, the problem is that not any linear system has a solution,
which also means not any set of n(2n+1) data is able to be
on the surface at the same time. Fortunately, we demonstrate
that the linear system constructed by the n(2n + 1) data
in Tn

i0j0
can be solved with an explicit solution. Also, we

demonstrate that f(i0, j0) can be expressed by the linear
combination of the data values in Sn

i0j0
.

Now let’s give the following theorem and proof.
Theorem 1: The n(2n + 1) data in Tn

i0j0
will determine

a surface f(x, y) shown in equation (7), and the value of

f(i0, j0) equals to
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (i0 �

k1, j0 � k2), where Ck

n
is the combination number of

n!/k!(n� k)! and V (i, j) is the data value of (i, j).
Proof: We transform the coordinate of each data point

in Tn

i0j0
to a new coordinate as: (i0�k1, j0�k2) ! (k1, k2).

Then, using their new coordinates and data values, we can
construct a linear system with n(2n+ 1) equations as:

V (k1, k2) =
i,j�0X

0i+j2n�1

ai,jk
i

1k
j

2 (8)

where 0  k1 + k2  2n� 1, k1, k2 � 0.
Let’s denote F by

F =

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (k1, k2) (9)

For any coefficient al,m,
i,j�0P

0i+j2n�1
ai,jki1k

j

2 only has

one term containing al,m, which is kl1k
m

2 · al,m.
Also, due to equation (8) and (9), F contains

(
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
kl1k

m

2 ) · al,m.

And because
(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
kl1k

m

2

=

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
kl1k

m

2 + 0l+m

= �
(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2Ck1
n
Ck2

n
kl1k

m

2 + 0l+m

= �
X

0k1n

(�1)k1Ck1
n
kl1

X

0k2n

(�1)k2Cj

n
km2 + 0l+m

For l+m  2n+1, either l or m is smaller than n, also due
to the theory of finite differences:

P
0in

(�1)iCi

n
P (x) = 0

for any polynomial P (x) of degree less than n [6], so eitherP
0k1n

(�1)k1Ck1
n
kl1 = 0 or

P
0k2n

(�1)k2Ck2
n
km2 = 0.

Therefore, F contains 0l+m · al,m so that F =
l,m�0P

0l+m2n�1
0l+m · al,m = a(0, 0) and f(0, 0) = a0,0 =

F =
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (k1, k2).

Finally, we transform the current coordinate to the previ-
ous one reversely, i.e., (k1, k2) ! (i0 � k1, j0 � k2), thus,

f(i0, j0) =
(k1,k2) 6=(0,0)P
0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (i0�k1, j0�

k2).
After obtaining this theorem, we know that the value

of (i0, j0) on the prediction surface, i.e. f(i0, j0), can be
expressed by the linear combination of the data values in
Sn

i0j0
, so that we can use the value of f(i0, j0) as our

predicted value for V (i0, j0). In other words, we build our
prediction model using the data values in Sn

i0j0
as follow:

f(i0, j0) =

(k1,k2) 6=(0,0)X

0k1,k2n

(�1)k1+k2+1Ck1
n
Ck2

n
V (i0�k1, j0�k2)

(10)
Figure 1 also shows our definition of “layer” around

processing data point (i0, j0). Since the data subset Sn

i0j0

contains the layer from the first one to the n-th one, we call
the prediction model using Sn

i0j0
n-layer prediction model,

consequently, our proposed model can be named as multi-
layer prediction model.

Also, we can derive the general multi-layer prediction
model for any dimensional data sets. Due to space limi-

tations, we only give the formula as follow:

f(x1, ..., xd) =

(k1,...,kd) 6=(0,...,0)X

0k1,...,kdn

(�1)k1+...+kd+1Ck1
n
...Ckd

n

· V (x1 � k1, ..., xd � kd)
(11)

where d is the dimensional size of the data set and n presents
“n-layer” used in the prediction model.

B. In-Depth Analysis of Best Layer for Multi-layer Predic-
tion Model

In the subsection III-A above, we developed a general
prediction model for multi-dimensional data sets. Based on
this model, we need to figure out another critical question:
how many layers should we use for the prediction model
during the compression process? In other words, we want to
find the best n for equation (11).

Why there has to exist a best n? We will keep using
two-dimensional data sets to explain. We know that a better
n can result in a more accurate data prediction, and a
more accurate prediction will bring us a better compression
performance, including improvements in compression factor,
average error and compression/decompression speed. On
one hand, a more accurate prediction can be achieved by
increasing the number of layers, which will bring more
useful information along multiple dimensions. On the other
hand, we also note that data from further distance will bring
more uncorrelated information (noises) into the prediction,
which means that too many layers will degrade the accuracy
of our prediction. So we infer that there has to exist a best
number of layers for our prediction model.

How to get the best n for our multi-layer prediction
model?

For a two-dimensional data set, we first need to get
prediction formulas for different layers by substituting 1,
2, 3 and etc. into our general model (as shown in equation
(11)), the formulas are shown in Table I.

Then we want to introduce a term called “prediction
hitting rate”, which is the proportion of the predictable
data in the whole data set. And we define a data point as
“predictable data” if the difference between its original value
and predicted value is not larger than the error bound. The
“prediction hitting rate” can be denoted by RPH = NPH

NTotal

,
where NPH is the number of predictable data and Ntotal is
the size of the data set.

In the ATM data sets example (from climate simulation),
the hitting rates are calculated in Table II, based on the pre-
diction methods described above. Here the second column
shows the prediction hitting rate by using the original data
values, denoted by Rorig

PH
. In this case, 2-layer prediction

will be more accurate than other layers if performing the
prediction on the original data values. However, in order to
guarantee the compression error (absolute or relative) falls
into the user-set error bounds, the compression algorithm
must use the preceding decompressed data values instead
of the original data values. Therefore, the last column of
Table II shows the hitting rate of the prediction by using
preceding decompressed data values, denoted by Rdecomp

PH
.

Example for 2D:

1) Multi-dimensional

Multi-layer Prediction
(extension of Lorenzo)

2D example (9X9 block)

Produces floating point

Numbers (predictions

for each data of the bloc)

D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets 

Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017

Input bloc of

Floating point 

data

The prediction function is known by the decompressor. 

à No need to store its description in the compressed file. 



SZ 2.0 Prediction Method 2

2) Regression

X. Liang , S. Di, D. Tao, S. Li, S. Lix, H. Guo , Z. Chen, F. Cappello, Error-Controlled Lossy Compression 
Optimized for High Compression Ratios of Scientific Datasets, IEEE Big Data, 2018

6
6

2D example (6x6 block)

Values

Compute hyperplane coefficients

Input bloc of
Floating point 
data

Produces floating point
Numbers (predictions
for each data of the bloc)

The coefficients resulting from the regression are NOT known by the decompressor. 
à Need to store the coefficients for each block in the compressed file. 

The objective of the regression model is to 
minimize the squared error (SE) between 
predicated and original values

The regression coefficients of a 3D dataset with
dimensions n1 , n2 , n3 can be calculated as:

x
y



SZ Design Principles
• Multi-stages, Prediction based lossy compressor 
• Current version: SZ 2.0    (Previous versions: SZ 1.1, SZ 1.4)

Decorrelation Coding

Approximation

Input Lossless Output

Lossy
(strict error control)

Prediction

Linear Quantization  of 
prediction errors

Variable length coding
(Huffman)

Initial Data
+ 
Compression
Parameters

Lossy
Compressed
Data

D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets 
Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017



SZ 2.0 Quantization Stage

First-phase	
Predicted	Value�

Real	Value�

Error	
Bound�

2*Error	Bound�

2*Error	Bound�

…
�

…
�

Quan;za;on	Code�

2m-1+1�

2m-1�

2m-1-1�

2m-1-2	

2m-1+2�Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�2*Error	Bound�

2*Error	Bound�

1	

…
�

2m-1	…
�

Figure 2. Design of error-controlled quantization based on linear scaling
of the error bound.

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

1 11
 

21
 

31
 

41
 

51
 

61
 

71
 

81
 

91
 

10
1 

11
1 

12
1 

13
1 

14
1 

15
1 

16
1 

17
1 

18
1 

19
1 

20
1 

21
1 

22
1 

23
1 

24
1 

25
1 

Error-bounded Uniform Quantization Code�

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

1 11
 

21
 

31
 

41
 

51
 

61
 

71
 

81
 

91
 

10
1 

11
1 

12
1 

13
1 

14
1 

15
1 

16
1 

17
1 

18
1 

19
1 

20
1 

21
1 

22
1 

23
1 

24
1 

25
1 

Error-bounded Uniform Quantization Code�

(a)� (b)�

Figure 3. Distribution produced by error-bounded uniform quantization
encoder on ATM data sets of (a) relative error bound = 10�3 and (b)
relative error bound = 10�4 with 255 quantization intervals (m = 8).

Huffman coding algorithm in details, but it’s worth to note
that, Huffman coding algorithm implemented in all the
lossless compressors on the market can only deal with the
source byte by byte, which means the total number of the
symbols is up to 256 (28), however, in our case, we don’t
limit m to be no greater than 8, which means, if m is larger
than 8, there are more than 256 quantization codes need
to be compressed using Huffman coding technique. Thus,
in our compression, we implement a high-efficient Huffman
coding algorithm that can handle a source with any number
of quantization codes.

Algorithm 1 in Figure 4 outlines our proposed compres-
sion algorithm. Note that the input data is a d-dimensional
floating-point array of the size n(1)⇥n(2)⇥· · ·⇥n(d), where
n(1) is the size of the lowest dimension and n(d) is the size
of the highest dimension. In our algorithm, we compress the
data from low dimension to high dimension.

B. Adaptive Scheme for Number of Quantization Intervals
In the previous subsection IV-A, our proposed com-

pression algorithm will encode the predictable data with
its corresponding quantization code and then use variable-
length encoding to reduce the data size. While there is still
a question left - how many quantization intervals should we
use?

Figure 4. Proposed lossy compression algorithm using Multi-layer
Prediction Model and AEQVE

Generally, if the data is predictable, we will use a m�bit
code to encode it, otherwise, the data will be stored after
a reduction of binary-representation analysis proposed in
[9]. However, even binary-representation analysis can reduce
the data size to a certain extent, storing the unpredictable
data has much more overhead than the predictable data.
Therefore, we should select a value for the number of
quantization intervals as small as possible but can provide a
sufficient prediction hitting rate. Note that prediction hitting
rate depends on the error bound as shown in Figure 5. If the
error bound is too low, e.g., ebrel = 10�7, the compression
is close to lossless, and it’s hard to achieve a very high
prediction hitting rate. So we only focus our research on a
reasonable range of error bounds, e.g., ebrel � 10�6.

Now we introduce our adaptive scheme for the number
of quantization intervals used in the compression algorithm.
Figure 5 shows the prediction hitting rate with different
relative error bounds using different numbers of quantization
intervals on 2D ATM data sets and 3D Hurricane data sets.
It indicates that the prediction hitting rate will suddenly de-
scend at a certain error bound from over 90% to a relatively
low value, for example, if using 512 quantization intervals,

2) Linear Quantization of prediction error (map data into quantization bins, #bins defined by users or SZ)

First-phase	
Predicted	Value�

Real	Value�

Error	
Bound�

2*Error	Bound�

2*Error	Bound�

…
�

…
�

Quan;za;on	Code�

2m-1+1�

2m-1�

2m-1-1�

2m-1-2	

2m-1+2�Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�

Second-phase	
Predicted	Value�2*Error	Bound�

2*Error	Bound�

1	

…
�

2m-1	…
�

Figure 2. Design of error-controlled quantization based on linear scaling
of the error bound.

0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 

1 11
 

21
 

31
 

41
 

51
 

61
 

71
 

81
 

91
 

10
1 

11
1 

12
1 

13
1 

14
1 

15
1 

16
1 

17
1 

18
1 

19
1 

20
1 

21
1 

22
1 

23
1 

24
1 

25
1 

Error-bounded Uniform Quantization Code�

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

1 11
 

21
 

31
 

41
 

51
 

61
 

71
 

81
 

91
 

10
1 

11
1 

12
1 

13
1 

14
1 

15
1 

16
1 

17
1 

18
1 

19
1 

20
1 

21
1 

22
1 

23
1 

24
1 

25
1 

Error-bounded Uniform Quantization Code�

(a)� (b)�

Figure 3. Distribution produced by error-bounded uniform quantization
encoder on ATM data sets of (a) relative error bound = 10�3 and (b)
relative error bound = 10�4 with 255 quantization intervals (m = 8).

Huffman coding algorithm in details, but it’s worth to note
that, Huffman coding algorithm implemented in all the
lossless compressors on the market can only deal with the
source byte by byte, which means the total number of the
symbols is up to 256 (28), however, in our case, we don’t
limit m to be no greater than 8, which means, if m is larger
than 8, there are more than 256 quantization codes need
to be compressed using Huffman coding technique. Thus,
in our compression, we implement a high-efficient Huffman
coding algorithm that can handle a source with any number
of quantization codes.

Algorithm 1 in Figure 4 outlines our proposed compres-
sion algorithm. Note that the input data is a d-dimensional
floating-point array of the size n(1)⇥n(2)⇥· · ·⇥n(d), where
n(1) is the size of the lowest dimension and n(d) is the size
of the highest dimension. In our algorithm, we compress the
data from low dimension to high dimension.

B. Adaptive Scheme for Number of Quantization Intervals
In the previous subsection IV-A, our proposed com-

pression algorithm will encode the predictable data with
its corresponding quantization code and then use variable-
length encoding to reduce the data size. While there is still
a question left - how many quantization intervals should we
use?

Figure 4. Proposed lossy compression algorithm using Multi-layer
Prediction Model and AEQVE

Generally, if the data is predictable, we will use a m�bit
code to encode it, otherwise, the data will be stored after
a reduction of binary-representation analysis proposed in
[9]. However, even binary-representation analysis can reduce
the data size to a certain extent, storing the unpredictable
data has much more overhead than the predictable data.
Therefore, we should select a value for the number of
quantization intervals as small as possible but can provide a
sufficient prediction hitting rate. Note that prediction hitting
rate depends on the error bound as shown in Figure 5. If the
error bound is too low, e.g., ebrel = 10�7, the compression
is close to lossless, and it’s hard to achieve a very high
prediction hitting rate. So we only focus our research on a
reasonable range of error bounds, e.g., ebrel � 10�6.

Now we introduce our adaptive scheme for the number
of quantization intervals used in the compression algorithm.
Figure 5 shows the prediction hitting rate with different
relative error bounds using different numbers of quantization
intervals on 2D ATM data sets and 3D Hurricane data sets.
It indicates that the prediction hitting rate will suddenly de-
scend at a certain error bound from over 90% to a relatively
low value, for example, if using 512 quantization intervals,

Example for err: 10-4, for ATM

We need much less 

than 256 intervals 

(8bits)

Example: hit rate for ATM

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	
80.0%	
90.0%	

100.0%	

1.0E-01	 1.0E-02	 1.0E-03	 1.0E-04	 1.0E-05	 1.0E-06	 1.0E-07	 1.0E-08	

Pr
ed

ic
6o

n	
Hi
:
ng
	R
at
e�

Rela6ve	Error	Bound�

64	

512	

4096	

16384	

65536	

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	
60.0%	
70.0%	
80.0%	
90.0%	

100.0%	

1.0E-01	 1.0E-02	 1.0E-03	 1.0E-04	 1.0E-05	 1.0E-06	 1.0E-07	 1.0E-08	

Pr
ed

ic
6o

n	
Hi
:
ng
	R
at
e�

Rela6ve	Error	Bound�

16	

64	

256	

2048	

4096	

Quan6za6on	
Intervals	#�

Quan6za6on	
Intervals	#�

(a)�

(b)�

Figure 5. Prediction hitting rate with decreasing error bounds using
different quantization intervals on (a) ATM data sets and (b) Hurricane
data sets.

the prediction hitting rate will drop from 97.1% to 41.4%
at ebrel = 10�6. Thus, we consider that 512 quantization
intervals can only cover the relative error bound higher than
10�6. However, different numbers of quantization intervals
have different capabilities to cover different error bounds.
Generally, more quantization intervals will cover lower error
bound. The paper [4] points that ebrel = 10�5 is enough for
the climate research simulation data sets, such as ATM data
sets. Thus, for ATM data sets, using 512 quantization inter-
vals is a good choice. While for Hurricane data sets, using
256 quantization intervals is enough to cover ebrel � 10�5.

Based on our experiments on a large variety of scientific
data sets, using 512 quantization intervals can achieve a
fairly good prediction hitting rate within reasonable error
bounds, thus, in our compressor, we set 256 quantization in-
tervals (m = 9) as default. However, if it’s unable to achieve
a good prediction hitting rate (smaller than ✓ in Algorithm
1) in some error bounds, our compression algorithm will
give users a suggestion to increase the number of quantiza-
tion intervals. In practice, sometimes user’s requirement for
compression accuracy is stable, therefore, user can tune a
good value for the number of quantization intervals and get
optimized compression factors in the following large-scale
compression.

V. EMPIRICAL PERFORMANCE EVALUATION

In this section, we will evaluate our compression algo-
rithm on various single-precision floating-point data sets,
including 2D ATM data sets from climate simulation [1]
, 2D APS data sets from X-ray scientific research [3], and
3D Hurricane data sets from hurricane simulation [2]. Also,
we will compare our compression algorithm with state-of-
art losseless (i.e., GZIP [8] and FPZIP [13]) and lossy
compressors (i.e., ZFP [12], SZ [9], ISABELA [11]), based
on the metrics we mentioned in the section III. We conducted
our experiments on a single core of the Stampede super-
computer (i.e., on a single node with two Intel Xeon E5-
2680 processors and 32GB DDR3 RAM) at Texas Advanced

Computer Center (TACC) .

A. Compression Factor
First, we will evaluate our compression algorithm based

on compression factor. Figure 6 shows the comparison
of compression factor between our compression algorithm
and the other compression methods, including ZFP, SZ,
ISABELA and GZIP, with reasonable relative error bounds,
i.e., 10�3, 10�4, 10�5, and 10�6. The figure indicates that
our lossy compression algorithm has the best compression
factor within these reasonable error bounds. For example,
with ebrel = 10�4, (1) for ATM data sets, the average
compression factor of our algorithm is 6.3, which is 110%
higher than ZFP’s 3.0, 70% higher than SZ’s 3.8, 350%
higher than ISABELA’s 1.4, 232% higher than FPZIP’s 1.9,
and 430% higher than GZIP’s 1.3; (2) for APS data sets, the
average compression factor of our algorithm is 5.2, which
is 79% higher than ZFP’s 2.9, 74% higher than SZ’s 3.0,
340% higher than ISABELA 1.2, 300% higher than FPZIP’s
1.3, and 372% higher than GZIP’s 1.1; (3) for Hurricane
data sets, the average compression factor of our algorithm
is 14.2, which is 196% higher than ZFP’s 4.8, 230% higher
than SZ’s 4.3, 1083% higher than ISABELA’s 1.2, 788%
higher than FPZIP’s 1.6, and 1190% higher than GZIP’s
1.1. Note that ISABELA cannot deal with some low error
bounds, thus, we only plot its compression factors until it
fails.

It’s worth to note that the maximum compression error
of ZFP is lower than the input error bound, while the
maximum compression errors of the other lossy compression
methods, including our algorithm, are exactly the same as
the input error bound. It means ZFP is over-conservative to
user’s accuracy requirement. Table IV shows the maximum
compression errors of our compression algorithm and ZFP
with different error bounds. For fair comparison, we also
evaluate our compression algorithm by setting its input error
bound as the maximum compression error of ZFP, which will
make the maximum compression errors of our algorithm and
ZFP to be the same. The comparison of compression factors
is shown in Fig 7. For example, (1) with the same maximum
compression error of 4.3 ⇥ 10�4, our average compression
factor is 162% higher than ZFP on ATM data sets; (2)
with the same maximum compression error of 1.4 ⇥ 10�4,
our average compression factor is 82% higher than ZFP on
Hurricane data sets.

B. Rate-distortion
We note that ZFP is designed for fixed bit-rate, while

the other three, i.e., our compressor, SZ and ISABELA,
are designed for fixed compression error. Thus, for fair
comparison, we will plot the rate-distortion curve for all
the lossy compressors and compare the distortion quality in
the same rate. Here rate means bit-rate in bits/value, and we
will use the peak signal-to-noise ratio (PSNR) to measure the
distortion quality. PSNR is calculated by the equation (3) and
in decibel (dB). Generally speaking, in rate-distortion curve,
the higher bit-rate (i.e., more bits per value) in compressed
storage, the higher quality (i.e., higher PSNR) reconstructed
data will be after decompression.

99% hit rate

with 16k intervals

at e=10-6

• Transforms each predicted
data into 1 integer value

(with loss)

• If data is out of scale, 
keep it in a separate array

1,2,3

Array of quantization (integers)

Array of unpredictable data (FP)

Data are ordered in the arrays 
in their initial order

0 0 0
1 2 3

Initial data (FP numbers)

U U UP P P P



SZ Design Principles
• Multi-stages, Multi-algorithm Prediction based Lossy compressor 
• Current version: SZ 2.0    (Previous versions: SZ 1.1, SZ 1.4)

Decorrelation Coding

Approximation

Input Lossless Output

Lossy
(strict error control)

Prediction

Linear Quantization  of 
prediction errors

Variable length coding
(Huffman)

Initial Data
+ 
Compression
Parameters

Lossy
Compressed
Data

D. Tao, S. Di, Z. Chen, F. Cappello, Significantly Improving Lossy Compression for Scientific Datasets 
Based on Multidimensional Prediction and Error-Controlled Quantization, IEEE IPDPS 2017



SZ 2.0 Coding Stage

4) Unpredictable data analysis

5) Optional Zstandard (L77 + Finite State Entropy): improve the compression by about 10%
(Zstandard much faster than GZIP, improves speed of SZ 2.0 compared to SZ 1.4)

3) Variable length coding (Huffman)

We built the Huffman tree using a symbol size corresponding
to the number of bits needed to code the bin numbers

Reduce the number of bits needed to represent values

Reduce the number of bits needed to represent unpredictable data (<1%)



SZ Use-cases
We are seeing an increasing diversity/number of use-cases
“Classic” use-cases:

1) Visualization
2) Reducing storage footprint (offline compression)
3) Reducing I/O time (on-line, in-situ compression)

Recently identified use-cases:
4) Reducing streaming intensity (recent for generic floating-point compressors)
5) Lossy checkpoint/restart from lossy state 

• reduce checkpoints footprint on storage – adjoint, accelerate checkpointing
6) Accelerate computation

• By improving the memory-byte/flop ratio (reducing the pressure on memory 
bandwidth)

7) Re-computation Avoiding 
• By reducing the memory footprint

8) Running larger simulations
• By reducing the memory footprint

Goals:
• Show the diversity 

of uses cases 
through real life 
applications

• Present real-life 
performance gains

• Inspire potential 
new use-cases

Source:
Most examples from 
the Exascale
Computing Project 
(ECP).

Most example use the
SZ compressor.



1) Visualization
NYX (velocity x:slice 100)  CR=156:1 (EB: 0.03)
Cosmology: Adaptive mesh hydrodynamics + N-body simulation

CESM ATM(CLDHGH) CR=295:1  (EB: 0.06)
Climate Atmospheric mode (High cloud cover ): fluid dynamics

SZ 2.0 SZ 2.0

SZ 1.4 SZ 1.4

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, F. Cappello, Error-Controlled Lossy 
Compression Optimized for High Compression Ratios of Scientific Datasets, IEEE BigData 2018

• Lossy compression is well adapted to visualization where ultimately the 
requirement in terms of accuracy are low (determined by vis. resolution)

• Very high compression ratios could be obtained with modern lossy 
compressors

• Lossy compressors are progressing in performance (in particular noise and 
artifact reduction at high compression level)



2) Reducing Storage Footprint 

Spatial sampling + tricubic interpolation

Hurricane dataset: CLOUDf field (SZ2.0 absolute error bound set to 10-2): SZ CR= 62

Original SZ 2.0

PSNRs 54.3 dB
SSIM: 0.99
C+D time: 1.12s

PSNRs 17.7 dB
SSIM: 0.77
C+D time: 9.04s

Ratio: ~ 1000 
between signal 
and noise

Ratio of 10 
between signal 
and noise

Goal for this use-case is to keep a ratio of about 1000 between 
the initial signal and the noise introduced by the lossy compression
error.

And compare with the classic technique of spatial sampling
and reconstruction with tri-cubic interpolation, for the same
compression ratio.

data values in multiple dimensions, unlike the previous
work [9] that focuses only single-dimension. In fact,
it is very challenging to extend the single-dimensional
prediction to multiple dimensions. On the one hand,
higher-dimensional prediction requires to solve more
complicated surface formula involving much more vari-
ables, which will be intractable especially when the
number of data points used in the prediction is relatively
high. (2) Since the data used in the prediction must be
decompressed values for purpose of strictly controlling
decompression errors, the prediction accuracy would
be degraded significantly if there are many data points
selected for the prediction. In this paper, not only do
we derive a generic formula for the multi-dimensional
prediction, but we also optimize the number of data
points used in the prediction by an in-depth analysis
with real-world data cases.

• We design an adaptive error-controlled quantization
model, in order to optimize the compression quality.
Such an optimization is very challenging in that (1)
we need to design the adaptive solution based on
very careful observation on masses of experiments;
(2) the variable-length encoding has to be tailored and
reimplemented to suit variable numbers of quantization
intervals.

• We carefully implement the new compression algorithm
and release the source code under the BSD license. We
comprehensively evaluate the new compression method
by using multiple real-world production scientific data
sets across multiple domains, such as hurricane simula-
tion [2], climate simulation [1] and X-ray scientific re-
search (APS) [3]. We carefully compared our compres-
sor to as many state-of-the-art compressors as possible,
including GZIP, ISABELA, ZFP, SZ, etc.. Experiments
show that our compressor is the best in class, especially
on both compressor factors (or bit-rates). Our solution
is better than the second-best solution ZFP by nearly
2.3x increase in compression factor and 5.4x reduction
in normalized root mean squared error on average.

The rest of the papers is organized as follows.

II. PROBLEM AND METRICS DESCRIPTION

In this paper, we mainly focus on the design and imple-
mentation of a lossy compression algorithm for scientific
data sets with given error bounds in HPC applications.
Generally, HPC applications can generate multiple snapshots
which will contain multiple variables. Each variable has
a specific data type, e.g., multi-dimensional floating-point
array and string data. Since the majority type of the scientific
data is floating-point, we will foucs our lossy compression
research on how to compress multi-dimensional floating-
point data sets within reasonable error bounds. Also, we
want to achieve a better compression performance measured
by below metrics:

1) Pointwise error between original and reconstructed
data sets, e.g., absolute and relative error.

2) Average error between original and reconstructed data
sets, e.g., RMSE, NRMSE and PSNR.

3) Correlation between original and reconstructed data
sets.

4) Compression factor or bit-rates.
5) Compression and decompression speed.
We will describe the above metrics in details in the follow-

ing discussion. Let’s first define some necessary notations.
Let the original multi-dimensional floating-point data set

be X = {x1, x2, ..., xN}, where each xi is a floating-
point scalar. Let the reconstructed data set be X̃ =
{x̃1, x̃2, ..., x̃N}, which is recovered by the decompression
process. Also, we denote the range of X by RX , i.e,
RX = xmax � xmin.

We design two error bounds for the user, i.e., absolute
error bound and relative error bound, which are being widely
used in scientific data sets. We denote the absolute error
bound by ebabs and the relative error bound by ebrel.

Now let’s discuss the metrics we will use in measuring
the performance of a compression method.

Metric 1: Let eabsi = xi� x̃i, where eabsi is the absolute
point-wise error between the original data and the recon-
structed data at data point i. Let ereli = eabsi/RX , where
ereli is the relative point-wise error. In our compression
algorithm, one should set either one or both of the absolute
error and the relative error depending on their compression
accuracy requirement, and the compression errors will be
guaranteed within the error bounds, which can be expressed
by the formula |eabsi | < ebabs or/and |ereli | < ebrel for
1  i  N .

Metric 2: To evaluate the average error in the compression,
we first choose to use the popular root mean squared error
(RMSE):

rmse =

vuut 1

N

NX

i=1

(eabsi)
2 (1)

Due to the diversity of variables, we further adopt the
normalized RMSE (NRMSE) :

nrmse =
rmse

RX

(2)

We also note that peak signal-to-noise ratio (PSNR) is
another commonly used average error metric for evaluating
a lossy compression method, especially in visualization, it’s
calculated as below:

psnr = 20 · log10(
RX

rmse
) (3)

PSNR measures the size of the RMSE relative to the peak
size of the signal. Logically, lower value of RMSE/NRMSE
means less error, but higher value of PSNR is preferred since
it means the ratio of signal to noise is higher.

Metric 3: To evaluate the correlation between the original
and reconstructed data sets, we adopt the Pearson correlation
coefficient ⇢:

⇢ =
cov(X, X̃)

�X�
X̃

(4)

where cov(X, X̃) is the covariance. This coefficient is a
measurement of the linear dependence between two vari-
ables, giving ⇢ between +1 and �1, where ⇢ = 1 is

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, F. Cappello, 
Error-Controlled Lossy Compression Optimized for High 
Compression Ratios of Scientific Datasets, IEEE BigData 2018• Modern lossy compressors can reduce drastically the footprint on storage 

while keeping a very high accuracy 
• They are also very competitive compared to tricubic interpolation in 

decompression speed 



3) Accelerating I/O

Particle dataset: 6 x 1D array (x, y, z, vx, vy ,vz)

Preferred error controls:
• Point wise max error (Relative) bound
• Absolute (position), Relative (Velocity)

ECP HACC: N-body problem with domain decomposition, medium/long-range force solver 
(particle-mesh method), short-range force solver (particle-particle/particle-mesh algorithm).

SZ 2.0: CR ~5 (~6bits/value) at 
10-3 error bound

Figures from Cbench (ECP EXASKY)



3) Accelerating I/O
ECP HACC

I/O time reduced by ~5x-~6x
The writing and reading times without compression are estimations (too long for experiment)

• Bebop cluster at Argonne 

GPFS file system

• File-per-process mode with 

POSIX I/O for reading/writing 

data in //

• Each core has 3.14GB to write

S. Li, S. Di, X. Liang, Z. Chen, F. Cappello, Optimizing Lossy Compression with Adjacent Snapshots for N-body Simulation Data, IEEE BigData 2018 

Results validation

3kpc absolute error bound

• Modern lossy compressors reach high enough compression ratios and high 

enough speed to significantly reduce I/O time, while keeping a high 

accuracy



ECP EXAFEL: Context of LCLS-II

• X-ray crystallography to determine the atomic and molecular 
structure of a crystal

• Crucial for medical applications (e.g. understand membrane protein 
structure)

• A liquid jet injects the crystal and an Xray pulse strikes the molecules.
• This produces diffraction patterns on the detector 
• Patterns are analyzed to discover the structure of the 

crystal/molecule

4) Reducing Streaming Intensity

T.O. Raubenheimer for the LCLS-II Collaboration, SLAC, Menlo Park, CA 94025, USA
6th International Particle Accelerator Conference, VA, USA, 2015, JACoW Publishing

Diffraction Pattern



-Detector produces 2D images:

-4M pixel/event 

-All LCLS-II area detectors per 
experiment: 250GB/s

-Today technology: ~x1000s 
disks 
to sustain the bandwidth

-Data is unsigned integers 
(RAW, Calibrated), in binary 
XTC2 format

Compression goals:

-Goal: CR of 10 with error 
bound

-Speed 500 MB/s/core

à True Co-Design (algorithm, 
hardware)

4) Reducing Streaming Intensity
Image from the detector

Experiment cxic0415 run 90 event 104859
Decompressed image from SZ-LCLS

Compression ratio: 30

SZ
-L

C
LS

 c
om

pr
es

si
on

 p
ip

el
in

e

Data from detector

Peak finder

Mask regions of interest

Extract background

Low pass filter (adaptive)

Rebuild image

Compress background (SZ 2.1) 

Image from Chun Hong Yoon, Stanford Image from Chun Hong Yoon, Stanford

Image from Chun Hong Yoon, Stanford Image from Chun Hong Yoon, Stanford

• Lossy compression can be considered for effectively reducing streaming 
intensity.

• May needsmore stages than “generic” lossy compression



5) Accelerating Checkpoint/Restart 

Dumping time on PFS (no compress.): ~10k seconds 
Loading time on PFS (no compress.): ~11k seconds.

Accelerate the dumping and loading time 10x at 
acceptable error bound (10E-6).

ANL Bebop Cluster 
• 2 x Intel Xeon E5-2670
• 16 cores / Xeon 
• 64 GB DDR3 memory
• GPFS CR: 11.5 CR: 7.32 CR: 5.31

EB: EB: EB:

ECP NWCHEM: Particles are represented by wave functions
Coupled-cluster approaches are some of the most 
successful methods used to solve quantum states of 
complex many-body systems.

Solved Iteratively
● Large memory/disk requirement (especially T1/T2)
● Goal: reduce checkpoint size and I/O overhead with SZ 

compression
● 1D dataset, Preferred error control: Absolute Error Bound
● Improved NWChemEx performance ➪ tackle larger problems    

Wavefunction 
of the CC theory

Cluster 
operator

• Lossy compression can be considered for accelerating checkpoint/restart
• Understanding the level of acceptable compression error is critical
• There is currently no established link (mathematical) between the 

compression error and the error of the numerical method

#iter Error 
Bound

Comp 
Ratio

CCSD correlation 
energy/Hartree

27 original 1 -0.095440748811744

10+17 1E-8 ~9 -0.095440748697882

10+17 1E-6 ~11 -0.095440744046987

10+17 1E-4 ~40 -0.095440297611173



6) Avoiding re-Computation 1/2

New SZ capability: Pattern based  predictor 
à PaSTRI algorithm (developed at ANL)

Data points are generated in blocks. Typically four nested FOR 
loops traverse all different types of orbital shells of each atom. 
à Produces periodic behavior in the output data, where the 
periodicity is defined by the shell types in atom couples. 

1D dataset, preferred error controls:
• Point wise max error (absolute) bound
• Extremely low error bounds: 10-10

Solving the Schrödinger equation requires a huge 
amount of Electron Repulsion Integrals (ERIs)

The number of ERIs is so large that they cannot fit 
in memory. They need to be recomputed at each 
iteration.

Compression is used to reduce the size of the 
ERIs to make them fit in memory, removing the 
need for re-computation.

ECP GAMESS: Quantum Chemistry
àThe goal is to obtain the wavefunction of a 
chemical system by solving the Schrödinger
equation.

. -4E-07

-2E-07

0E+00

2E-07

4E-07 Sub-Block Sub-Block Sub-Block Sub-Block Sub-Block Sub-Block

[0:35] [36:71] [72:107] [108:143] [144:179] [179:215]

1E-12

1E-10

1E-8

1E-6

1E-4

1E-2

1E+04E-7

0

-4E-7

1E-7

0

-1E-7

4E-7

0

-4E-7



6) Avoiding re-Computation 2/2
• ECP GAMESS
• 16.8X compression ratio,

• 661 MB/s compression rate, 1.1 GB/s decompression rate,

• Significantly better rate-distortion than original SZ, ZFP, 

• 1.25X to 2.5X acceleration of the recomputation of the 2 electons integrals 
depending on the simulation, for absolute  error bound of 10-10,

0.00

0.20

0.40

0.60

0.80

1.00

EB = EB = EB = EB = EB = EB =

1E-11 1E-10 1E-9 1E-11 1E-10 1E-9

Original PaSTRI infras. Original PaSTRI infras.

(dd|dd) (ff|ff)

N
or

m
al

iz
ed

 T
im

e Calculate ERI Compress

Decompress

Best paper award 
at IEEE Cluster 2018

• Lossy compression can be accelerate computation via re-computation 
avoidance if some data need to be recomputed at each iteration because 
they do not fit in memory

• The data should be write once/read many time to be beneficial
• Decompression need to be fast enough to not increase the overall 

computation time



7) Reducing Memory Footprint
One of the problem in quantum computing simulators is the 
storage of the quantum state. The quantum state is a vector of 
probabilities (1 probability for each quantum bit configuration). 
The size of the vector state is 2^n, with n being the number of 
quantum bits to simulate.  1D dataset.

Simulating 50 qubits would require 2^50 x 2^4=16PB of RAM
So compromises are made: lower #qubits, Depth, #amplitudes:

Use lossy compression of the 
Quantum state to increase
the number of Qubits that
could simulated with given
memory size

General Technique Qubits Depth
# of 

Amplitudes
Intel Full amplitude-vector update 45 High All

IBM
Tensor-slicing with minimized 

communication
7×7 27 All
7×8 23 237 out of 256

Google
Preprocessing using undirected 

graphical model 7×8 30 1

USTC
Qubit partition with partial vector 

update 8×9 22 1

Sunway
Dynamic programming qubit 

partition
7×7 39 All
7×7 55 1

Alibaba
Undirected graphical model with 

parallelization 9×9 40 1



7) Reducing Memory Footprint

X. Wu, S. Di, M. Dasgupta, F. Cappello, Y. Alexeev, H. Finkel, F. Chong, Full State Quantum Circuit Simulation by Using Data Compression, ACM/IEEE SC2019 
X.-C. Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, F. T. Chong, Memory-Efficient Quantum Circuit Simulation by Using Lossy Data Compression, PMES workshop at IEEE/ACM SC18, 2018
X.-C. Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, F. T. Chong, Amplitude-Aware Lossy Compression for Quantum Circuit Simulation, DRBSD-4 workshop at IEEE/ACM SC18, 2018

QAOA: polynomial time algorithm for finding “a ‘good’ 
solution to an optimization problem (NP-Hard problem)
Grover: Find entries in unsorted databases in O(square 
root of the number items in the data base).
QFT: Quantum Fourier transform

Fidelity:

ANL Theta full size: 4K nodes, 768 TB

• Lossy compression can be considered for running problems that cannot fit 
in memory (run larger problem)

• The application need to tolerate the introduction of compression error at 
each load from the memory.

• Execution speed might decrease significantly because the 
compression/decompression happen for each store/load



Accelerating Computation
2017 Gordon Bell Award: 18.9-Pflops Nonlinear 
Earthquake Simulation on Sunway TaihuLight: Enabling 
Depiction of 18-Hz and 8-Meter Scenarios

Finite difference, non-linear scheme
Optimization of Anelastic Wave Propagation (AWP-ODC) code

Designed a lossy compression scheme: OTF
Benefit from lossy compression: 
• 24% more computational performance
• double the maximum problem size that can be solved

On-The-Fly compression, explored 3 methods:
M1: Directly conversion to half precision IEEE 754 standard. However, dynamic is 
too large for 5 bits of exponent, for some variables.
M2: Determines the required exponent bit-width according to the recorded 
maximum dynamic range, and uses the remaining bits for mantissa.
M3: Normalize all the values of the same array to the range between 1 and 2, 
which corresponds to an exponent value of zero (small dynamic).

Validation: extensive comparison between uncompressed 
runs and runs with lossy compression, under different 
resolutions.

Seismograms comparison for
2 stations, Ninhe and Cangzhou

H. Fu, et al., “18.9-Pflops Nonlinear Earthquake Simulation on Sunway TaihuLight: 
Enabling Depiction of 18-Hz and 8-Meter Scenarios”, Proceedings of SC17 

• Lossy compression can be considered to accelerate computation through 
the reduction of pressure on the memory bandwidth

• The application need to tolerate the introduction of compression error at 
each load from the memory.

• Additional hardware structure are needed (scratch pad)



ANL SZ Lossy compressor today
Key features:

• Production quality lossy compressor for scientific data respecting user set error 
bounds

• For 1D, 2D, 3D structured and unstructured datasets. E.g. 3D simulation fields, 2D 
instruments data, time series.

• For floating point and integer data
• Strict error controls (absolute error, relative error, PSNR, error distribution)
• Thorough testing procedures, bug tracking, tests on the CORAL systems
• Integrated in the ADIOS, HDF5 and PnetCDF I/O libraries. 
• Reader/Writer for ADIOS, HDF5, netCDF
• Optimized compression ratios (transforms, decompositions, multiple predictors, 

compression in time, lossless compression, etc.)
• High compression/decompression speed (MPI + OpenMP)



ANL SZ Application domains
Application domains:
• Fluid dynamics: climate/weather (ECP)
• Particle physics: cosmology, molecular dynamics (ECP)
• Fusion energy: plasma simulation (ECP)
• Seismology: Oil and Gas
• Quantum chemistry (ECP)
• Quantum Computing simulation
• Medical imaging
• Physics instruments: light sources (LCLS, APS) (ECP)
• Deep learning (models and training sets)



What’s next 1/2
Need to improve SZ:
• Structure (more flexible): 
• lossy compression framework instead of lossy compressor
• Ultimate: auto-composition/tuning of compression stage/parametrization

• Prediction algorithms (compress more): 
• DNN based, 
• Transform based

• Error control (higher fidelity): 
• Shape of the error distribution
• Auto-tuning of the compressor error bound

• Performance (compress faster):
• FPGA implementations
• Much faster/reduced SZ for compression between memory and CPU/GPU



What’s next 2/2
Need to improve fidelity assessment
Some analysis compute derivatives: e.g. 
streamlines in fluid dynamics

No systematic way to assess preservation of 
derivatives
New metrics: Preservation of derivatives

EB   PSNR   SSIM

0     , INF   ,  1
d1_M = INF , d2_M = INF

1E-7 , 154.92 , 1
d1_M = 125.32 , d2_M = 93.47

1E-6 , 134.94 , 1
d1_M = 105.37 , d2_M = 73.51

1E-5 , 114.80 , 1
d1_M = 85.29 , d2_M = 53.45

EB   PSNR   SSIM

1E-3 , 75.27 , 0.999968
d1_M = 46.02 , d2_M = 12.14

1E-4 , 94.81 ,  1
d1_M = 65.29 , d2_M = 33.38

Gradient Vector: 1st order derivatives
Hessian Matrix: 2nd order derivatives

Compute vector 2-norm (1st order derivatives)
Compute Frobenius-Norm (2nd order derivatives)

Compute PSNR (1st order derivatives)
Compute PSNR (2nd order derivatives)

d1_M, d2_M



40

Z-checker reduction error assessment tool 
(google z-checker github)
• Visualization Engine: local visualization, web visualization

• Analysis kernel : (1) Data property (2) Compression quality

• Input engine: Adios, HDF5, NetCDF, plain binary stream of data

• Output engine
• Single value of a specific metric 

(such as entropy and compression ratio)
• Sequence of values (such as distribution and auto-correlation 

of compression errors)
• Generate report (in the form of .pdf file)

• Configuration parser
• Switch on/off the assessment metrics
• Specify the error bounds and comparison cases, etc.

• 3rd-party connector
• Support R, FFTW, etc.

Data Visualization Engine

C
on

fig
ur

at
io

n 
Pa

rs
er

Output Engine

Input Engine

Data Source (stream, file, etc.)
with formats (HDF5, NetCDF, 

ADIOS, binary data format, etc)

Analysis Kernel
Data Property 

Analyzer
Compression 

Checker

3rd-party 
Connecter

3rd-party 
Library 

(R, FTTW)

Z-server



On-line Z-checker: Video
Example: heat distribution test (Jacobi algorithm simulating the heat diffusion in a flat board over time)
All metrics computed in parallel using MPI 



Scope and objectives

• A community repository providing reference scientific datasets, compressors 
(lossless and lossy), and error analysis tools

• Significance: Improve the methodology in the domain by providing reference 
information for scientific data 

compressor users and developers

• Collection of representative datasets from ECP and other applications via direct 
communication with application developers and users

• Storage of the datasets on the Petrel server at Argonne with Terabytes of 
storage capacity

• Fast access to the datasets using Globus and GridFTP
• Access open to public

Impact

Opened on July 1st 2018. Already recognized as a
reference source of information for the developers of the
main lossy and lossless compressors 

SDRBench: Scientific Data Reduction Benchmarks
Google (SDRBench)

Project accomplishment



SZ Publications
27 X. Wu, S. Di, M. Dasgupta, F. Cappello, Y. Alexeev, H. Finkel, F. Chong, Full State Quantum Circuit Simulation by Using Data Compression, ACM/IEEE SC2019
26 X. Liang, S. Di, S. Li, D. Tao, B. Nicolae, Z. Chen, F. Cappello, Significantly Improving Lossy Compression Quality based on An Optimized Hybrid Prediction Model, ACM/IEEE SC2019
25 S Jin, S. Di, X. Liang, J. Tian, D. tao, F. Cappello, DeepSZ: A Novel Framework to Compress Deep Neural Networks by Using Error-Bounded Lossy Compression, ACM HPDC 2019
24 X. Zou, T. Lu, W. Xia, X. Wang, W. Zhang, S. Di, D. Tao, F.Cappello, Accelerating Relative-error Bounded Lossy Compression for HPC datasets with Precomputation-Based Mechanisms, IEEE MSST 2019.
23 F. Cappello, S. Di, S. Li,2 X. Liang, A. Murat Gok, D. Tao, X.-C. Wu,6 Y. Alexeev, F. T. Chong, Use-cases of lossy compression for floating-point data in scientific datasets, IJHPCA,, 2019
22 D. Tao, S.Di, X. Liang, Z. Chen and F. Cappello, Optimizing Lossy Compression Rate-Distortion from Automatic Online Selection between SZ and ZFP, IEEE TPDS, 2019,
21 S. Di, D. Tao, Z. Chen, F. Cappello, Efficient Lossy Compression for Scientific Data based on Pointwise Relative Error Bound, IEEE TPDS, 2019 
20. X.-C Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, F. Chong, Memory-Efficient Quantum Circuit Simulation by Using Lossy Data Compression, PMES workshop at IEEE/ACM SC18, 2018
19. X. Liang, S. Di, S. Li, D. Tao, Z. Chen, F. Cappello, Exploring Best Lossy Compression Strategy By Combining SZ with Spatiotemporal Decimation, DRBSD-4 workshop at IEEE/ACM SC18, 2018
18. X.-C Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, F. Chong, Amplitude-Aware Lossy Compression for Quantum Circuit Simulation, DRBSD-4 workshop at IEEE/ACM SC18, 2018
17. X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, F. Cappello, Error-Controlled Lossy Compression Optimized for High Compression Ratios of Scientific Datasets, IEEE BigData 2018 
16. S. Li, S. Di, X. Liang, Z. Chen, F. Cappello, Optimizing Lossy Compression with Adjacent Snapshots for N-body Simulation Data, IEEE BigData 2018
15. A. Murat Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, F. Cappello, PaSTRI: Error-Bounded Lossy Compression for Two-Electron Integrals in Quantum Chemistry, Best paper (overall), IEEE Cluster 2018
14. X. Liang, S. Di, D. Tao, Z. Chen, F. Cappello, An Efficient Transformation Scheme for Lossy Data Compression with Point-wise Relative Error Bound, Best Paper (Data, Storage, and Visualization), Cluster 2018
13. X.-Chuan Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, F. T. Chong, Full State Quantum Circuits Simulation by Using Lossy Data Compression, SC18 Poster, 2018
12. S. Li, D. Sheng, X Liang, Z. Chen, F. Cappello, Improving Error-bounded Lossy Compression for Cosmological N-body Simulation, SC18 Poster, 2018
11. D. Tao, S. Di, X. Liang, Z. Chen, Franck Cappello, Restarting iterative methods from lossy checkpoints, ACM HPDC 2018
10. D. Tao, S. Di, X. Liang, Z. Chen, F. Cappello, Fixed-PSNR Lossy Compression for Scientific Data, IEEE Cluster 2018, short paper
9. J. Calhoun, F. Cappello, L. N. Olson, M. Snir, and W. Gropp, Exploring the Feasibility of Lossy Compression for PDE Simulations, International Journal of High Performance Computing Applications (IJHPCA), 
2019 (2018) 
8. D. Tao, S. Di, Z. Chen and F. Cappello, In-Depth Exploration of Single-Snapshot Lossy Compression Techniques for N-Body Simulations, IEEE Bigdata 2017
7 D. Tao, S. Di, Z. Chen and F. Cappello. Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization. IEEE IPDPS, May 2017
6. D. Tao, S. Di, Z. Chen and F. Cappello. Exploration of Pattern-Matching Techniques for Lossy Compression on Cosmology Simulation Data Sets. 1st International Workshop on Data Reduction for Big Scientific 
Data as part of ISC2017, Frankfurt DE, June 2017
5. A.  Murat Gok, D.Tao, S. Di, V. Mironov, Y. Alexeev and F. Cappello. PaSTRI: A Novel Data Compression Algorithm for Two-Electron Integrals in Quantum Chemistry. Poster at IEEE/ACM SC17, Denver, CO US, 
November 2017
4. S. Di, D. Tao, Z. Chen, F. Cappello, Towards Efficient Error-controlled Lossy Compression for Scientific Data, [Poster], Greater Chicago Area Systems Research Workshop, 2017
3. D. Tao, S. Di, H. Guo, F. Cappello, Z-checker: A Framework for Assessing Lossy Compression of Scientific Data, International Journal of High Performance Computing Applications, IJHPCA, 2019 (2017)
2. S. Di, F. Cappello, Optimizing Error-Bounded Lossy Compression for Hard-to-Compress HPC Data, Submitted to IEEE Transactions on Parallel and Distributed Computing IEEE TPDS, 2017 
1. S. Di, F. Cappello, Fast Error-bounded Lossy HPC Data Compression with SZ, IEEE IPDPS 2016 



Thanks
This research was supported by the 
Exascale Computing Project (17-SC-20-SC), 
a joint project of the U.S. Department 
of Energy’s Office of Science and National 
Nuclear Security Administration, 
responsible for delivering a capable 
exascale ecosystem, including software, 
applications, and hardware technology, 
to support the nation’s exascale computing 
imperative.


