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Introduction

HPC Scientific Applications

@ have to be strongly optimized to exploit the available hardware for
high performances;

@ but heterogenous processors and architectures are available:

Gomnum

THUNDERX |

@ a solution could be to develop several versions targeting the
different architectures
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Introduction

But, in scientific applications:

@ code undergo to frequent code modifications by scientists ...
... hard to maintain different versions;

@ is desiderable to have one portable implementation with high
performances on most of the available HPC resources;

@ scientific software lifetime may be very long; even tens of years,
thus is of paramount importance to plan for future architectures.
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Introduction

But, in scientific applications:

@ code undergo to frequent code modifications by scientists ...
... hard to maintain different versions;

@ is desiderable to have one portable implementation with high
performances on most of the available HPC resources;

@ scientific software lifetime may be very long; even tens of years,
thus is of paramount importance to plan for future architectures.

@ HPC centers may start to account for consumed energy, so
energy-efficiency is also becoming an hot-topic
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Main motivations

Technology tracking of hardware architectures and programming
language/models. J

@ Study of new architectures’ hardware details;
@ Study of architecture specific low level optimization techniques;

@ Development of higly optimized architecture specific
implementations;

@ Study of new programming models and languages;
@ Development of portable implementations;
@ Attempt to foresee future HPC architectures and environments;

@ Evaluation of Performance and Energy-efficiency on both specific
and portable implementations.
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Lattice Boltzmann Methods (LBM)

@ a class of computational fluid dynamics (CFD) methods
@ discrete Boltzmann equation instead of Navier-Stokes equations

@ sets of virtual particles, called populations, are arranged at
edges of a D-dimensional (D = 2, 3) lattice

@ each population fi(x, t) has a given fixed lattice velocity ¢;, drifting
— at each time step — towards a nearby lattice-site;

@ populations evolve in discrete time according to the following
equation:

Bk + eBt AL = H0x 1) — 2 (f(x 1) — 1)
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LBM models
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DnQk:
@ nis the spatial dimension,
@ k is the number of populations per lattice site
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LBM Computational Scheme

Rewriting evolution equation as

At
fi(y, t+ At) = fi(y — ciAt, t) — — (f,(y — CiAt t) — fi(eq)>

being y = x + ¢;At, we can handle it by a two-step algorithm:

© propagate:
fi(y — ¢iAt, 1)
gathering from neighboring sites the values of the fields f;
corresponding to populations drifting towards y with velocity ¢;;

Q@ collide: At
eq
-= (fly - ent.t) - 1°9)
compute the bulk properties density p and velocity u, use these to

compute the equilibrium distribution £°?, and then relax the fluid
distribution functions to the equilibrium state (r relaxation time).
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LBM Computational Scheme

foreach time—step

foreach lattice—point
propagate () ;
endfor

foreach lattice—point
collide ();
endfor

endfor

@ embarassing parallelism: all sites can be processed in parallel
applying in sequence propagate and collide
@ two relevant kernels:

» propagate memory-intensive,
» collide compute-intensive;

@ propagate and collide can be fused in a single step;
@ good tool to stress, test and benchmark computing systems.
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D2Q37 LBM Application

@ D2Q37 is a 2D LBM model with 37 velocity
components (populations);

@ suitable to study behaviour of compressible
gas and fluids optionally in presence of
combustion’' effects;

@ include correct treatment of Navier-Stokes,
heat transport and perfect-gas (P = pT) equations;

@ used to study Rayleight-Taylor effects of stacked fluids at different temperature
and density with periodic boundary conditions along one dimension;

@ propagate: memory-intensive, access neighbours cells at distance 1,2, and 3,
generate memory-accesses with sparse addressing patterns;

@ collide compute-intensive, requires == 6500 DP floating-point operations, is local.

'chemical reactions turning cold-mixture of reactants into hot-mixture of burnt
product.
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Rayleigh-Taylor Instability Simulation with D2Q37

Instability at the contact-surface of two fluids of different densities and
temperature triggered by gravity. ’

Y »
COKA - INFN-Ferrars COKA - INFN-Ferrara COKA - INFN&urrda
-— B oa -

A cold-dense fluid over a less dense and warmer fluid triggers an
instability that mixes the two fluid-regions (till equilibrium is reached). ‘

Feb 22, 2018 13/87

E. Calore (Univ. and INFN of Ferrara)




D2Q37: pseudo-code

foreach time—step
foreach lattice—point
propagate ();
endfor
boundary_ conditions();
foreach lattice—point
collide ();

endfor

endfor
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D2Q37: propagation scheme

@ require to access neighbours cells at distance 1,2, and 3,
@ generate memory-accesses with sparse addressing patterns.
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D2Q37: boundary-conditions

@ we simulate a 2D lattice with
periodic-boundaries along x-direction
@ at the top and the bottom boundary
conditions are enforced:
» to adjust some values at sites
y=0...2andy=N,—-3... N, — 1
» e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.
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D2Q37 collision

@ collision is computed at each lattice-cell site

@ computational intensive:
for the D2Q37 model requires ~ 6500 DP floating point operations

@ computation is completely local:
arithmetic operations require only the populations associated to
the site
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D2Q37 pseudo-code

foreach time—step
propagate_and collide_bulk ()
update_halos_LR halos();
propagate_and _collide_ LR borders()
update_halos_TB halos();
propagate_top_and_bot ();
boundary conditions ();

collide_top_and_top();

bottom-halo

endfor
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Lattice Quantum Chromodynamics

Stencil operation on a 4-dimensional Lattice J

Most of the running time in a LQCD simulation is spent for
the Dirac Operator, which executes two functions:

@ Dg,: reads from even sites of the lattice and writes in odd ones.
@ Dye: reads from odd sites of the lattice and writes in even ones.

Both perform mainly complex vector-SU(3) matrix multiplications and
are memory-bound operations (/ ~ 1) with high register pressure.
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Different Implementations
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Different Implementations

Original
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Setup to sample instantaneous current absorption
One current to voltage converter...

...plus an Arduino UNO (microcontroller + 10-bit ADC + Serial over
USB)
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Current to Voltage + Digitization with Arduino + USB Serial

o= = LY

E. Calore (Univ. and INFN of Ferrara) Optimization of lattice-based applications Feb 22,2018 26/87



Acquired data example with default frequency scaling

Propagate on Jetson - 128x4096
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Propagate changing the G cluster clock

Propagate on Jetson - 128x1024sp - Changing CPU Clock
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Propagate changing the MEM clock

Propagate on Jetson - 128x1024sp - Changing MEM Clock
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Time and Energy to solution (Propagate)
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Solution [mJ]
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Collide changing the G cluster clock

Collide on Jetson - 128x1024sp - Changing CPU Clock
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Collide changing the MEM clock

Collide on Jetson - 128x1024sp - Changing MEM Clock
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Time and Energy to solution (Collide)

Energy to
Solution [mJ]
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Energy to Sol. vs Time to Sol. CPU(top), GPU(bottom)
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Energy to Solution vs Time to Solution (CPU)
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Energy to Solution vs Time to Solution (GPU)
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Energy to Solution vs Time to Solution (GPU) zoom
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Energy-performance tradeoffs for HPC applications on low power processors, UCHPC15
Workshop at EuroPar, LNCS, 9523, 737-748 (2015). doi: 10.1007/978-3-319-27308-2_59
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Conclusions

@ baseline power consumption (leakage current + ancillary
electronics) is relevant concerning the whole energy budget.

@ limited but not negligible power optimization is possible by
adjusting clocks on a kernel-by-kernel basis (~ 20%).

@ best region is close to the system highest frequencies.
@ options to run the processor at very low frequencies seem almost

useless; if possible, it would be interesting to be able to remove
power from the (sub-)system while idle.
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Ongoing work (Jetson TX Mont-Blanc Cluster)
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COKA Cluster

The “Computing On Kepler Architectures” (COKA) is a computing

cluster funded and managed by the University of Ferrara with the
support of INFN.

2 ES2630v3 sockets
8 K80 cards
2 1B Connect-3 Single FOR 56G0is

E. Calore (Univ. and INFN of Optimization of lattice-based applications Feb 22, 2018 41/87



Energy efficiency: Propagate
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@ Esvs Tg for the propagate functions measured on the CPU;
@ labels are the corresponding clock frequencies f in GHz.
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Energy efficiency: Collide
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@ Egsvs Tg for the collide functions measured on the CPU,;
@ labels are the corresponding clock frequencies f in GHz.
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Changing clock function by function
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@ Calore, Enrico and Gabbana, Alessandro and Schifano, Sebastiano Fabio and Tripiccione,
Raffaele Evaluation of DVFS techniques on modern HPC processors and accelerators for
energy-aware applications, Concurrency and Computation: Practice and Experience
(2017). doi: 10.1002/cpe.4143
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Energy efficiency: Propagate

Propagate Energy to Solution ws Time to Solution (GPU freq as labels)
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@ Egsvs Tg for the propagate functions measured on the GPU;
@ labels are the corresponding clock frequencies f in MHz.
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Energy efficiency: Collide

Collide Energy to Soluti

vs Time to Solution Scatt

Plot (GPU freq as labels)
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@ Egsvs Tg for the collide functions measured on the GPU;
@ labels are the corresponding clock frequencies f in MHz.
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Changing clock function by function
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@ Calore, Enrico and Gabbana, Alessandro and Schifano, Sebastiano Fabio and Tripiccione,
Raffaele Evaluation of DVFS techniques on modern HPC processors and accelerators for
energy-aware applications, Concurrency and Computation: Practice and Experience
(2017). doi: 10.1002/cpe.4143
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Conclusion
Running on 16 GPUs (8 x NVIDIA K80 Dual GPU boards) system:

Single node power consumption for 10000 iterations - Lattice: 16384x8192 - GPUs: 16
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Power drain of the node measured at PSU through IPMI, during code
execution for different GPUs clock frequencies.
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Xeon-Phi KNL

KNL is the latest generation of processors based on Intel MIC

architecture:

@ 64-68-72 CPU cores
512-bit vector instructions

°
@ 3+ Tflops DP peak floating-point

@ 16 GB on-chip memory with 400+ GB/s of bandwidth
@ up to 384 GB of off-chip DDR4 memory with ~ 115 GB/s of

bandwidth
Xeon E52697v4 GK210  P100 Xeon-Phi 7120P  Xeon-Phi 7230
Year 2016 2014 2016 2013 2016
Architecture Broadwell Kepler Pascal Knights Corner Knights Landing
#physical-cores / SMs 18 13 56 61 64
#logical-cores / CUDA-cores 26 2496 3584 244 256
Nominal Clock (GHz) 2.3 562 1.3 1.2 1.3
Nominal DP performance (Gflops) ~ 650 935 4759 ~ 1208 ~ 2662
LL cache (MB) 45 1.68 4 30.5 16000
Total memory supported (GB) 1540 12 16 8 384
Peak mem. BW (ECC-off) (GB/s) 76.8 240 732 352 115.2
GK210 is one GPU-processor of a dual-GPU K80 board.
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Memory Layout: AoS vs SoA
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#idefine N (LX+LY)
typedef struct {

#idefine N (LX+LY)
typedef struct {

double pl; // population 1 double pl[N];

double p2; // population 2 double p2[N];

double p37; // population 37 double p37[N];
} pop_t; } pop_t;

pop_t lattice[N];

pop_t lattice;

// population 1
// population 2

// population 37

@ data arrangement layouts: AoS (upper), SoA (lower);
@ C-struct data types: AoS (left), SoA (right).
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Data Structure: SoA vs CSoA

Straight SoA-scheme does not vectorize propagate properl

g

ating many not-aligned loads.

<
(=]
@
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@
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w

@ Lattice 4 x 8

machine vector size of 2-doubles

8 Bytes memory alignement

process two sites in parallel

0 — 8 has read and write aligned

0 — 9 has read aligned and write

mis-aligned

@ (0,4) — (8,12) has read and write
aligned

@ (0,4) — (9,13) has read and write
aligned

@ clusters close to borders need special
handling
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Rearrange populations to apply propagate on clusters/vectors instead of a single lattice-cell.

Solution: CSoA layout
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Data Structure CSoA

@ for a lattice of size LX x LY

@ cluster together V1, elements
of each population at a
distance LY/ VL

@ VL is a multiple of the
processor vector size.

Using CSoA layout propagate is fully vectorized with aligned memory
accesses.
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Data Structure: CAoSoA

@ Using CSoA data-layout code for collide is properly vectorized but
performance are low;

@ many TLB misses in executing the collide kernel are caused by
several strided memory accesses to load all data populations to
compute the collisional operator.

Solution: CAoSoA layout
@ for each population array, we divide each Y-column in vL
partitions each of size LY/VL

@ all elements sitting at the ith position of each partition are then
packed together into an array of VL elements called cluster.

@ For each index i we then store in memory one after the other the
37 clusters — one for each population — associated to it keeping all
population data associated to each lattice site at close and aligned
addresses.
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Data Structure
Lattice 4 x 8 with two (blu and red) population per site.

Left to right: Array of Structures (AoS), Structure of Arrays (SoA),

Clustered Structure of Arrays (CSoA), Clustered Array of Structure of Arrays (CA0SoA).
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Motivations behind memory layouts

@ AoS: Array of Structures
» store populations of one site close in memory
» store sites one after the other
» exploit locality of populations, suitable for collide does not allow to
vectorize propagate.
@ SoA: Structure of Arrays
» for each population index store all sites one after the other
» store different populations on different arrays
» not allow optimal vectorization of propagate because of misaligned
memory accesses.
@ CSo0A: Clustered Structure of Arrays
» same as AoS
» vectorize propagate but have negative impact on collide since
populations are far from each other.
@ CA0So0A: Clustered Array of Structures of Arrays
» mix layout
» inner structure stores populations in SoA format
» external structure store sites in Aos format
» vectorize propagate and collide and improve populations-locality.
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Results: VTUNE Analysis

Metric AoS SoA CSoA CA0SoA Threshold
propagate L2 CACHE Miss Rate 0.50 0.10 0.05 0.00 < 0.20
collide L2 TLB Miss Overhead 0.00 0.21 1.00 0.00 < 0.05

Thresholds suggested by the Intel VTUNE profiler.
Feb 22, 2018
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Results: Propagate Performance

[mm] [sorciec] ] === |
1287 DDR4 —— 64T MCDRAM c=—256T MCDRAM —— 192T CACHE ——
1927 DDR4 c——128T MCDRAM ===3 64T CACHE toomy 2567 CACHE ——— |

Propagate Xeon-Phi 7230 Flat/Quadrant 2304x8192, Cache/Quadrant 4608x12288
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@ for FLAT-mode performance increases from AoS —+ SoA — CSoA with peak bandwidths of
» MCDRAM: AoS 138, SoA 314 (2.3X), CSoA 433 (3.1X) GB/s
» DDRA4: AoS 51, S0A 56, and CSoA 81 GB/s

@ for CACHE-mode we measure 59, 60 and 62 GB/s with a lattice not fitting into MCDRAM

@ performance does not improve

» using the CAoSoA layout
> increasing number of threads used (since propagate is memory-bound)
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Results: Collide Performance

== [oszres] [
1287 DDR4 ——— 64T MCDRAM =z=—256T MCDRAM —— 192T CACHE ——
1927 DDR4 1287 MCDRAM = = 64T CACHE foomn  256T CACHE c——1

Collide Xeon-Phi 7230 Flat/Quadrant 2304x8192, Cache /Quadrant 4608x12288
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@ for FLAT-MCDRAM configuration
*= performance increases from AoS —+ CSoA — CAoSoA
» So0A does not exploit vectorization and memory-alignement
» using CAoSoA we measure a performance of =~ 1 Tflops (= 37% of raw peak)
» performance increases with number of threads because collide is compute-bound

@ using FLAT-DDR4 and CACHE configurations performances are limited by memory
bandwidth
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Results: Propagate Energy

=0l

T T T
| S T T |

Time [ns] / site

Power [uwW] / site
[ ]
TI11T1TT17T
ra |

Energy [ul] / site
-

@ power-drain as sum of processor and DDR4 measured using RAPL counters
@ CSoA gives the best Eg, =~ 2.5X lower w.r.t. AoS for FLAT-MCDRAM configuration
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Results: Collide Energy

40 :

Time [ns] / site
H
Trrrrrr

T T T T

Power [uwW] / site

Energy [ul] / site
OENWANONE

@ CAo0SoA gives the best Eg, =~ 2X lower w.r.t. AoS for FLA-MCDRAM configuration
@ E; decreases using more threads per CPU
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Results: Propagate Performance on SkylLake

Propagate Xeon-data-8160 2064x8192
T T T T

@ ]
o o
T T
1 1

Bandwidth [GB/s]
B
(=]
1

20

csoa caosoa

propagate ~ 100 GB/s, approx85% of raw peak.
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Results: Collide Performance on Skylake

i-Thread DDOR4 —=  4-Thread DDR4 —= 16-Thread DDR4 ——
2-Thread DDR4 =—= 8-Thread DDR4 ——= 24-Thread DDR4 ——

Collide Xeon-data-8160 2064x8192

T T T
500
400 [

Performance [GFLOPS]

100 |-

Ccsoa caosoa

collide ~ 530 GFlops. ~ 35% of raw peak.
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Conclusions

@ KNL architecture makes it easy to port and run codes previously
developed for X86 standard CPUs;

@ performance is strongly affected by massive level of parallelism
that must be exploited, lest the level of performance drops to
values of standard multi-core CPUs or even worst;

@ data layouts plays a relevant role to enable energy-efficiency and
performance;

@ if application data-domain fits within the MCDRAM,
energy-efficiency and performance are very competitive with GPU
accelerators;

@ E. Calore, A. Gabbana, S. F. Schifano, R. Tripiccione Early experience on using Knights

Landing processors for Lattice Boltzmann applications, “Parallel Processing and Applied
Mathematics: 12th International Conference”, PPAM (2017). In Press.

@ E. Calore, A. Gabbana, S. F. Schifano, R. Tripiccione Energy-efficiency evaluation of Intel
KNL for HPC workloads, “Workshop on Energy Aware Scientific Computing on low power
and heterogeneous architecture”, ParCo2017, (2017). In Press.
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OpenMP version with ARMv8 NEON Intrinsics
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Number of OpenMP Threads

Thunder cluster at BSC,
Mont-Blanc 2 project.

Cavium ThunderX Pass2 SoC.

@ STREAM benchmark
reach: 39.6 GB/s

@ Theoretical peak
performance is 192
GFLOPs
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Profiling with Extrae and Paraver

Threads
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Clustering and Tracking
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Clustering and Tracking
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Clustering and Tracking (Propagate)
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Clustering and Tracking (Propagate)
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Clustering and Tracking (Propagate)
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Conclusion

@ As for the KNL, the data structure holding the Lattice can be
optimized to reduce L2 and TLB cache misses.

@ Preliminary results adopting the CAoSoA data layout show a
factor 2 improvement in the propagate bandwidth.
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Using OpenACC towards code portability

The case of Lattice QCD
@ Existing versions of the code targeting different architectures:
= C++ targeting x86 CPUs
= C++/CUDA targeting NVIDIA GPUs

The faced challenge is to design and implement one version:
@ with good performances on present best performing architectures;
@ portable across different available architectures;
@ easy to maintain, allowing scientists to change/improve the code;
@ portable, or easily portable on future unknown architectures.
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Planning the memory layout for LQCD : AoS vs SoA

First version in C++ targeting CPU based clusters adopts AoS:

//fermions stored as AoS:
typedef struct |
double complex cl;
double complex c2,
double complex c3;
} vee3 aos t;

!/ component 1
/! component 2
!/ component 3

vec3_aos t fermions[sizeh];

//fermions stored as SoA:
typedef struct |
double complex cO[sizeh];
double complex cl[sizeh];
double complex c2[sizeh];
} vec3_ soa t;

// components 1
// components 2
/! components 3

vec3_soa t fermions,

. Calore (Univ. and INFN of Ferrara)
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DT_DT_D

I

Version in C++/CUDA targeting NVIDIA GPU clusters adopts SoA:

—>
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OpenACC example for the Deo function

void Deo( _ restrict const su3_soa * const u,
_ _restrict vec3_soa * const out,
__restrict const vec3_soa * const in,
__restrict const double_soa * const bfield)

int hx, y, z, t;

#pragma acc kernels present(u) present(out) present(in) present(bfield)
#pragma acc loop independent gang collapse(2)
for(t=0; t<nt; t++) {
for(z=0; z<nz; z++) {
#pragma acc loop independent vector tile(TDIMO,TDIM1)
for(y=0; y<ny; y++) {
for(hx=0; hx < nxh; hx++) {

Nested loops over the lattice sites annotated with OpenACC directives.
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Single Device Performance

Dirac Operator:

Processor (CPU or GPU)
NVIDIA GK210 NVIDIA P100 Intel E5-2630v3 Intel E5-2697v4
SP DP SP DP SP DP SP DP

244 4.43 8.62 1.58 290 7044 9442 5113 66.87
324 4.02 9.54 1.32 240 79.05 100.19 43.90 54.88

Lattice

Table: Measured execution time per lattice site [ns] for the Dirac operator, on
several processors, in single and double precision. PGl Compiler 16.10.
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Single Device Performance

Lattice | am s CUDA  OpenACC Variation

323 x 8] 0.0125 555 392.69 490.74 +25%
244 0.0125 5.55 303.80 328.07 +8%
324 0.001 5.52 8973.82 8228.36 -8%

Table: Execution time [sec] of a full trajectory of a complete Monte Carlo
simulation for several typical physical parameters, running on one GPU of a
NVIDIA K80 system.

ﬁ C. Bonati, E. Calore, S. Coscetti, M. D’Elia, M. Mesiti, F. Negro, S. F. Schifano, G. Silvi, R.
Tripiccione, Design and optimization of a portable LQCD Monte Carlo code using OpenACC
International Journal Modern Physics C, 28, 1750063 (2017). doi: 10.1142/S0129183117500632
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Multi Device Implementation

2 X
&< &
A
Gauge Halo B U L K Ga:g’e Bor‘dz;r
A A
0
r0 {cl
c2
[j0]
8 0
ml rl <cl
35 c2
n
c0
r2 € ci
c2
o’ :
Fermion Halo H Fermion Border

<r0.c0[i],r0.c1[i],r0.c2[i]=
<rl.coli],rl.c1[il,rl.c2fi]>
<r2.c0[il.r2.c1fil.r2.c2li]=

Different kernels/functions for borders and bulk operations

Optimization of lattice-based applications



Overlap between computation and communication
One dimensional tailing of a 32 x 48 Lattice across:

8x GPUs

Local lattice: 32° x 6 per GPU

12x GPUs

Local lattice: 32° x 4 per GPU
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Relative Speedup on NVIDIA K80 GPUs

Dirac Operator in double precision
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C. Bonati, E. Calore, M. D’Elia, M. Mesiti, F. Negro, F. Sanfilippo, S. F. Schifano, G. Silvi, R.
Tripiccione, Portable multi-node LQCD Monte Carlo simulations using OpenACC,

International Journal Modern Physics C, Accepted.
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Strong Scaling Results
Roberge Weiss simulation over a 328 x 48 lattice, with mass 0.0015
and beta 3.3600, using mixed precision floating-point.

Lattice 32° x 48
600 . : . : 1000
GPUs - !
CPUs -3¢ : i o
i i i } AT
400 -
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S 300 i g
200 |-
+:
-1 200
100 i
0 b SO SO SOOI HUOUO. (O LIpTeres X 0
1 2 3 4 5 6 7 8 9

Number of Compute Devices (CPUs or GPUs)

Using 2 CPUs we measure a =~ 14 increase in the execution time wrt
using 2 GPUs and the gap widens for more devices.
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Conclusions

LQCD Monte Carlo
@ a single code version able to run on different architectures
@ capability to run on several computing devices / nodes
@ still regular plain C code if ignoring directives

@ performance comparable to CUDA implementations on NVIDIA
GPUs

Future works
@ investigate performance of multi-dimensional tiling
@ experiment different compilers targeting Intel CPUs (e.g. GCC 7)

@ introduce optimizations for Intel CPUs and MICs without impacting
GPU performance

@ study energy-saving strategies

v
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Thanks for Your attention
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