Representing and reasoning about policy
for agent-based simulation

Julian Padget
Department of Computer Science, University of Bath

April 2, 2019

Contents

=

Introduction

2 InstAL: a DSL for norm modelling

3 Deontic Sensors: normative reasoning as a service
4 Sample water management policy

5 Semantic policy representation

6 Epilogue

Contents

1 Introduction

Unpacking the title

normative models for intelligent agents

Unpacking the title

normative models for intelligent agents

agent architectures for normative reasoning

Unpacking the title

normative models for intelligent agents
agent architectures for normative reasoning

applications in social simulation, security, games, legal
reasoning, software engineering, data analytics

Unpacking the title

normative models for intelligent agents
agent architectures for normative reasoning

applications in social simulation, security, games, legal
reasoning, software engineering, data analytics

norms = policies = regulations = narratives = requirements

Unpacking the title

normative models for intelligent agents
agent architectures for normative reasoning

applications in social simulation, security, games, legal
reasoning, software engineering, data analytics

norms = policies = regulations = narratives = requirements
current work on:

normative reasoning as a service (Padget et al. 2018)

- semantic representation of policy (on-going)

- socio-cognitive technical systems (SCTS) (Noriega et al. 2017)
policy-making as an instance of SCTS (on-going)
use in social simulation (why I'm here)

Unpacking the title

normative models for intelligent agents
agent architectures for normative reasoning

applications in social simulation, security, games, legal
reasoning, software engineering, data analytics

norms = policies = regulations = narratives = requirements
current work on:
normative reasoning as a service (Padget et al. 2018)
- semantic representation of policy (on-going)
- socio-cognitive technical systems (SCTS) (Noriega et al. 2017)
policy-making as an instance of SCTS (on-going)
use in social simulation (why I'm here)
context from previous work

Institutional Action Language: InstAL (Padget et al. 2016b)
NJason: extension of Jason agent platform (Lee et al. 2014)

Why model policies?

- evidence-based policy-making

Why model policies?

- evidence-based policy-making
- safer Al

Why model policies?

- evidence-based policy-making
- safer Al
- explainable Al

Why model policies?

- evidence-based policy-making

- safer Al

- explainable Al

- human accountability + responsibility in S(C)TS

Why model policies?

- evidence-based policy-making

- safer Al

- explainable Al

- human accountability + responsibility in S(C)TS

- confidence in outcomes

Why model policies?

- evidence-based policy-making
- safer Al
- explainable Al
human accountability + responsibility in S(C)TS
- confidence in outcomes
nothing new here? depends on

- the policy-modelling language
- who/what does the reasoning

Why agent-based models?

- abstraction (equational) vs. synthesis (agent-based)

Why agent-based models?

- abstraction (equational) vs. synthesis (agent-based)

...or top-down vs. bottom-up

Why agent-based models?

- abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
- approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability

Why agent-based models?

- abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
- approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability

- does a more complex model help understanding of complex
systems?

Why agent-based models?

- abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
- approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability
- does a more complex model help understanding of complex
systems?
nothing new here? depends on

Why agent-based models?

abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability
does a more complex model help understanding of complex
systems?
nothing new here? depends on
ratio of reactive : deliberative : generative behaviour

Why agent-based models?

abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
approaches emphasize different dimensions
accuracy granularity fidelity

heterogeneity precision scalability
does a more complex model help understanding of complex
systems?
nothing new here? depends on

ratio of reactive : deliberative : generative behaviour
- adaptation: hard-coded vs. data-driven behaviour

Why agent-based models?

abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability
does a more complex model help understanding of complex
systems?
nothing new here? depends on

ratio of reactive : deliberative : generative behaviour
- adaptation: hard-coded vs. data-driven behaviour

policy is late-binding for simulation

Why agent-based models?

abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability
does a more complex model help understanding of complex
systems?
nothing new here? depends on

ratio of reactive : deliberative : generative behaviour
- adaptation: hard-coded vs. data-driven behaviour

policy is late-binding for simulation

simulation is test environment for policy

Technology jigsaw

Agent-based simulation constraints:

sample size = memory
serialization = time
parameter range + dimensions = time to sweep

simple (individual) models = fidelity?

Technology jigsaw

Agent-based simulation constraints:

sample size = memory
serialization = time
parameter range + dimensions = time to sweep
simple (individual) models = fidelity?

Map to HPC? Overheads of many small tasks

Technology jigsaw

Agent-based simulation constraints:

sample size = memory
serialization = time
parameter range + dimensions = time to sweep
simple (individual) models = fidelity?

Map to HPC? Overheads of many small tasks
HPC opportunity: fidelity++ = better fit + all above

observe

norm
reasoning
service

agent
platform

interpret

I I

pyCOMPSs \ pyCOMPSs [

Contents

2 InstAL: a DSL for norm modelling

Context

- capture (in)formal contextualized expectations of behaviour

- what ought (not) to be true

- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold

- deontic logic (Wright 1951) of F, P, O

Context

- capture (in)formal contextualized expectations of behaviour
- what ought (not) to be true
- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold
- deontic logic (Wright 1951) of F, P, O

~+ knowledge representation as norms

Context

capture (in)formal contextualized expectations of behaviour
- what ought (not) to be true
- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold
- deontic logic (Wright 1951) of F, P, O
~+ knowledge representation as norms

~> governance of agents in multiagent systems

Context

capture (in)formal contextualized expectations of behaviour

- what ought (not) to be true

- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold

- deontic logic (Wright 1951) of F, P, O

~> knowledge representation as norms
~> governance of agents in multiagent systems

~> governance of actors in socio-cognitive technical systems

Conceptual overview

economics (North 1991)
- inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context
norm = part of policy or regulation or requirement

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context

norm = part of policy or regulation or requirement
institution = set of norms

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context
norm = part of policy or regulation or requirement
institution = set of norms
institution = policy or regulations or requirements

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context
norm = part of policy or regulation or requirement
institution = set of norms
institution = policy or regulations or requirements
associates action with (institutional) consequences

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context
norm = part of policy or regulation or requirement
institution = set of norms
institution = policy or regulations or requirements
associates action with (institutional) consequences
constitutive norms (Searle 1995):
brute facts ~ social facts

Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context
norm = part of policy or regulation or requirement
institution = set of norms
institution = policy or regulations or requirements
associates action with (institutional) consequences
constitutive norms (Searle 1995):
brute facts ~ social facts

counts-as (Jones et al. 1996):
real-world event ~ institutional event

Deontic
Sensor

Human /Software
Actors

Actions change the (institutional) world

external generates institutional
. SRR

counts-as: . : " i
action if(conditions) action

Actions change the (institutional) world

~ external generates institutional
counts-as: 2 -_— :
action if(conditions) action

institutional facts represented by fluents

Actions change the (institutional) world

_ external generates

counts-as: ' : iti
action if(conditions)

institutional facts represented by fluents
1 fluent = true if present, false otherwise

institutional
action

Actions change the (institutional) world

~ external generates institutional
counts-as: 2 -_— :
action if(conditions) action

institutional facts represented by fluents
1 fluent = true if present, false otherwise

. initiates
C": action = fluent
if(conditions)

2 inertial fluent: .
terminates

C}: action = =
if(conditions)

good for facts true for a period with start and finish actions

Actions change the (institutional) world

~ external generates institutional
counts-as: 2 -_— :
action if(conditions) action

institutional facts represented by fluents
1 fluent = true if present, false otherwise

. initiates
C": action = fluent
if(conditions)

2 inertial fluent: .
terminates

C}: action = =
if(conditions)

good for facts true for a period with start and finish actions

- N fl
3 non-inertial fluent: Ca if(conditions) St

good for facts expressed as combination of
inertial + non-inertial fluents

Making it work

mathematical model:
sets + relations (G, C) ~~ labelled transition system

AL S -2, S

Making it work

mathematical model:

sets + relations (G, C) ~~ labelled transition system

AL S -2, S

Institution

acty

conceptual model:

act; —
S S
@ Je =) K 2
5 h
5
K
Environment -G
l' .
. h
€1 €2 €3 €y
[@ @ @]

Making it work

mathematical model:
sets + relations (G, C) ~~ labelled transition system

AL S -2, S

Institution

acty) acty
S 7% I

conceptual model:

5
5 5
Environment G kY
l' .
g 5
€1 €2 €3 €y
[@ @ @]

generalizes to multiple, connected institutions

Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

python front-end

Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

python front-end

compiler: InstAL to Answer Set Programming

Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

python front-end
compiler: InstAL to Answer Set Programming

python API to clingo (answer set solver, C++)

Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

python front-end
compiler: InstAL to Answer Set Programming
python API to clingo (answer set solver, C++)

answer sets delivered in JSON

Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

python front-end

compiler: InstAL to Answer Set Programming
python API to clingo (answer set solver, C++)
answer sets delivered in JSON

visualization tools generate images from traces

Contents

3 Deontic Sensors: normative reasoning as a service

Al software siloes

- agent platform package =
agent behaviour + environment + [institution(s)]
see Aldewereld et al. (2016) for survey

Al software siloes

agent platform package =
agent behaviour + environment + [institution(s)]
see Aldewereld et al. (2016) for survey

institutions absent or optional extra

Al software siloes

agent platform package =
agent behaviour + environment + [institution(s)]
see Aldewereld et al. (2016) for survey

institutions absent or optional extra

environment interface standard Behrens et al. (2011)

Al software siloes

- agent platform package =
agent behaviour + environment + [institution(s)]
see Aldewereld et al. (2016) for survey

institutions absent or optional extra
- environment interface standard Behrens et al. (2011)

buy the package: can't build platform from components

Software engineering approach

refactoring: make norm reasoning a separate component

Software engineering approach

refactoring: make norm reasoning a separate component

design pattern: blueprint for deontic sensors

Software engineering approach

refactoring: make norm reasoning a separate component
design pattern: blueprint for deontic sensors

resource-oriented architecture: deploy as RESTful services

Software engineering approach

refactoring: make norm reasoning a separate component
design pattern: blueprint for deontic sensors
resource-oriented architecture: deploy as RESTful services

~> decoupling

Software engineering approach

refactoring: make norm reasoning a separate component
design pattern: blueprint for deontic sensors
resource-oriented architecture: deploy as RESTful services
~> decoupling

~~ institution re-use

Software engineering approach

refactoring: make norm reasoning a separate component
design pattern: blueprint for deontic sensors
resource-oriented architecture: deploy as RESTful services
~> decoupling

~> institution re-use

~~ institution certification

Software engineering approach

refactoring: make norm reasoning a separate component
design pattern: blueprint for deontic sensors
resource-oriented architecture: deploy as RESTful services
~> decoupling

~> institution re-use

~> institution certification

access normative reasoning across + outside Al

Sense-Act + Observe-Interpret

_.--~{AGENT
sense,”” act
| ENVIRONMENT | ,

Sense-Act + Observe-Interpret

-

_---»(AGENT.
sense,’/ ’,’ AGENT
sefise,””

{ ENVIRONMENT

act

Sense-Act + Observe-Interpret

-

_---»(AGENT.
sense,’/ ’,’ AGENT
sefise,””

{ ENVIRONMENT

interpret ,) observe
INSTITUTION J«--"

act

Sense-Act + Observe-Interpret

- -

,

act

_ intefpret 'observe
interpret - INSTITUTION} L’ ‘observe

INSTITUTION}—— .

Deontic Sensors Architecture

[7 AREN
action data _ \\\
query data R X N
, °~ jnstantiate "\
’ A Tosss = \\
/ instantiate ™ - \
DEONTIC 4

SENSORS cate

’

DESIGNER
o

T

- “instantiate

interpret

social data
deontic commentary

resource-oriented architecture (ROA) pattern for normative
reasoning services (Padget et al. 2018)

Architecture: environment and agents

ENVIRONMENT 3

Architecture: observe-interpret

se. observe P
- . action data .
> query data
. 0 DS,
\sj—a create
! !
IVIRONMENT g
4 creat
AN ;
2 \
interpret £
& \
social data \

deontic commentary

Architecture: deontic sensors

\

\
Creg te
\

DEONTIC

SENSORS ‘/CW

|

DESIGNER

5 . /
- “instantiate /

ROA endpoints

1 — POST /model/
Create model from specification
+ /model/X

ROA endpoints

1 — POST /model/
Create model from specification
+ /model/X

2 — POST /model/X/instance/
Create instance of model X with POST data
< /model/X/instance/Y

ROA endpoints

1

— POST /model/
Create model from specification
+ /model/X
— POST /model/X/instance/
Create instance of model X with POST data
< /model/X/instance/Y

— POST /model/X/instance/Y/query/
Create a query of instance Y with POST data
+ /model/X/instantiate/Y /query/Z

ROA endpoints

=3

— POST /model/
Create model from specification
+ /model/X
2 — POST /model/X/instance/
Create instance of model X with POST data
< /model/X/instance/Y
8 — POST /model/X/instance/Y /query/
Create a query of instance Y with POST data
+ /model/X/instantiate/Y /query/Z
— GET /model/X/instance/Y /query/Z/output
Read result of query
+ result of query Z in a protocol-defined format

s

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment

normative reasoning: InstAL (Padget et al. 2016a)

InstAL: Institutional Action Language
builds model in Answer Set Prolog
- symbolic model checking
- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)

Belief-Desire-Intention (BDI) agent architecture
means-end reasoning
- open-minded commitment

normative reasoning: InstAL (Padget et al. 2016a)

InstAL: Institutional Action Language
builds model in Answer Set Prolog
- symbolic model checking
- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment
normative reasoning: InstAL (Padget et al. 2016a)

InstAL: Institutional Action Language
builds model in Answer Set Prolog
- symbolic model checking

- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:
python Flask for RESTful API

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment
normative reasoning: InstAL (Padget et al. 2016a)

InstAL: Institutional Action Language
builds model in Answer Set Prolog
- symbolic model checking

- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:

python Flask for RESTful API
- celery + rabbitMQ for server task creation/communications

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment
normative reasoning: InstAL (Padget et al. 2016a)

InstAL: Institutional Action Language
builds model in Answer Set Prolog
- symbolic model checking
- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:

python Flask for RESTful API
- celery + rabbitMQ for server task creation/communications
python InstAL compiler

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)

Belief-Desire-Intention (BDI) agent architecture
means-end reasoning
- open-minded commitment

normative reasoning: InstAL (Padget et al. 2016a)

InstAL: Institutional Action Language
builds model in Answer Set Prolog
- symbolic model checking
- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:
python Flask for RESTful API
- celery + rabbitMQ for server task creation/communications
python InstAL compiler
- clingo for grounding + solving

Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment

normative reasoning: InstAL (Padget et al. 2016a)
InstAL: Institutional Action Language
builds model in Answer Set Prolog

- symbolic model checking

- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:
python Flask for RESTful API
- celery + rabbitMQ for server task creation/communications
python InstAL compiler
- clingo for grounding + solving
python client: JSON payload both ways

Instantiating for HPC

1 replace Celery with pyCOMPSs

Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API

Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API
s extend agent platform Controller to

Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API

s extend agent platform Controller to
- send actions to InstAL

Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API

s extend agent platform Controller to

- send actions to InstAL
- receive interpretations from InstAL

Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API

s extend agent platform Controller to
- send actions to InstAL
- receive interpretations from InstAL
- publish interpretation for agents to perceive

Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API

s extend agent platform Controller to

- send actions to InstAL
receive interpretations from InstAL
publish interpretation for agents to perceive

4 extend agent reasoning to account for normative percepts

Contents

4 Sample water management policy

InstAL declarations

Different types of declarations:

type Industry;

exogenous event discharge (WWTP,Mass);

violation event illegalDischarge (WWTP,Mass) ;

inst event iDischarge (WWTP,Mass) ;

fluent highMercury (Mass) ;

obligation fluent obl (
iInform(Industry, WNTP,Mass), % event
iRelease (Industry, WNTP, Mass) , % deadline
failureToInform(Industry, WNTP,Mass)); %

O O~NOOOT A WN -

violation

InstAL rules

Generates, initiates and terminates rules:

discharge (WWTP, Mass) generates iDischarge (WWTIP,Mass)
if treated (WWTP,Mass, Treatment) ;

discharge (WWTP,Mass) generates illegalDischarge (WWTP,Mass)
if not treated (WWTP,Mass, Treatment) ;

discharge (WWTP,Mass) generates illegalDischarge (WWTP,Mass)
if highMercury (Mass) ;

illegalDischarge (WWIP,Mass) initiates illegalBecause (untreated,

WWTP,Mass)

if not treated (WWTP,Mass, Treatment) ;

9 illegalDischarge (WWTP,Mass) initiates illegalBecause (

high_mercury, WWTP, Mass)

~NOoO 1A WN

(o]

10 if highMercury (Mass) ;

11 iDischarge (WWTP,Mass) terminates treated (WWTP,Mass, Treatment)

12 if treated (WWTP,Mass, Treatment), not highMercury (Mass) ;

13 iPerform (WWTP,Mass, Treatment) initiates treated (WWTP,Mass,
Treatment)

14 if treating (WWTP,Mass) ;

15 initially

16 highMercury (m2),

17 signedContract (wwtpl,il),

18 obl(iInform(il,wwtpl,M),iRelease (il,wwtpl,M), failureToInform(il,
wwtpl, M))

Sample run

grounding specification:

Industry: il i2

Mass: ml m2

Reason: untreated high_mercury
Treatment: tk

WWTP: wwtpl wwtp2

a b wWN -

Sample run

a b wWN -

O~NOOT A WN -

grounding specification:

Industry: il i2

Mass: ml m2

Reason: untreated high_mercury
Treatment: tk

WWTP: wwtpl wwtp2

input trace:

observed (inform(il, wwtpl, m2))
observed (release (il, wwtpl, m2))
observed (receive (wwtpl,il, m2))
observed (perform (wwtpl, m2, tk))
observed (discharge (wwtpl, m2))
observed (release (i2,wwtp2,ml))
observed (receive (wwtp2,i2,ml))
observed (discharge (wwtp2,ml))

Introduction InstAL Deontic Sensors
00000 000000 00000000000

Lcmetadatar: (ranswer._set o
“mode”: "multi shot~; pid

mpjhnvb)sf 191, "tinestomp 11554133316, mms, versm- O
nts”: (], "gpows’ 1,"obls":(],"perms":(], i

0."

tmproyl1g77. |
1554133315 mmm version”
£ s tovipls T, etertill Choldsatei (4 goedContractsy
1.

water 1], ("
ho

eive
LS

er
Wwtp1! vater]], 1y
e e, e

“wtp1®, *a1*])]], ater*]], [
“ntpl®, 02" 1111, "water*11, "

"2:,‘".:/ tmphnvb;
"1

k) =
317, “wtpl® a2 1111, "water®
"11%, "wwtpl®,"m1*]]]], "water"]], ["hols [y

iRz 111 ater] natdsees [operner{ [-ibise charse”,

Lrwater*
L "water"
er*]], [

111, l(’"H?elexse .l'u" K
[l

1,"answer_set of":1,"

oo/ tnprayiion. g, tow/

ccutred 1117, Leotosator. (ompeet see mes -
L_shot l' "nxa 7887, "source_ files® [*/tmp/

ate": (-hotdsat" (*fluents*: ([*holdsat”,

er']], [*holdsat"
Rotasats (Sabs

W e
(], "ipows"

“1111, "water*]],
g R 111, water 11 {-hotdsath, [T pernt:
T (heldsat [[Cpern, [["iPerforn’

form

b ouds: at:, [pernt, [(iper

1. ["hols [pern”, [[*iInform’
1l ("ha\dsat' L penag] £ S formiy
‘ ", [[*iDischarge",

holdsat=, [[-perat ([relea
dsat”, [[“pern”, [[*rel ease',l'n‘ “a1°]]]], "water*]],
g1 2t 1111 water 1. holdsat”, {[“pern”,

iater1), -noldsaté, | {-pari g

11, [*holdsat*, [[*pern* . [[*inforn",
11, ["holdsat", [["pern”, [[*discharge",
hold: “perm”, [[" iscna

2

pern” , ["nui Seater111,“poust:

a1 1] Frater n i holasat’, {(*pou",
ive",

mms v
“vater" i vater- 11 {"hotdsat*s
&+
et
o141, Toblaz: [[sholdsate, ([obl",
1], i lureTolnforn®,
.0

“null*]], "water*]],

["pe
TS charger. {Pontals mi1TT] mubtersiy, natdsate [perats
1, "n2

"ua(er“]l § hﬂlﬂsa(",(l perat [infocy
[*perm! or

nomsn-,u ‘pern

losat, (Fpera’, ([re\ease',['ﬂ n2°]11], "water*]]

'holdsax [["perm, [[* XDXSC arge”, (' 1"111], “water®]] I8 ho\dsax',ll ‘perm”,
(“10i5enarger: (ki mse111) water1] (noldsats, | pern: | [-iInfo

“11%, "wwtpl®, "m1".]lll,'vﬂer" 1. ["hold: ‘nem",(('ﬂnf m”,

"i17, 'Mpl 2tm2°]1]], "water” l.(‘no\ rvl" [[*iPerform",
“watpl®,"m1","tk"]]]], "water"]], (" rm*, [[*iPerform”,

“wwtpl®, "m2","tk"] “water"]], (‘ d l ,[[De"l"‘[['iReceive",

holdsat”, [[“pern”, [["iReceive*,
holdsat”, [["pern”, [["iRelease",

Example ODRL Epilogue
coooe 00000 000

"11%,"m1"]]]], "water*]], ["holdsat", [[“perm",[["iRele:
STz 111) water 11, rpows: ([holdsat [powts (- a1, ater)),
targe" Cwitpl", "ol 1111, vater 11, inotgsat {1por,
water*]), [*holdsat", [[*pow, [*inforn"

111, "water*]], (*holdsat", [
2 T veater 111 rtoows™s U1 "retease”,
211111 “n:curred"[[“uccurre water*],
17417, "n2" (Coccurred ,[! LureTolnforn’,
11, Huater)11)7, 0 naver_set i1, "answer
1 Ghot blde 17887~ source Tiles: (7 /!mp/!mprgyugﬂ \p",“/
tinestans"; xssmms 2317219, version' 1.0, 107, "
bl lele i Rersac Bl eyl e i
hotdsate:[-Lhgormed. (11 2’} Teiateri], (-holdsat:
["signedContract”, ["wwipl®, i *11, [*holdsat* [[*hightlercury",

N eate o .
o3t ater 1), natdeth 1 Liver: Lovoter11o water 11 gpouss: (1 g
1,%0bls": [["holdsat®, [["obl", [["iInform", ["il", "wwtpl","m1"]], ["iRelease",

»i17 "m1*]], {*failuréToInforn" , [*11", "wetpl”, "n1"]]]], “water*]]], "perms
[hotdsath i parat L iRetease: (4, "m2" 11, vater 1, [hotdsate, [["pern”,
["iRelease", ["11","m1"]]]], "water"]], [“holdsat", [["pers [[iReceive’

“watpl” ,"mz“nn,waxer 10 Fhotdsat’, ([pernt, *1Roce
Mnl‘r"vn'l 1111, "water" [“hu\ sat*, [["perm", [[“iPeerrm "

w2 Mtk watert 1, (+hotdsat®, [1*pernt, [*iperfora,
. *.rtke] 111, "water 11, [*holdsat* [{*pern"; [[*4Inforn",
i1 2111 ater 11 holdsat ([2pern’. {1 nforar)
1S D a1 1) water 1 hotsate, {[-pert [-idischarde’
Bartp 1 R 111, ater 11 [-hotdsate 1 pera [+ ibischarger
“witp1”, "1]1]1, “water)1, ["holdsat", [[*pern’ ["release
"u','mz“]]ll.“w-ter'l],["nu\dsn",[['vwm",[[“re\e e, [*: Al",“ml“]]]]y wl(!?"ll.
“holdsat®, [[Mperat ([*receiver (watpl. 2t 111] water']). {shotdsot, {(“per
{receivet, gt Sl 1), water' 1), {-hotdsat?, [[*pern,[["perforn
it I o, [(“perforn’,

,m

11, "water']]], “pows
1" pow: S haldsat’, {(*po.
[retpser, 135" uater], [notdsatt, [[“an",[[receive:

gL seabh 1111 et 1] ohodsat 11 pow", [[rec

switpl®, *n1"]]1], “water]], ["holdsat" , *pow ' irperforn:
oLz, a2t C 11T Svater T, Dholasat L Fpowt, (" perforn”,

it 1111, water" 11, [*holdsat", [["pow", [[*inforn®,

1, 'w!pl“ “mZ“]]]],'wa(er“]) ["holdsat", [["pow", [[*inform",
1, witpl’, 011111, "water' 11, {*holdsat" [["pow", [[*discharge",
“witp1®, "2 |11, “water*1], [*hoidsat*, [[“pow”, ([*discharge”
svater 11, [*holdsat, [[“pow” ['mutL+]]: water*]11, "t
served:, ["receive!, ("witod’ "n2: 1111, occurtadn L roccurred”,
tpl*, "n2*)), "water*)], [*occurred®, [[*iReceive*,
i 1113}, {"mef nana'-(answer ¢ set n' 1,"answer set_o
ode” : "multi_shot", "pid":7887, "source " [/t mwmprgyugw 1%,/
tigestanp:: 1554133316 mms Hersiont e, atel:
:[["holdsat", [["live", er']], “water”]], ["holdsat",
{-hiotercurys, r‘mz-]l,-wmr“n [*ho \ase!" Il“signed(ontrec
wtpl®, "1 o), [hotdsat ([+d ke e gl
Ho\tate [reatede, [wtpts a3, HC] omuatero 1 “gpows™ {1,
jjovlers ("hotdsat {[-obt” (i TTnforn®, (441 witpdt, Ai*11; *iRetease,
failureToInforn', [*11* "wtpl® “ml“]]]]v"water"lll.“pem;
“0ll*]], fvater®], (" masaruu pern”, [["discharge*,
er*]], ["holdsat

é

141 1.1
it ovatecill: holdsac [[Zpernt, [(perfornt
“witpl®,"n1*,"tk*111], "water"]], ["holdsat", [[*pern", [[*perforn",

visualization

inform (i1, wwtpl, m2)
ilnform(i1, wwtpl, m2): water
inform(i1, wwtpl, m2): water

release(iL, wwtpl, m2) receive(wwtpl, i1, m2)
iReceive(wwtpl, i1, m2): water

receive(wwtpl, i1, m2): water

perform(wwtpl, m2, tk)
iPerform(wwtpl, m2, tk): water
perform(wwipl, m2, tk): water

highMercury(m2): water
live(water): ater
obl(ilnform(i1, wwtpl, m1),

highMercury(m2)
mrnm.gam wwtpl, mZ)

we(water): w

iRelease(i

obl(vlnlwm(ll, tpl, m1),
tpl, m1),

.)
failureTolnform(1, wwtp.

iRelease(i1, wwtpl, m1),
failureTolnform(il, wwtpl,

fi\lureTulnfqm

m1)): water m1)): water
d i1): water dContract(:

hllureToInlwm(ll. wwtpl, m1)): vater
ed

i1): water

m1)): water
signedContract(wwtpl,
water

discharge(wwtpl, m2)

discharge(wwipl, m2): water
iDischarge(wwipl, m2): water
legalDis m2):

release(i2, wwtp2, m1)
iRelease(i2, wwtp2, m1): water discharge(wwtp2, m1)
release(i2, wwip2, ml): water i i2, m1) ml): water
wwtp2, i i2, m1): water illegalDischarge(wwtp2, m1):
receive(wwtp2, yz mx) water

water m1): water

) water
v

wtpl, m1),
vipl, m1),
A(iL, wwtpl,

wtpl, iL): water
m2, tk): water

highMercury(m2): water

highMercury(m2): water
mercur

highMercury(m2): water

ercury,

obi(i llnlmm(\l ww(pl m1),

iRelease(i1, wwtpl, m1),

reTolnform(iL, wwtpl,
ml)) water

iRelease(i1, wwtpl, m1),
i1,

mercury,
wwtpl, m2): water
live(water): water
obl(ilnform(iL, wwtp1, m1),
iRelease(i1, wwtpl, m1),
w

) vater

water

wtpl,
): water

i1): water
treated(wwtvl m2, th): water

mzed(wwm) watev

i1): water
treat &ed(wmpl m2, th): water
treating(wwtp2, m1): water

e (ma) vater
galBecause(untreated,
tp2, 1)

\|\egalsmuse(mgh,memw
er

hve(wa!ev) s
obl(il

failureTolnform(il, wwtpl,
e

m1)): water
signedContract(wwtpl. i1): water
treated(wwtpl, m2, tk): water
treating(wwtp2, m1): water

Trace visualization

ilnform(i1,wwtpl,m2):
release(i1,wwtpl,m2):
iRelease(il,wwtpl,m2):
receive(wwtpl,il,m2):
iReceive(wwipl,il,m2):
perform(wwtpl,m2,tk):
iPerform(wwtpl,m2,tk):

discharge(wwtpl,m2

illegalDischarge(wwtpl,m2):
iDischarge(wwtpl,m2):
release(i2,wwtp2,m1):
iRelease(i2,wwtp2,m1):
uncontractedRelease(i2,wwtp2,m1):

receive(wwtp2,i2,m1):

iReceive(wwtp2,i2,m1

discharge(wwtp2,m1):
illegalDischarge(wwtp2,m1):
highMercury(m2):
illegalBecause(untreated, wwtp2,m1):

illegalBecause(high-mercurywwtpl,m2):

informed(ilwwtpl,m2):
live(water):

obl(ilnform(i1,wwtpl,m1),iRelease(i1,wwtpl,m1),failure Tolnform(ilwwtpl,m1)):
signedContract(wwtpl,il):

treated(wwtpl,m2,tk):

treating(wwtpl,m2):

treating(wwtp2,m1):

water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water
water

water

Contents

5 Semantic policy representation

Where's the semantics?

unfortunately, each model is “just another program”

Where's the semantics?

unfortunately, each model is “just another program”

where “illegalDischarge” is just a string

Where's the semantics?

unfortunately, each model is “just another program”
where “illegalDischarge” is just a string

and the implementation is the programmer’s interpretation

Where's the semantics?

unfortunately, each model is “just another program”
where “illegalDischarge” is just a string
and the implementation is the programmer’s interpretation

need to connect real world to model (automatically)

Where's the semantics?

unfortunately, each model is “just another program”
where “illegalDischarge” is just a string

and the implementation is the programmer’s interpretation
need to connect real world to model (automatically)

natural language — model?

Where's the semantics?

unfortunately, each model is “just another program”
where “illegalDischarge” is just a string

and the implementation is the programmer’s interpretation
need to connect real world to model (automatically)
natural language — model?

semantic representation of policy — model?

Where's the semantics?

unfortunately, each model is “just another program”
where “illegalDischarge” is just a string

and the implementation is the programmer’s interpretation
need to connect real world to model (automatically)
natural language — model?

semantic representation of policy — model?

W3C's Open Digital Rights Language (ODRL)

Where's the semantics?

unfortunately, each model is “just another program”

where “illegalDischarge” is just a string

and the implementation is the programmer’s interpretation
need to connect real world to model (automatically)

natural language — model?

semantic representation of policy — model?

W3C's Open Digital Rights Language (ODRL)

Originally conceived for asset rights management: early 2000s

Where's the semantics?

unfortunately, each model is “just another program”
- where “illegalDischarge” is just a string
- and the implementation is the programmer’s interpretation
need to connect real world to model (automatically)
natural language — model?
- semantic representation of policy — model?
- W3C's Open Digital Rights Language (ODRL)
- Originally conceived for asset rights management: early 2000s
- ODRL 2.2 (2018) generalizes to policy... to some degree

ODRL information

Policy

uid
profile
ConflictTerm
I

Set Offer | Agreement
N =

Rule

“ermission Duty Prohibition

model — Policy Compliance profile

Policy
. - =
Collection COREGRTe Collection
[o | —
Logical
straint
(Tl Constraint Set Constral
o]
gnOperandReterence tgnOperandRefrence
GaType e
sas
Rule
Action
Operator LeftOperand Operator LeftOperand
—— —] —
RightOperand RightOperand
— —

Part Party o -
— Collecticn ission Prohibiton Obligation Dispensation Request =

Party
Vo= I I — — »a

ODRL information

Policy

uid
profile
ConflictTerm
I

Set Offer | Agreement
N =

Rule

“ermission Duty Prohibition

model — Policy Compliance profile

Policy
T
Collection - Collection
[o | —
Logical
straint
(Tl Constraint Set Constral
o]
gnOperandReterence tgnOperandRefrence
GaType e
sas
Rule
Action
Opataton LeftOperand Operator LeftOperand
—— —] —
RightOperand RightOperand
— —

Part Party o -
— Collecticn ission Prohibiton Obligation Dispensation Request =

Party
Vo= I I — — »a

ODRL information

Policy

uid
profile
ConflictTerm
I

Set Offer | Agreement
N =

Rule

“ermission Duty Prohibition

model — Policy Compliance profile

Policy
T
Collection - Collection
[o | —
Logical
straint
it Constraint Set Constral
o]
gnOperandReterence tgnOperandRefrence
GaType e
sas
Rule
Action
Opataton LeftOperand Operator LeftOperand
—— —] —
RightOperand RightOperand
— —

Part Party o -
— Collecticn ission Prohibiton Obligation Dispensation Request =

Party
Vo= I I — — »a

ODRL information

Policy

uid
profile

ConflictTerm

Set Offer | Agreement

Rule

Action

“ermission Duty

Prohibition

model — Policy Compliance profile

Poticy
—]
I
Set
Rule
Action
T e —

Request

Asset Asset
[o |
Logical
it Constraint
i
Operator LeftOperand
I I
RightOperand
I
Fa
/)]

Reso Resource
st Collection

Constraint

]
fightOperandReference
atal yoo

it
status

Operator LeftOperand
I

RightOperand
I

Party
Collection

ODRL information

Policy

uid
profile

ConflictTerm

Set Offer | Agreement

Rule

Action

“ermission Duty

Prohibition

model — Policy Compliance profile

Poticy
—]
I
Set
Rule
Action
T e —

Request

Asset Asset
[o |
Logical
it Constraint
i
Operator LeftOperand
I I
RightOperand
I
=y
)]

Reso Resource
st Collection

Constraint

]
fightOperandReference
atal yoo

it
status

Operator LeftOperand
I

RightOperand
I

Party
Collection

Example ODRL policy compliance request

1

2 "@context": "http://www.w3.org/ns/orcp.jsonld",

3 "Qtype": "Set",

4 "uid": "http://example.com/policy:01",

5 "profile": "http://example.com/odrl:profile:regulatory-
compliance",

6

7 "request": [{

8 "action": "orcp:Transfer",

9 "target": "orcp:PersonalData",

10 "sender": "http://example.com/TR_Ireland",

11 "recipient": "http://example.com/TR_USA",

12 "purpose": "orcp:KYyCc",

13 "location": "orcp:USA",

14 "legalBasis": "orcp:Consent",

15 "constraint": [{

16 "leftOperand": "orcp:AppropriateSafeguards",

17 "operator": "eq",

18 "rightOperand": { "@id": "orcp:BindingCorporateRules

" }
19 H
20 H]

21 1}

Data protection

use-case: fragments of articles of GDPR

Data protection

use-case: fragments of articles of GDPR

- check business process compliance with GDPR

Data protection

- use-case: fragments of articles of GDPR
- check business process compliance with GDPR
- H2020 SPECIAL project

Data protection

- use-case: fragments of articles of GDPR

- check business process compliance with GDPR
- H2020 SPECIAL project

- develop ODRL — InstAL translator

Data protection

- use-case: fragments of articles of GDPR

- check business process compliance with GDPR
- H2020 SPECIAL project

- develop ODRL — InstAL translator

- aim to synthesize ODRL from natural language policies

Contents

6 Epilogue

Summary

formal model of institutions: policies, ...

Summary

formal model of institutions: policies, ...

(formal model of (directed) bridges: connect institutions)

Summary

formal model of institutions: policies, ...
(formal model of (directed) bridges: connect institutions)

computational model

Summary

formal model of institutions: policies, ...

(formal model of (directed) bridges: connect institutions)
computational model
achieves:

refactoring and decoupling of normative reasoning
publication of normative reasoning as a service

Summary

formal model of institutions: policies, ...
(formal model of (directed) bridges: connect institutions)
computational model

achieves:

refactoring and decoupling of normative reasoning
publication of normative reasoning as a service

enables/facilitates:

Summary

formal model of institutions: policies, ...
(formal model of (directed) bridges: connect institutions)
computational model

achieves:

refactoring and decoupling of normative reasoning
publication of normative reasoning as a service

enables/facilitates:
testing of normative models

Summary

formal model of institutions: policies, ...
(formal model of (directed) bridges: connect institutions)
computational model

achieves:

refactoring and decoupling of normative reasoning
publication of normative reasoning as a service

enables/facilitates:

testing of normative models
sharing/re-use of normative models

Summary

formal model of institutions: policies, ...
(formal model of (directed) bridges: connect institutions)

computational model
achieves:
refactoring and decoupling of normative reasoning
publication of normative reasoning as a service
enables/facilitates:
testing of normative models
sharing/re-use of normative models
certification of normative models (of regulation)

Summary

formal model of institutions: policies, ...
(formal model of (directed) bridges: connect institutions)

computational model
achieves:

refactoring and decoupling of normative reasoning

publication of normative reasoning as a service
enables/facilitates:

testing of normative models

sharing/re-use of normative models

certification of normative models (of regulation)

regulatory compliance-checking as a service

Discussion

how to share and test policy models?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?
how to certify policy models?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?
how to certify policy models?
how to discover policy models for re-use?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?
how to certify policy models?

how to discover policy models for re-use?
how to record policy states for audit?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?
how to certify policy models?

how to discover policy models for re-use?
how to record policy states for audit?

how to capture written policy formally?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?
how to certify policy models?

how to discover policy models for re-use?
how to record policy states for audit?
how to capture written policy formally?
how to capture policy heterarchies?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?

how to certify policy models?

how to discover policy models for re-use?

how to record policy states for audit?

how to capture written policy formally?

how to capture policy heterarchies?

how to revise a policy: which is the master copy?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?

how to certify policy models?

how to discover policy models for re-use?

how to record policy states for audit?

how to capture written policy formally?

how to capture policy heterarchies?

how to revise a policy: which is the master copy?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Discussion

how to share and test policy models?

how to certify policy models?

how to discover policy models for re-use?

how to record policy states for audit?

how to capture written policy formally?

how to capture policy heterarchies?

how to revise a policy: which is the master copy?

Acknowledgements: Marina De Vos!, Sabrina Kirrane?,

Pablo Noriega3, Charlie Ann Pagel, Ken Satoh?*, Harko Verhagen5

QUESTIONS WELCOME!

YUniversity of Bath

2\/ienna Business University

3IlA/CSIC

*National Institute of Informatics, Tokyo
®Stockholm University

Bibliography |

E Aldewereld, Huib, Olivier Boissier, Virginia Dignum, Pablo Noriega, and
Julian Padget, eds. (2016). Social Coordination Frameworks for Social
Technical Systems. Vol. 30. Law, Governance and Technology. Springer.
DOI: 10.1007/978-3-319-33570-4_.

E Behrens, Tristan, Koen Hindriks, and Jiirgen Dix (2011). “Towards an
environment interface standard for agent platforms”. In: Ann. Math. Artif.
Intell. 61.4, pp. 261-295. DOI: 10.1007/s10472-010-9215-9.

E Bordini, Rafael, Jomi Hiibner, and Michael Wooldridge (2007). Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons, Ltd.
DOI: 10.1002/9780470061848.ch4.

E Harré, Rom and Paul F Secord (1972). “The explanation of social behaviour.”.
In:

B Jones, A.J.I. and M. Sergot (1996). “A formal characterisation of
institutionalised power". In: Logic Journal of IGPL 4.3, pp. 427-443.

https://doi.org/10.1007/978-3-319-33570-4_
https://doi.org/10.1007/s10472-010-9215-9
https://doi.org/10.1002/9780470061848.ch4

Bibliography Il

B Lee Jeehang, Julian Padget, Brian Logan, Daniela Dybalova, and
Natasha Alechina (2014). “N-Jason: Run-Time Norm Compliance in
AgentSpeak(L)". In: Engineering Multi-Agent Systems - Second
International Workshop, EMAS 2014, Paris, France, May 5-6, 2014, Revised
Selected Papers. Ed. by Fabiano Dalpiaz, Jirgen Dix, and
M. Birna van Riemsdijk. Vol. 8758. Lecture Notes in Computer Science.
Springer, pp. 367—-387. DOI: 10.1007/978-3-319-14484-9_19.

E Noriega, Pablo, Jordi Sabater-Mir, Harko Verhagen, Julian Padget, and
Mark d'Inverno (2017). “Identifying Affordances for Modelling Second-Order
Emergent Phenomena with the WIT Framework”. In: Autonomous Agents
and Multiagent Systems - AAMAS 2017 Workshops, Visionary Papers, Sdo
Paulo, Brazil, May 8-12, 2017, Revised Selected Papers. Ed. by
Gita Sukthankar and Juan A. Rodriguez-Aguilar. Vol. 10643. Lecture Notes
in Computer Science. Springer, pp. 208—227. DOI:
10.1007/978-3-319-71679-4_14.

E North, Douglas (1991). Institutions, Institutional Change and Economic
Performance. CUP.

B Ostrom, Elinor (1990). Governing the Commons. The Evolution of Institutions
for Collective Action. CUP.

https://doi.org/10.1007/978-3-319-14484-9_19
https://doi.org/10.1007/978-3-319-71679-4_14

Bibliography IlI

Padget, Julian, Emad Elakehal, Tingting Li, and Marina De Vos (2016a).
“InstAL: An Institutional Action Language”. In: Social Coordination
Frameworks for Social Technical Systems. Springer, pp. 101-124.

Padget, Julian, Emad ElDeen Elakehal, Tingting Li, and Marina De Vos
(2016b). “InstAL: An Institutional Action Language”. In: Social
Coordination Frameworks for Social Technical Systems. Springer,
pp. 101-124. por: 10.1007/978-3-319-33570-4_6.

Padget, Julian, Marina De Vos, and Charlie Ann Page (July 2018). “Deontic
Sensors” . In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18. International Joint
Conferences on Artificial Intelligence Organization, pp. 475-481. DOLI:
10.24963/1jcai.2018/66.

Searle, John (1995). The Construction of Social Reality. Allen Lane, The
Penguin Press.

Wright, Georg von (1951). “Deontic Logic". In: Mind 60.237, pp. 1-15.

https://doi.org/10.1007/978-3-319-33570-4_6
https://doi.org/10.24963/ijcai.2018/66

	Introduction
	

	InstAL: a DSL for norm modelling
	

	Deontic Sensors: normative reasoning as a service
	

	Sample water management policy
	

	Semantic policy representation
	

	Epilogue
	

	

