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normative models for intelligent agents
agent architectures for normative reasoning

applications in social simulation, security, games, legal
reasoning, software engineering, data analytics

norms = policies = regulations = narratives = requirements
current work on:
normative reasoning as a service (Padget et al. 2018)
- semantic representation of policy (on-going)
- socio-cognitive technical systems (SCTS) (Noriega et al. 2017)
policy-making as an instance of SCTS (on-going)
use in social simulation (why I'm here)
context from previous work

Institutional Action Language: InstAL (Padget et al. 2016b)
NJason: extension of Jason agent platform (Lee et al. 2014)



Why model policies?

- evidence-based policy-making



Why model policies?

- evidence-based policy-making
- safer Al



Why model policies?

- evidence-based policy-making
- safer Al
- explainable Al



Why model policies?

- evidence-based policy-making

- safer Al

- explainable Al

- human accountability + responsibility in S(C)TS



Why model policies?

- evidence-based policy-making

- safer Al

- explainable Al

- human accountability + responsibility in S(C)TS

- confidence in outcomes
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- evidence-based policy-making
- safer Al
- explainable Al
human accountability + responsibility in S(C)TS
- confidence in outcomes
nothing new here? depends on

- the policy-modelling language
- who/what does the reasoning
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Why agent-based models?

abstraction (equational) vs. synthesis (agent-based)
...or top-down vs. bottom-up
approaches emphasize different dimensions

accuracy granularity fidelity
heterogeneity precision scalability
does a more complex model help understanding of complex
systems?
nothing new here? depends on

ratio of reactive : deliberative : generative behaviour
- adaptation: hard-coded vs. data-driven behaviour

policy is late-binding for simulation

simulation is test environment for policy
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Technology jigsaw

Agent-based simulation constraints:

sample size = memory
serialization = time
parameter range + dimensions = time to sweep
simple (individual) models = fidelity?

Map to HPC? Overheads of many small tasks
HPC opportunity: fidelity++ = better fit + all above

observe

norm
reasoning
service

agent
platform

interpret

I I

pyCOMPSs \ pyCOMPSs [




Contents

2 InstAL: a DSL for norm modelling



Context

- capture (in)formal contextualized expectations of behaviour

- what ought (not) to be true

- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold

- deontic logic (Wright 1951) of F, P, O



Context

- capture (in)formal contextualized expectations of behaviour
- what ought (not) to be true
- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold
- deontic logic (Wright 1951) of F, P, O

~+ knowledge representation as norms



Context

capture (in)formal contextualized expectations of behaviour
- what ought (not) to be true
- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold
- deontic logic (Wright 1951) of F, P, O
~+ knowledge representation as norms

~> governance of agents in multiagent systems



Context

capture (in)formal contextualized expectations of behaviour

- what ought (not) to be true

- what permissions (P) or prohibitions (F) hold
- what obligations (O) hold

- deontic logic (Wright 1951) of F, P, O

~> knowledge representation as norms
~> governance of agents in multiagent systems

~> governance of actors in socio-cognitive technical systems
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Conceptual overview

economics (North 1991)
inspiration: social sciences (Harré et al. 1972)
social policy (Ostrom 1990)
norm = constraint on action in a context
norm = part of policy or regulation or requirement
institution = set of norms
institution = policy or regulations or requirements
associates action with (institutional) consequences
constitutive norms (Searle 1995):
brute facts ~ social facts

counts-as (Jones et al. 1996):
real-world event ~ institutional event

Deontic
Sensor

Human /Software
Actors
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Actions change the (institutional) world

~ external generates institutional
counts-as: 2 -_— :
action if(conditions) action

institutional facts represented by fluents
1 fluent = true if present, false otherwise

. initiates
C": action = fluent
if(conditions)

2 inertial fluent: .
terminates

C}: action = =
if(conditions)

good for facts true for a period with start and finish actions

- N fl
3 non-inertial fluent: Ca if(conditions) St

good for facts expressed as combination of
inertial + non-inertial fluents
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Making it work

mathematical model:
sets + relations (G, C) ~~ labelled transition system

AL S -2, S

Institution

acty ) acty
S 7% I

conceptual model:

5
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Environment G kY
l' .
g 5
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generalizes to multiple, connected institutions
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Implementation

computational model:

translator clingo visualisers
InstAL > AnsProlog =—— answer sets ——>

python front-end

compiler: InstAL to Answer Set Programming
python API to clingo (answer set solver, C++)
answer sets delivered in JSON

visualization tools generate images from traces
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Al software siloes

- agent platform package =
agent behaviour + environment + [institution(s)]
see Aldewereld et al. (2016) for survey

institutions absent or optional extra
- environment interface standard Behrens et al. (2011)

buy the package: can't build platform from components
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refactoring: make norm reasoning a separate component
design pattern: blueprint for deontic sensors
resource-oriented architecture: deploy as RESTful services
~> decoupling

~> institution re-use

~> institution certification

access normative reasoning across + outside Al
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Deontic Sensors Architecture
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- “instantiate

interpret

social data
deontic commentary

resource-oriented architecture (ROA) pattern for normative
reasoning services (Padget et al. 2018)
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ROA endpoints

=3

— POST /model/
Create model from specification
+ /model/X
2 — POST /model/X/instance/
Create instance of model X with POST data
< /model/X/instance/Y
8 — POST /model/X/instance/Y /query/
Create a query of instance Y with POST data
+ /model/X/instantiate/Y /query/Z
— GET /model/X/instance/Y /query/Z/output
Read result of query
+ result of query Z in a protocol-defined format

s
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Instantiating the pattern

agent platform: Jason (Bordini et al. 2007)
Belief-Desire-Intention (BDI) agent architecture
means-end reasoning

- open-minded commitment

normative reasoning: InstAL (Padget et al. 2016a)
InstAL: Institutional Action Language
builds model in Answer Set Prolog

- symbolic model checking

- single event — new model state: +/- FPO +/- domain facts
multiple events — alternative model states

InstAL as a service:
python Flask for RESTful API
- celery + rabbitMQ for server task creation/communications
python InstAL compiler
- clingo for grounding + solving
python client: JSON payload both ways
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Instantiating for HPC

1 replace Celery with pyCOMPSs
2 replace Flask (RESTful) APl with conventional API

s extend agent platform Controller to

- send actions to InstAL
receive interpretations from InstAL
publish interpretation for agents to perceive

4 extend agent reasoning to account for normative percepts
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InstAL declarations

Different types of declarations:

type Industry;

exogenous event discharge (WWTP,Mass);

violation event illegalDischarge (WWTP,Mass) ;

inst event iDischarge (WWTP,Mass) ;

fluent highMercury (Mass) ;

obligation fluent obl (
iInform(Industry, WNTP,Mass), % event
iRelease (Industry, WNTP, Mass) , % deadline
failureToInform(Industry, WNTP,Mass)); %

O O~NOOOT A WN -

violation



InstAL rules

Generates, initiates and terminates rules:

discharge (WWTP, Mass) generates iDischarge (WWTIP,Mass)
if treated (WWTP,Mass, Treatment) ;

discharge (WWTP,Mass) generates illegalDischarge (WWTP,Mass)
if not treated (WWTP,Mass, Treatment) ;

discharge (WWTP,Mass) generates illegalDischarge (WWTP,Mass)
if highMercury (Mass) ;

illegalDischarge (WWIP,Mass) initiates illegalBecause (untreated,

WWTP,Mass)

if not treated (WWTP,Mass, Treatment) ;

9 illegalDischarge (WWTP,Mass) initiates illegalBecause (

high_mercury, WWTP, Mass)

~NOoO 1A WN

(o]

10 if highMercury (Mass) ;

11 iDischarge (WWTP,Mass) terminates treated (WWTP,Mass, Treatment)

12 if treated (WWTP,Mass, Treatment), not highMercury (Mass) ;

13 iPerform (WWTP,Mass, Treatment) initiates treated (WWTP,Mass,
Treatment)

14 if treating (WWTP,Mass) ;

15 initially

16 highMercury (m2),

17 signedContract (wwtpl,il),

18 obl(iInform(il,wwtpl,M),iRelease (il,wwtpl,M), failureToInform(il,
wwtpl, M) )
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grounding specification:
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Treatment: tk
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Sample run

a b wWN -

O~NOOT A WN -

grounding specification:

Industry: il i2

Mass: ml m2

Reason: untreated high_mercury
Treatment: tk

WWTP: wwtpl wwtp2

input trace:

observed (inform(il, wwtpl, m2))
observed (release (il, wwtpl, m2))
observed (receive (wwtpl,il, m2))
observed (perform (wwtpl, m2, tk))
observed (discharge (wwtpl, m2) )
observed (release (i2,wwtp2,ml))
observed (receive (wwtp2,i2,ml))
observed (discharge (wwtp2,ml))
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Where's the semantics?

unfortunately, each model is “just another program”
- where “illegalDischarge” is just a string
- and the implementation is the programmer’s interpretation
need to connect real world to model (automatically)
natural language — model?
- semantic representation of policy — model?
- W3C's Open Digital Rights Language (ODRL)
- Originally conceived for asset rights management: early 2000s
- ODRL 2.2 (2018) generalizes to policy... to some degree
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Example ODRL policy compliance request

1

2 "@context": "http://www.w3.org/ns/orcp.jsonld",

3 "Qtype": "Set",

4 "uid": "http://example.com/policy:01",

5 "profile": "http://example.com/odrl:profile:regulatory-
compliance",

6

7 "request": [{

8 "action": "orcp:Transfer",

9 "target": "orcp:PersonalData",

10 "sender": "http://example.com/TR_Ireland",

11 "recipient": "http://example.com/TR_USA",

12 "purpose": "orcp:KYyCc",

13 "location": "orcp:USA",

14 "legalBasis": "orcp:Consent",

15 "constraint": [{

16 "leftOperand": "orcp:AppropriateSafeguards",

17 "operator": "eq",

18 "rightOperand": { "@id": "orcp:BindingCorporateRules

" }
19 H
20 H]

21 1}
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Data protection

- use-case: fragments of articles of GDPR

- check business process compliance with GDPR
- H2020 SPECIAL project

- develop ODRL — InstAL translator

- aim to synthesize ODRL from natural language policies
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