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Introduction
• RISC-V opens many new opportunities for innovation and enables smaller 

organizations to design computer hardware


• But no matter how creative, a new chip design using advanced process 
technology faces enormous development cost


• We propose a “mix and match” paradigm combining state-of-the-art 
memory technology with mature ASIC logic to reduce development cost 
of near-memory computing architecture accelerators


• Machine learning and supercomputing accelerators examples
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Why Stacked Memory?
Technical 

• Shorter SRAM access path, 
node communication distance


Business 

• Reduce development cost
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Save cost by building 
custom logic on mature 

ASIC technology

Multiple accelerators specialize for different applications

Reuse stacked memory 
for different designs
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Agenda
1. Economics & technology


2. Accelerator architecture


3. Examples


4. Programming model & evaluation


5. Memory technologies


6. Conclusion

Many interesting accelerator 
architectures are possible 

We propose a technical solution for 
near-memory computing accelerators 

that is economically feasible for smaller 
organizations with limited resources
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More details in paper “In-Memory Accelerators Using Stacked Memory” (PDF)

https://drive.google.com/file/d/1U4unWAX8LS74seNrTRl5emdIj4R4ZaC7/view?usp=sharing
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Why Specialize?
• Performance


• Energy
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Economic Considerations
Cost of silicon device


• Recurring cost (RE)


• Non-recurring cost (NRE)


5nm chip $500M NRE


• 50M devices ➞ $10/device


• 100K ➞ $5000/device
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Problem
• RISC-V enables hardware innovation by smaller organizations


• No architecture licensing fee, no limits on customizing ISA


• Open source software ecosystem with compilers, OS…


• But creating commercially competitive accelerator is challenging


• Leading edge semiconductor design is extremely expensive


• Novel ideas take time to gain momentum and volume in market
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Solution
“End of Moore’s Law” ➞ rapid advances in packaging technology


• Multiple chips on substrate (Open Chiplet Initiative)


• Chip/wafer stacking (TSMC 3DFabric™)


• Example:  GPU die with stacked HBM memories on substrate


Mix and match advanced memory and mature logic technology 


• Multiple accelerators share design cost of stacked memory
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Some Recent Accelerators
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In-, At-, Near-Memory Computing

Large Amounts of Local Memory
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Memory Chip Different from ASIC
FLASH, DDR, LPDDR, even HBM are high volume chips because


• Same chip used in multiple products


• Many chips in a single product


Memory cell density/flexibility tradeoff


• Dedicated memory fab ➞ lowest cost, inflexible, standard parts


• Embedded logic fab ➞ medium cost, customizable like ASIC
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Mix and Match Paradigm
Monolithic in-memory computing chips use a lot of area for memory


• Expensive advanced logic process not fully utilized


• Long wires over memory area between logic islands waste energy 


We propose separating memory and logic onto stacked dies


• Differently optimized process for memory and logic gates


• Contiguous logic reduces wire length, improves energy efficiency

12
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Wafer Stacking
• Same size dies, yield = one big die


• Low cost, good for memory chips


• Yield problem for logic die
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Chip Stacking
• Accommodate different size dies, 

different processes


• Test before stacking (KGD) ➞ large 
logic chip is possible


• Short vertical interconnect using TSV 
➞ good performance, power


• Higher cost
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TSMC 7nm SRAM optimized process ≈ 2 MB/mm2


• Chose 66 mm2 stack area for reasonable yield


• 1 GB in 8 layers = 531 mm2 silicon area


• 4 TB/s bandwidth using 10% TSV area overhead


Multiple stacks on large logic chip 


• More capacity, bandwidth

Memory Stack

15

11.52 mm 5.76 mm

0.
28

 m
m SRAM STACK

LOGIC LAYER



©2022 Peter Hsu & Associates, S.L.

Mature technology


• GlobalFoundries 22FDX, TSMC 22ULP…


• Low CAD tools cost, many IP available


66 mm2 stack ➞ 128 logic tiles each 0.52 mm2


• 1.8 MGE (million gate equivalent) per tile 
≈ 12 IEEE 64-bit FP multiply-add units


• 230 MGE per stack (1500 DP FPMAC)

Logic Chip
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Platform Architecture
8 SRAM stacks on 672 mm2 logic chip (24×28 mm)


• 1024 tiles


• 1 GHz logic in 22 nm


• 2D torus NoC, 32-bit links


Tile is a complete computer


• Shared memory multicore architecture (SMP)


• Eight 32-bit memory accesses per cycle (32 GB/sec)
17

28 mm

24
 m

m
CUSTOMIZED 

CORES

4×
4

4×
4

IN

4×
4

OUT
STUNT 

BOX

SRAM BANKS



©2022 Peter Hsu & Associates, S.L.

Manufacturing Ecosystem
• TSMC has been developing 

stacked memory technology 
for some time


• CAD tools, TSV PHY already 
available


• Mixing mature logic chip is 
a business decision

Copyright © 2020 GUC Uncompromising Performance

Igor Elkanovich, Aug/2020

GLink-3D Application: SRAM on Top of Processor

� SRAM is separated from integrated chip and located on top of Processor
� GLink-3D interface allows low area/power/latency connection 

P12

Reference Architecture: 
Integrated CPU & SRAM

Die2: SRAM (N7)
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Agenda
1. Economics & technology


2. Accelerator architecture


3. Examples


4. Programming model & evaluation


5. Memory technologies


6. Conclusion

We illustrate with examples 
chosen for simplicity of 

explanation 

Real commercial designs 
could do better
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HPC Example (SpMV++)
Specialized sparse matrix accelerator


• 8 GB, 4 TFLOPS (DP), 250 W PCIe card


• 8 bytes/FLOP memory bandwidth


• Logic 147.5 W (144 pJ per tile, 22nm)


• SRAM 25.6 W (25.6 pJ per tile, 7nm)


Evaluate using HPCG benchmark

Tile
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SpMV++ vs. GPU
NVIDIA A100 is today’s premier HPC accelerator


• 7 nm


• 826 mm2


• HBM2E


• 250 W

NVIDIA A100 GPU

SpMV++
21

Technology A100 SpMV++ Improve

Capacity (GB) 80 8 0.1x

Peak TFLOPS (DP) 19.5 4.1 0.21x

Bandwidth (TB/s) 2 32.8 16x

Bytes/FLOP 0.10 8.0 78x

HPCG TFLOPS 0.227 2.9 13x

FPU Utilization* 1.16% 70% 60x

Power (W) 250 250 1x

GFLOPS/W 0.91 11.5 13x

*estimate for SpMV++

28 mm
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ML Example
Specialized machine learning accelerator


• 4-bit precision (logarithmic numbers) 
“Ultra-Low Precision 4-bit Training of Deep Neural Network,” IBM Research


• 8 GB, 262 TOPS 
4-bit multiply, higher precision accumulate


• 500 MHz, low VDD 
0.45V vs. 0.85V for 1 GHz operation


• 3.9 TOPS/W energy efficiency
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Cluster of computers ➞ array of tiles


• Multicores with shared coherent memory (SMP)


Network ➞ network on chip (NoC)


• Application specific interconnection topology


• Front-end computers ➞ host processors


Same application programming interface (API)


• Linux threads, sockets, RDMA…

Mainstream Programming Model

Different 
Scale

MB’s

GB’s
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Codesign Methodology
1. Develop algorithm on standard cluster of SMP servers


• Standard Linux API, but respecting target node memory size


2. Simulate near-memory RISC-V SMP cluster


• Parallel “thread per core, process per node” simulator (next slide)


3. Develop co-processor with custom instructions


• Refine codesign and validate performance improvement

24
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Cavatools
Caveat — RISC-V user-mode Linux virtual machine


• Thread-per-core execution-driven simulator, ≈100 MIPS


• Shared memory (eg. OpenMP), multiple nodes (eg. MPI)


Custom instruction definition


• Spec ➞ compiler intrinsic, asm, sim


Open source (this work was partially supported by BSC)

fs3

5

rs1

5

fd

5

opcode

7

imm[7:2]

5

op2

2

op3

3

fd += fs3 * load(rs1+imm)
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More details in ICS Conference presentation “Cavatools:  Parallel Architecture Simulator for RISC-V” (PDF)

https://drive.google.com/file/d/1xJo-_y-6Qy5446Z_9KgO5OKTS7OBjIxz/view?usp=sharing
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Array of tiles ➞ Linux processes


• SMP cores ➞ Linux threads


• RISC-V AMO ➞ x86 CMPXCHG


Network on Chip ➞ Linux sockets


• Messages ➞ Linux read(), write()


Erised — realtime visualization

Caveat Simulation Paradigm

Process

Threads

Tile

Cores Accelerator

Simulator
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Erised Performance Visualizer
Within a tile


• Pipeline stalls


• Instruction Buffer 
Misses


Across chip


• System calls (IPC)


• Message queues
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Agenda
1. Economics & technology


2. Accelerator architecture


3. Examples


4. Programming model & evaluation


5. Memory technologies


6. Conclusion

Optimized SRAM process is less 
expensive than ASIC, but 7nm 

SRAM main memory is still quite 
expensive 

We need a path to more affordable 
memory technology
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Magnetoresistive Memory
Leverage mature process for low cost


• MTJ extra module in standard CMOS


• Similar to RF, Analog process modules


Attractive characteristics


• Read time, energy ≈ SRAM (but write ↑)


• Wear-out is no longer a problem
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Reducing Memory Cost
SRAM 7nm ≈ 2 MB/mm2 (TSMC)


• Scaling less than logic gates


MRAM 28nm > 1 MB/mm2 today


• Nonvolatile ➞ mobile devices


• 3D (like XPoint™) in future


Technology DRAM MRAM SRAM

Cell Size (F2) 6 16 120

Relative Cost $1.00 $2.67 $20.00
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Summary

You design arithmetic, interconnect, software for your application

We provide RISC-V platform architecture 
High bandwidth, low latency SRAM memory 
Standard Linux programming environment 
Simulation tools to validate performance
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Conclusion
• RISC-V enables hardware innovation 

but development cost limits creativity


• Proposed paradigm for near-memory 
accelerator using state-of-the-art 
memory with mature logic technology


• Enable commercially competitive 
accelerators based on novel ideas by 
smaller organizations with limited 
resources
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Thank You
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Abstract:  The RISC-V architecture has opened new opportunities for many people to innovate in computer 
design.  However to design a chip that can compete in the marketplace against veteran industry computer 
designers with their vast resources is still a formidable challenge.  We propose a solution for specialized 
accelerators with near-memory processing architectures.  We observe the critical technology is the embedded 
memory because it consumes most of the silicon area and determines the power/bandwidth of the chip.  If 
instead memory is stacked on top of the logic chip, then a less dense, lower cost mature technology can be used 
for the logic.  Communication wire power will be lower because the through-silicon via (TSV) interconnect 
traverses a much smaller distance, offsetting the lower power efficiency of mature logic technology.  Design cost 
of the re-useable hi-tech memory chip is amortized across multiple accelerators.  We believe this approach can 
help smaller organizations with limited resources design commercially competitive novel accelerators.
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