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Overview

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We will cover various recent ideas to accelerate read mapping
o My personal journey since September 2006
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Our Dream (circa 2007)

An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

o Which of these DNAs does this DNA segment match with?

o What is the likely genetic disposition of this patient to this
drug?

o What disease/condition might this particular DNA/RNA piece
associated with?
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A Bright Future for Intelligent Genome Analysis

Mohammed Alser, Zulal Bingdl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” |EEE Micro, August 2020.
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications

SAFARI



What Is a2 Genome Made Of?

The genes consist of DNA

The chromosome is

made up of genes \

Chromosome - 23 pairs  Nucleotide

Base

Phosphate
Cell S
Nucleus

SAFARI The discovery of DNA's double-helical structure (Watson+, 1953) )



Notas del ponente
Notas de la presentación
Unlocking the life’s code requires diving into the nucleus of our body cells, where the double-stranded genome resides. Genome is literally the 'code of life' - it is the set of instructions for making everything from you to zebras, strawberries, and even yeast.
�since the discovery of dna’s double-helical structure (watson et al. 1953) 


The Central Dogma of Molecular Biology

Protein

Genotypes Phenotypes

Replicay

SAFARI 10


Notas del ponente
Notas de la presentación
Our DNA is literally a cookbook that contains the information needed to make all of our phenotypes and traits. Our genes are the recipes for making us what we are physically.�


DNA Under Electron Microscope

human chromosome #12
from HelLa’s cell

SAFARI
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Notas del ponente
Notas de la presentación
Henrietta Lacks,


CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA
AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA

AAAAACTAA

CTAAGC

C

CATGTCAAGGACCTAATG

TGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAA
GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA
GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA
AAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGA

AAAAAACTAA

GTCTGTGTTGCAGGTC]
AAAAGAATTTAAAATT]

CTAAGC

C

CATGTCAAGGACCTAAT

"TCTTGCATTTCCCTGTCAAAAGA
AAGTAATTCTTTGAAAAAAACTA

ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG



=
How Large 1s a Genome?
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Notas del ponente
Notas de la presentación
Phi x174 is a virus that Infects E. Coli bacteria

You may be exposed to E. coli from contaminated water or food — especially raw vegetables and undercooked ground beef.

Paris Japonica : A rare Japanese flower 
============================
Phi is 600K time smaller than the genome of human	
E coli is ~600 time smaller than the human genome
Onion has a genome that is 5x larger than that of human
Paris japonica’s genome is 46x larger than the human genome



DNA Sequencing

= Goal:
a Find the complete sequence of A, C, G, T's in an organism’s DNA

= Challenge:

a There is no machine that takes long DNA as an input, and gives
the complete sequence as output

o All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)
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Genome Sequencing

Larc-;e DNA molecule

l

——

/“

—

Small DNA fragments

l -

TTTTTTTAATT
ACGAGCGGGT GATACACTGTG AAAAAAAAAA —— Reads

ACGACGTAGC
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Notas del ponente
Notas de la presentación
As the whole genome of most organisms cannot be sequenced all at once, the genome is broken into smaller fragments. 
After each fragment is sequenced, small pieces of DNA sequences (i.e. reads) are generated. 


Genome Sequencing and Analysis

Genome Analysis Pipeline

Genomic Sample Sequencing Machine

il mmm il 4

Reads

\_

Read Mapping

~N

= oy

J

Genomic Variants

Current sequencing machines provide
small randomized fragments

of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021

SAFARI
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Untangling Yarn Balls & DNA Sequencing
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Notas del ponente
Notas de la presentación
untangling yarn ball


Complete
Genomics

Roche/454

lllumina
NovaSeq
6000

Illumina HiSeq2000 Pacific Biosciences RS

Oxford Nanopore GridlION

; ... and more! All produce data with
SAFAR’ lon Torrent PGM an
lon Torrent Proton different properties.



High-Throughput Sequencers

Oxford
Nanopore
PromethION |

Pacific
Biosciences
Sequel I

lllumina MiSeq

m
— .
| Oxford Nanopore MinlON
Oxford
Nanopore
| I SmidglON

lllumina NovaSeq 6000 Pacific Biosciences RS Il

.. and more! All produce data W|th dlfferent properties.
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The Genomic Era

= 1990-2003: The Human Genome Project (HGP) provides a complete
and accurate sequence of all DNA base pairs that make up the
human genome and finds 20,000 to 25,000 human genes
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Notas del ponente
Notas de la presentación
The 13-year long human project is the starting of the genomic era! It opened the door to remarkable biomedical discoveries by providing the first complete human genome sequence. It cost 3 billion dollars to read the entire sequence.�


The Genomic Era (continued)

development of high-throughput
sequencing (HTS) technologies

- T

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes EA | L 711620.000
Sequenced ' ' - '

229,000

2014 2015 2016 2017 Source: Tumina

SAFARI http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped ~ 21



Notas del ponente
Notas de la presentación
However, since the development of high throughput sequencing (HTS) technologies, the cost of genome sequencing has fallen off a cliff (<< 1,000$) making it viable for almost everyone's use.
�

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Genome Sequencing Cost Is Reducing

Cost per Raw Megabase of DNA Sequence

10,000.000

1,000.000

100.000 Moore’s Law

10.000

1.000

0.100
N I H National Human Genome
Research Institute

genome.gov/sequencingcosts

0.010

0.001
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

*From NIH (https://www.genome.gov/about- ' ing-Costs-Data)
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Genome Sequencing Cost Is Reducing

Cost per Human Genome

$100,000,000

$10,000,000

Moore’s Law
$1,000,000

$100,000

$10,000

National Human Genome
Research Institute

genome.gov/sequencingcosts

$1,000

$100

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

*From NIH (https://www.genome.gov/about- ' ing-Costs-Data)
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High-Throughput Sequencing (HTS)

“computer  readout
W . /} et
/+ | = Second Generation
\1 |= Next Generation
\\._ | = Massively Parallel Sequencing

|| = High Throughput Sequencing (HTS) O

/1| = Sequencing by Synthesis (Illumina) : (?
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Notas del ponente
Notas de la presentación
Second generation = next generation = massively parallel sequencing = high throughput sequencing (HTS) = Sequencing by Synthesis
Attach large number of DNA molecules to the flow cell then sequence by synthesis using CMOS light sensor to observe the chemical interactions


High-Throughput Sequencing (H'TS)

The sequencer adds the molecule “"T”

to all bases near the flow cell surface and
observes the chemical reaction via a CMOS sensor.
If a reaction happens then the base is “"A”

Sequence

CATAGCTGTTTCECTGT G TGA AA

Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300
basepairs long) of copies of the original molecule.
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Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�


High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost

o Short reads

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 26



Solving the Puzzle

.FASTA file .FASTQ file

I
Reference / * .

of

| A
genome
*
Sequenced V J

Reads

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Notas del ponente
Notas de la presentación
Rhinoceros

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Newer Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinlON

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]
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Types of Genomic Reads

o

100%
But still very
expensive!
o
e
=
O
<
80%
0] Read Length (kb) 50

Wenger+, "Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome", Nature Biotechnology, 2019

https://labs.wsu.edu/genomicscore/illumina-sequencing/ 29
SAFARI https://pacbio.gs.washington.edu/



Notas del ponente
Notas de la presentación
By sequencing the same DNA segment many times (10 to 30 times),  we can have accurate more longer reads.

https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

TATAATACG
1 2 ‘

Billions of Short Reads
TATATATACGTACTAGTACGT
TTTAGTACGTACGT
ATACGTACTAGTACGT
G JACGTA
ACGTACTAGTACGT
TTAGTACGTACGT
TACGTACTAAAGTACGT
\TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT

GGGAGTACGTACGT '

QOP=P>=1>=0>

H

\
Read

'~

!l Sequencing Genome Read Mapping n

Analysis
reference: TTTATCGCTTCCATGACGCAG
readl: ATCGCATCC
read?: TATCGCATC
read3: CATCCATGA
read4: CGCTTCCAT
read5: CCATGACGC
read6: TTCCATGAC

B Variant Calling Scientific Discoveryn


Notas del ponente
Notas de la presentación
Genome analysis starts with sequencing random short DNA fragments of copies of the original molecule. 
Unfortunately, these reads lack information about their order and which part of genome they are originated from. 
Hence the second step is to map these reads to a long reference genome.




Read Mapping Techniques in 111 Pages

In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”
Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 Ge nome B|O|ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates |
Mohammed Alser'#*!, Jeremy Rotman™!, Dhrithi Deshpande®, Kodi Taraszka”, Huwenbo Shi®”, Pelin Icer Baykal®
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev?®, Benjamin D. Singer'®'"'? Brunilda Balliu™,
David Koslicki'*'>'®, Pavel Skums®, Alex Zelikovsky®'”, Can Alkan®'® Onur Mutlu'**" and Serghei Mangul®™
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Why Do We Care?
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Multiple sequence alignment

-------------------------------------- MMMMMIMMMMMMMMMMMMM = = == ==
10 ----MasprRrsEcFOSGAGLIEY Il FGPALDIS LVVYMGIAVAIIVEIAEIFWEP———
10 ----masprusEcFQSGAGLIIDY I GPALD LVVY IGIAVAIMVELAYIFWRPP——-
13 -MrsmaxononsnFQSGAGLINEY Il FGPAIDF LI IYIGIAMGVIVELAEVEWEV———

10 ----MsseonsesLMSSAGLVIZYFDSENSNALR IDIY- SVVAVGAFFGLVVLLACQFFA-—-——-
14 magapweraxTPPLMSSAGT —aE“ZT-Q NV TTLARGTIVTGVLIIILNAYYGLWE -
[]

85 —---- MarsxTTPETGAGLIME -iT;AI' \GAVALTLILIIFEIILEVVGERIFG
S e----paxErrriPPTGAG AT T M GRATALVLILIIFEILLE VVGERIEG
10 ----maxxoxxrzPPSGAGL —ETEG SLTSFOVVVMSIILAVFCLVLRFSG—————
Y - MSHRESTCLATSAGL - TFSE INVRISEHVIGVTVAFVIIEAILTYGRFL———

13 -messxxexsTveLASMAGLI ERIRISI- LLITISIIMVAGVIVASILIPFP——
11 -mpsskupxsTVEVMSMAGL EKT IVIGASTALTIIVIVITRLF-~----

EX DS LMRAAVVISLATIGLLIAINLLLEPL -~
—YEGRIEIEP IVVGRAAILVSAVVAAAL IFLBAVE-
- SPGLIVEISVPVLVMSLLFIASVEMLE INGEYTRS
- SPGLIIVESVPVLVMSLLFIAAVEMLE INGEYTRS
-ESPGIH?EFEPVLVMELLFIASVFMD-IWGRENRS
ore P ovivsIvEIASvEVL IHGEETES
—!sqe WD VVMVLSLGFIFSVVALE ILAXVSTE
DSLYVLFLSVGFIFSVIALE LLTEFTEI
TGLI LVVLFLAVGFIFSVVALL VISKVAGK

Example Question: If I give you a bunch of
sequences, tell me where they are the same

and where they are different.
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Genome Sequence Alignment: Example
e
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https://commons.wikimedia.org/w/index.php?curid=30550950

The Genetic Similarity Between Species

Human ~ Chimpanzee
96%

Human ~ Cat
90%

Human ~ Cow
80%

Human ~ Banana
50-60%
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=
Finding Variations Associated with Traits

SNP1 SNP2 Blood Pressure
...ACATGCCGACATTTCATAGGCC... 180
...ACATGCCGACATTTCATAAGCC... 175
...ACATGCCGACATTTCATAGGCC... 170

Individual #4 ...ACATGCCGACATTTCATAAGCC... 165
...ACATGCCGACATTTCATAGGCC... 160
...ACATGCCGACATTTCATAGGCC... 145
...ACATGCCGACATTTCATAAGCC... 140
...ACATGCCGACATTTCATAAGCC... 130
...ACATGTCGACATTTCATAGGCC... 120
...ACATGTCGACATTTCATAAGCC... 120
...ACATGTCGACATTTCATAGGCC... 115
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 110
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 105
...ACATGTCGACATTTCATAAGCC... 100

SNP: single nucleotide polymorphism
SAFARI Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA



Notas del ponente
Notas de la presentación
Genetic association study is a procedure of seeking for the SNPs potentially causing the phenotypic changes. Here in this example of blood pressure, it appears that the left SNP is more strongly associated with the blood pressure than the right SNP, because all the individual with genotype “C” have high blood pressure, and individuals with “T” has low blood pressure.


Genome-Wide Association Studies (GWAS)

= Enables detection of genetic variants associated with
phenotypes using two groups of people.
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Notas del ponente
Notas de la presentación
the negative logarithm of the association p-value for each single nucleotide polymorphism (SNP) displayed on the Y-axis, meaning that each dot on the Manhattan plot signifies a SNP


SNPs and Personalized Medicine

openSNP Q | Search
i Allele Frequency
SNP rs12979860
A
Basic Information
T
Name rs12979860 .
G
Chromosome 19 - c
Position 39248147
-
Weight of evidence 926 - 0
Links to SNPedia
Title Summary
rs12979860 T/T ~20-25% of such hepatitis ¢ patients respond to treatment
rs12979860 C/C ~80% of such hepatitis ¢ patients respond to treatment
rs12979860 C/T ~20-40% of such hepatitis ¢ patients respond to treatment
38
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Much Larger Structural Variations

| AUTISM i
Weiss, N Eng J Med 2008 N
Deletion of 593 kb

fige= | SCHIZOPHRENIA
-+ McCarthy, Nat Genet 2009
. Duplication of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

=l:.l.
I Deletion in the short arm

l l of chromosome 16 (16p11.2)

Duplication in the short arm
of chromosome 16 (16p11.2)

SAFARI CNV: copy number variation ~ 3°



Notas del ponente
Notas de la presentación
SNP is 1 bp, INDEL 1-49bp, Structural Variation >=50bp


https://www.nejm.org/doi/full/10.1056/NEJMoa075974
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880448/



D
Personalized Medicine for Critically Il Infants

= rWGS can be performed in 2-day (costly) or 5-day time to
interpretation.

= Diagnostic rWGS for infants
o Avoids morbidity
o Reduces hospital stay length by 6%-69%
o Reduces inpatient cost by $800,000-$2,000,000.

Article | Open Access | Published: 04 April 2018
Rapid whole-genome sequencing decreases infant

morbidlty and cost of hospitalization Article | Open Access | Published: 05 May 2020

Lauge Farnaes, Amber Hildreth, Nathaly M. Sweeney, Michelle M. Clark, § Clinical utiIity of 24-h rapid trio-exome sequencing for
Chowdhury, Shareef Nahas, Julie A. Cakici, Wendy Benson, Robert H. Ka critically illinfants

Richard Kronick, Matthew N. Bainbridge, Jennifer Friedman, Jeffrey J. Gg . . . ) . )
Huijun Wang, Yanyan Qian, Yulan Lu, Qian Qin, Guoping Lu, Guogiang Cheng,

Ding, Narayanan Veeraraghavan, David Dimmock & Stephen F. Kingsmor{ . o
Ping Zhang, Lin Yang, Bingbing Wu & & Wenhao Zhou

npj Genomic Medicine 3, Article number: 10 (2018) | Cite this article

npj Genomic Medicine 5, Article number: 20 (2020) | Cite this article

SAFARI Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 4
cost of hospitalization”, NPJ Genomic Medicine, 2018



Notas del ponente
Notas de la presentación
There is also an urgent need for rapidly incorporating clinical sequencing into clinical practice for diagnosis of genetic disorders in critically ill infants [53, 54, 55, 56]. While early diagnosis in such infants shortens the clinical course and enables optimal outcomes [57, 58, 59], it is still challenging to deliver ecient clinical sequencing for tens to hundreds of thousands of hospitalized infants each year [60].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/

Recommended Reading

nature reviews genetics

Explore our content v Journal information v

nature > nature reviews genetics > review articles > article

Review Article | Published: 15 November 2019

Structural variation in the sequencing era
Steve S. Ho, Alexander E. Urban & Ryan E. Mills

Nature Reviews Genetics 21, 171-189(2020) | Cite this article
15k Accesses | 16 Citations | 309 Altmetric | Metrics

Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020
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https://www.nature.com/articles/s41576-019-0180-9

Metagenomics, genome assembly, de novo sequencing

Question 2: Given a bunch of short sequences,
Can you identify the approximate species cluster

for genomically unknown organisms (bacteria)?

V)

uncleaned de Bruijn graph

http://math.oregonstate.edu/ Nkoslické_fi B

SAFARI



Notas del ponente
Notas de la presentación
organism detection in metagenomes 

http://math.oregonstate.edu/%7Ekoslickd

Population-Scale Microbiome Profiling

SAFARI https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 43
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Clty Scale Microbiome Proﬁhng
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entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. 44
(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to
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Notas del ponente
Notas de la presentación
In 2015, they sequenced DNA from surfaces across the entire New York City (NYC) subway system.
~ 1,700 microbial taxa detected were dominated mostly by human skin bacteria.
Almost half the DNA present on the subway surfaces matched no known organism. 
And though results showed that the bacteria found in the subways were mostly harmless, they detected pathogenic agents, including fragments of the plague and anthrax genomes !!



MegaBLAST-LCA Pipeline The MegaBLAST-LCA pipeline consisted of five steps explained in detail below. 
Paired-end reads were prepared for BLAST by trimming, filtering on quality scores, and converting to unpaired FASTA sequences. 
Prepared reads were searched for in the NCBI NT database using MegaBLAST (default parameters). 
MegaBLAST hits were filtered such that short and low-scoring hits were ignored in subsequent analysis.
Reads with MegaBLAST hits to multiple taxa were assigned to the LCA taxa in the NCBI Taxonomy using the MEGAN algorithm. For example, hits to multiple species of the same genus are assigned to the common genus by the LCA algorithm. 
Finally, for each sample, the total number of reads assigned to each taxon were counted. We validated our MegaBLAST-LCA pipeline on a mock community of 11 bacterial species (see Tables S2 and S3).

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Global-Scale Microbiome Profiling

Login  Register

PDF O *
ARTICLE | ONLINE NOW & =

PDF [9 MB]  Figures £ Save

A global metagenomic map of urban microbiomes and
antimicrobial resistance

David Danko ® - Daniela Bezdan © « Evan E. Afshin « ... Sibo Zhu « Christopher E. Mason 2 5% &

The International MetaSUB Consortium « Show all authors « Show footnotes

Published: May 26, 2021 = DOI: https://doi.org/10.1016/j.cell.2021.05.002
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Danko+, "A global metagenomic map of urban microbiomes and antimicrobial resistance", Cell, 2021
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https://www.cell.com/cell/fulltext/S0092-8674(21)00585-7

A Tsunami of Sequencing Data

Efficient indexing of k-mer presence and abundance in sequencing datasets

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons
Bacterial genomes
Human genome
Human microbiome
50K Microbiomes

1990
1995
2000
2005
2015

Kilo = 1,000

Mega = 1,000,000

Giga = 1,000,000,000

Tera = 1,000,000,000,000
Peta = 1,000,000,000,000,000

what is expected for the next 15 years ? (a Giga?)

200K Microbiomes
1M Microbiomes
Earth Microbiome

2020
2025
2030

Exa = 1,000,000,000,000,000,000
Zetta = 1,000,000,000,000,000,000,000
Yotta = 1,000,000,000,000,000,000,000,000

Source:

@kyrpides

Rayan Chikhi, VanBUG seminar 2020

SAFARI
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Another Question: Example from 2020-...

200 Oxford Nanopore sequencers have left UK for China, to support
rapid, near-sample coronavirus sequencing for outbreak surveillance

Fri 31st January 2020

Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional
200 MinlON sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current
coronavirus outbreak, adding to a large number of the devices already installed in the country.

Each MinlON sequencer is approximately the size of a stapler, and
can provide rapid sequence information about the coronavirus.

700Kg of Oxford Nanopore sequencers and consumables are on
their way for use by Chinese scientists in understanding the
current coronavirus outbreak.

47

Source: https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample
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Example: Scalable SARS-CoV-2 Testing
medRyiv @& emvae

Laboratory
THE PREPRINT SERVER FOR HEALTH SCIENCES

Search

¢ Comments (1)
Swab-Seq: A high-throughput platform for massively scaled up

SARS-CoV-2 testing

Joshua S. Bloom, Eric M. Jones, &) Molly Gasperini, “2/ Nathan B. Lubock, Laila Sathe, Chetan Munugala,

A.Sina Booeshaghi, "' Oliver F. Brandenberg, = Longhua Guo, “=' James Boocock, = Scott W. Simpkins,
Isabella Lin, Nathan LaPierre, Duke Hong,Yi Zhang, Gabriel Oland, Bianca Judy Choe, Sukantha Chandrasekaran,
Evann E. Hilt, 27 Manish J. Butte, 22 Robert Damoiseaux, ‘= Aaron R. Cooper, "2 YiYin, 2 Lior Pachter,

Omai B. Garner, ‘& Jonathan Flint, © Eleazar Eskin, ©2 Chongyuan Luo, 2 Sriram Kosuri, ©2' Leonid Kruglyak,
Valerie A.Arboleda

doi: https://doi.org/10.1101/2020.08.04.20167874

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020
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https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2

Example: Rapid Surveillance of Ebola Outbreak

Figure 1: Deployment of the portable genome surveillance system in Guinea.

Quick+, “Real-time, portable genome equencinq for Ebola surveillance”, Nature, 2016
SAFARI 49



https://www.nature.com/articles/nature16996

We Need Faster & Scalable Genome Analysis

Understanding genetic variations,
species, evolution, ... abundance of microbes in a sample

20 -o

A -

Developing personalized medicine

SAFARI And, many, many other applications ... >


Notas del ponente
Notas de la presentación
Knowing what organisms are present in a given environmental sample and how abundant are they



One Problem




Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG

G ACGTA Short

ACGTACTAGTACG
AGTACGTACG
ACGTACTAAAGTACG
\.TACGTACTAGTACG
AAAACGTA

GTACTAGTACG
GGGAGTACGTACG

. ead

Reference Genome

Sequencing Read Mapping

[Ilumina HiSeq4000 G4GC;4G4477> 1 1
J& bases/min



Notas del ponente
Notas de la presentación
Typical sequencer machine generates a flood of reads, for example, Illumina HiSeq4000 generates 300 million bases/minute. 
However, existing computer alignment algorithms can only process 0.6% of these reads in the same amount of time. 
This gap is widening as more advanced sequencers are made available in the market.



)
The Read Mapping Bottleneck

- GZ?C@_ 11
3 O Million = &5~ Million

TN A ;
. ‘ »i“‘A‘A‘{,,ii‘ ‘A\A— Al
bases/minute " " BGIARARICREK o | || 4= bases/minute

Read Sequencing * e TT " Read Mapping’

150x slower

* BWA-MEM
** HiSegX10, MinION
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Notas del ponente
Notas de la presentación
12.48
5.2 CPU hours
144x
60 CPU hours

BWA-MEM
25 minutes
Illumine HiSeq X10

25 minutes
Nanopore MinION

Short reads generated in a day using today’s HTS machines (e.g., Illumine HiSeq X10) can be mapped to the human reference genome using BWA-MEM [36], a popular and widely-used read mapper, in 12.5 CPU (central processing unit) days when running on a single core [66, 67]. BWA-MEM also takes about 2.5 CPU days to map long reads that are generated in 25 minutes using today’s Nanopore MinION sequencer [68]





)
The Read Mapping Bottleneck

Human

genome
SSiA | 32 CPU hours
in about 2 days T T on a 48-core processor

Illumina NovaSeq 6000 V ‘

Read Mapping = Others

48 Human whole
genomes

at 30x coverage

71%

SAFAR’ Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 54
processor for precision medicine”, Open Journal of Genetics, 2017.



Notas del ponente
Notas de la presentación
12.48
5.2 CPU hours
144x
60 CPU hours

BWA-MEM
25 minutes
Illumine HiSeq X10

25 minutes
Nanopore MinION

Short reads generated in a day using today’s HTS machines (e.g., Illumine HiSeq X10) can be mapped to the human reference genome using BWA-MEM [36], a popular and widely-used read mapper, in 12.5 CPU (central processing unit) days when running on a single core [66, 67]. BWA-MEM also takes about 2.5 CPU days to map long reads that are generated in 25 minutes using today’s Nanopore MinION sequencer [68]




https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Problem with (Genome) Analysis Today

Special-Purpose Machine General-Purpose Machine
for Data Generation for Data Analysis

FAST SLOW

Slow and inefficient processing capability

SAFARI This picture is similar for many “data generators & analyzers” today -



One Problem

Need to construct
the entire genome
from many sequenced reads

SAFARI
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Genome Sequencing

Larc-;e DNA molecule

l

——

/“

—

Small DNA fragments

l -

TTTTTTTAATT
ACGAGCGGGT GATACACTGTG AAAAAAAAAA —— Reads

ACGACGTAGC

SAFARI


Notas del ponente
Notas de la presentación
As the whole genome of most organisms cannot be sequenced all at once, the genome is broken into smaller fragments. 
After each fragment is sequenced, small pieces of DNA sequences (i.e. reads) are generated. 


Genome Sequence Analysis

—
TTTTTTTAATT
ACGAGCGGGT Il GATACACTGTGIEMAAAAAAAAAA —— Reads
ACGACGTAGC
—
<= ==l
Read Mapping, method of aligning the De novo Assembly, method of merging
reads against a known reference genome the reads in order to construct the
to detect matches and variations original sequence (reference genome)

‘ Reference .
Original
Genome

Sequence

SAFARI


Notas del ponente
Notas de la presentación
These reads can then be analyzed following two different approaches: read mapping and de novo assembly. Read mapping is the process of aligning the reads against the reference genome to detect variations in the sequenced genome. Reference genome is a DNA sequence accepted as the representation of the genomic sequence of a species. The genome of a species is copied from individual to individual across multiple generations of a population with minimal differences at every step. The genomes of different individuals of the same species have typically the same number of chromosomes and most of the same bases in each chromosome. Thus, we can talk about a reference genome of a species. 
De novo assembly is the method of combining the reads to construct the original sequence when a reference genome does not exist. 

 



Read Mapping

= Map many short DNA fragments (reads) to a known
reference genome with some differences allowed

Reference genome

DNA, [wuyisidjly
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Notas del ponente
Notas de la presentación
Read mapping is a post processing procedure after DNA sequencing. It maps the data output from a DNA sequencer, which are many short DNA fragments, to a known reference genome, with some minor differences allowed.

To illustrate the problem better, let us take a closer look at the DNA itself. Logically, the DNA is a double stranded long string. In reality, within a cell they folded into a sphere in the nucleus like a ball of wool. Since it is very hard to disentangle the DNA at molecular level, to extract the information out, a sequencer cuts the mass into many short DNA pieces which are called reads.

A mapper’s job is to find where these DNA short reads are most likely to be originally placed so that later we can assemble them in the correct order to restore the original DNA.

Mapping these short reads, up to billions of them, with each one being 50 to 300 base-pairs long, to the reference genome is challenging.


Read Mapping for Metagenomic Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

/
N

2

\
Genetic material recovered S <
directly from environmental _
samples Reads in Reference
“text format” Database
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Notas del ponente
Notas de la presentación
Read mapping is a post processing procedure after DNA sequencing. It maps the data output from a DNA sequencer, which are many short DNA fragments, to a known reference genome, with some minor differences allowed.

To illustrate the problem better, let us take a closer look at the DNA itself. Logically, the DNA is a double stranded long string. In reality, within a cell they folded into a sphere in the nucleus like a ball of wool. Since it is very hard to disentangle the DNA at molecular level, to extract the information out, a sequencer cuts the mass into many short DNA pieces which are called reads.

A mapper’s job is to find where these DNA short reads are most likely to be originally placed so that later we can assemble them in the correct order to restore the original DNA.

Mapping these short reads, up to billions of them, with each one being 50 to 300 base-pairs long, to the reference genome is challenging.


Read Mapping Execution Time (Old Times)

candidate alignment
locations (CAL)
4%

SAM printing
3%

Read Alignment
(Edit-distance comp
93%
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Notas del ponente
Notas de la presentación
An overwhelming majority of the read mapper’s execution time is spent in read alignment.


Matching Each Read to Reference Genome

Reference Genome .FASTA file:

>NG 008679.1:5001-38170 Homo sapiens paired box 6 (PAX6)

ACCCT ITCATTGACATTTAAACTCTGGGGCAGG TIEEGEGENG2AACGCGGCTGTCAGATCT
GCCACTTCCCCTGCCGAGCGGCGGTGAGAAGTGTGGGAACCGGCGCTGCCAGGCTCACCTGCCTCCCCGC
CCTCCGCTCCCAGGTAACCGCC CCCCGGCCCGGCTCGGGGCCCGCGGGGCCTCTCCGCTG
CCAGCGACTGCTGTCCCCAAATCAAAGCCCGCCCCAAGTGGCCCCGGGGCTTGATTTTTGCTTTTAAAAG
GA ATACAADLGA AL A i\ A A ATAGGARL AGGA A GTCTT
TACCGAGTG T 222 AGTAGCA! crccT2/ T CCAGTCCHECCCT
GAGCTGGGAGTAGGGGGCGGGAGTCTGCTGCTGCTGIC TGO TARAGCCACTCGCGACCGCGARARATGCA
GGAGGTGGGGACGCACTTTGCATCCAGACCTCCTCTGCATCGCAGTTC. .CGCTTGGGAAAG
TCCGTACCCGCGCCTIIIE 2 AGACACCCTGCCGCGGGTCGGGCGAGGTGCAGCAGAAGTTTCCC
GCGGTTGCAAAGTGCAGATGGCTGGACCGCAACAAAGTCTAGAGATGGGGTTCGTTTCTCAGAAAGACGC

Sequenced Reads .FASTQ file:

QHWI-EAS209 0006 FC706VJ:5:58:5894:211414ATCACG/1
T . TAAATC T TTAGAT NI N NNNNNNNTAG
+HWI-EAS209 0006 FC706VJ:5:58:5894:21141#ATCACG/1
efcfffffcfeefffcffffffddf feed] ] Ba ~ [YBBBBBBBBBBRTT
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Base-by-Base Comparison

read 1:

ref 1:

'\
L
LY
~
L]

CCT

TAGIAT g cTA]TAC

X

CGT

GTT

] x ] xx |
TaGlcTARg ATcdiAC

reference segment that spans
locations (5, 7, and 9)

X

GAT

SAFARI
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Notas del ponente
Notas de la presentación
 (f) Once the pre-alignment filter accepts the alignment between a read and a region in the reference genome then DP-based (or non-DP based) verification algorithms are used to generate the alignment file (in BAM or SAM formats), which contains alignment information such as the exact number of differences, location of each difference, and their type.



®
Read Alignment/Verification

Edit distance is defined as the minimum number of edits
(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

NETHERLANDS x SWITZERLAND

NE-THERLANDS
SWITZERLAND|-

match
deletion

mismatch

SAFARI


Notas del ponente
Notas de la presentación
http://www.let.rug.nl/kleiweg/lev/



)
Challenges in Read Mapping

Need to find many mappings of each read

o A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

o How can we find all mappings efficiently?

Need to tolerate small variances/errors in each read

o Each individual is different: Subject’s DNA may slightly differ from
the reference (Mismatches, insertions, deletions)

o How can we efficiently map each read with up to e errors present?

Need to map each read very fast (i.e., performance is important)

o Human DNA is 3.2 billion base pairs long - Millions to billions of
reads (State-of-the-art mappers take weeks to map a human’s DNA)

o How can we design a much higher performance read mapper?

65


Notas del ponente
Notas de la presentación
There are three main challenges.

First. The mapper needs to find many mappings for each read. Because the read is so short, they can map to multiple locations in the reference genome. How can we efficiently find all mappings of a read?

Second. The mapper needs to tolerate small variance or errors in each read. Since individuals are different, the subject’s DNA might slightly differs from the reference DNA, which can be mismatches, insertions or deletions of base pairs. How can we efficiently map each read with up to a number of e errors present?

Third. The mapper needs to map each read very fast. In another word, performance is important. Because the human DNA is 3.2 billion base-pairs long and each read is only hundreds of base-pairs long, there can be billions of reads subjected to mapping for an individual human. Current state of the art mappers take weeks to map a human’s DNA. So the question is, how can we design a much higher performance read mapper?


Why Is Read Alignment Slow?

= Quadratic-time dynamic-
programming algorithm(s)

= Data dependencies limit the
computation parallelism

= Entire matrix computed even
though strings may be
dissimilar

QOP=P=P>=O>

Read Alignment



Notas del ponente
Notas de la presentación
1- Read alignment follows the basic dynamic-programming doctrine which runs in a quadratic time.
2- Data dependencies between the entries limits the parallelism. Each cell depends or three pre-computed cells (immediate left, upper, and upper-left cells). Thus, we can compute the vectors one after another but not in parallel. Left-to-right, or top-to-bottom, anti-diagonal. 
3- We can solve a significant amount of time, If we can find a way to detect the incorrect mappings with cheap heuristics, much cheaper than computing the alignment.


Example: Dynamic Programming Table

NETHERLANDS x SWITZERLAND

E|IT H E R L AIN|D|S
2/3/4/5/6|7(8|9/|10|11

n
= =

immediate left,
upper left,
upper entries of its own

w4
<

O o NojUn|h~|lWIN

—
o
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Notas del ponente
Notas de la presentación
1- Read alignment follows the basic dynamic-programming doctrine which runs in a quadratic time.
2- Data dependencies between the entries limits the parallelism. Each cell depends or three pre-computed cells (immediate left, upper, and upper-left cells). Thus, we can compute the vectors one after another but not in parallel. Left-to-right, or top-to-bottom, anti-diagonal. 
3- We can solve a significant amount of time, If we can find a way to detect the incorrect mappings with cheap heuristics, much cheaper than computing the alignment.
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« Matrix-filling is O(mn) time and space.

« Backtrace is O(m + n) time.
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Computational Cost 1s Mathematically Proven
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[Submitted on 1 Dec 2014 (v1), last revised 15 Aug 2017 (this version, v4)]

Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false)

Arturs Backurs, Piotr Indyk

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for the
problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n?>~%) for some constant § > 0, then the satisfiability of
conjunctive normal form formulas with N variables and M clauses can be solved in time
MOD2U=EN £ 3 constant € > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.
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Read Mapping Techniques in 111 Pages

In-depth analysis of 107 read mappers (1988-2020)

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D.
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,

Can Alkan, Onur Mutlu, Serghei Mangul

"Technology dictates algorithms: Recent developments in read alignment”

Genome Biology, 2021

[Source code]

Alser et al. Genome Biology (2021) 22:249

https://doi.org/10.1186/513059-021-02443-7 Ge nome B|O|ogy

Technology dictates algorithms: recent ")
developments in read alignment

updates |
Mohammed Alser'#*!, Jeremy Rotman™!, Dhrithi Deshpande®, Kodi Taraszka”, Huwenbo Shi®”, Pelin Icer Baykal®
Harry Taegyun Yang*®, Victor Xue”, Sergey Knyazev?®, Benjamin D. Singer'®'"'? Brunilda Balliu™,
David Koslicki'*'>'®, Pavel Skums®, Alex Zelikovsky®'”, Can Alkan®'® Onur Mutlu'**" and Serghei Mangul®™
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Read Mapping Execution Time (Modern)

Collect Minimizers
2%
Collect
Matching
Seeds

>060%

Sorting
Seeds

of the read mapper’s -
execution time is spent
in sequence alighment

Seed
Chaining
16%

minimap2

ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp
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Accelerating Read Mapping

Genome Analysis Pipeline 4 )
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Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.
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Detailed Analysis of Tackling the Bottleneck

Mohammed Alser, Ziilal Bingdl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,

Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey”

IEEE Micro, August 2020.
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications
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Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

o More sensitive (can find all mapping locations), but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners
o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity

SAFARI



Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

o Use Hash Table to map reads

SAFARI
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Hash Table-Based Mappers [Alkan+ Nature Gen09)

k-mer or 12-mer Location list—where the k-mer
(string of length k) occurs in reference gnome

AAAAAAAAAAAC [ 13 [421 | 412 1785 889
AAAAAAAAAAAT [ NULL

CCCCCCcCccccc 24 | 459 | 744 | 988 | 989

(TRt 36 | 535 [ 123

Once for a reference
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Notas del ponente
Notas de la presentación
In preprocessing, the mapper stores the full permutations of a short fixed-length DNA string called k-mers, with k denoting the length of the string. In this example, k = 12 and they are also called 12-mers. For each k-mer, the mapper sweeps through the reference genome and stores all of the occurrence locations of the k-mer into a location list. The mapper then do this for all k-mers. If a permutation never appeared in the reference genome, there will be an empty list for it.

This data structure, usually implemented as the hash table is only constructed once for a reference genome


Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

a Use Hash Table to map reads
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Hash Table-Based Mappers [alkan+ Nature Gen’09)
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- . read

""" 11T «— k-
AR k-mers

-~

Hash Table 302
(HT)

Reference
Genome

AAAAAAAAAAAA i = .
N Valid

324 |557 |940 |
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[
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Verification/Local Alignment read
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Notas del ponente
Notas de la presentación
For a single read, the mapper first divides the read into non-overlapping k-mers, and uses the k-mers to query the hash table. The hash table returns the locations lists of the k-mers and traverses them one by one. 

For each location in the list, the mapper retrieves the reference sequence at the location from the database and verifies if the read differs from the reference with more than e errors. The verification itself, is an expensive string comparison (edit distance computation) function. It compares the two DNA strings base pair by base pair, until the end. Then the mapper moves on to the next step, repeats, until it examined all locations.

This is the best previous work circa 2013.


®
Our First Step: Comprehensive Mapping

= + Guaranteed to find a// mappings = sensitive
= + Can tolerate up to eerrors

nature
genetlcs http://mrfast.sourceforge.net/

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'-2, Jeffrey M Kidd!, Tomas Marques-Bonet"?, Gozde Aksay', Francesca Antonacci,
Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!»2

Alkan+, "Personalized copy humber and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.



Notas del ponente
Notas de la presentación
It turned out the Hash Table based mappers solve the first 2 challenges pretty well. They guarantee to find all mappings with no more than e errors present.

http://mrfast.sourceforge.net/

Problem and Goal

= Poor performance of existing read mappers: Very slow
o Verification/alignment takes too long to execute

o Verification requires a memory access for reference genome +
many base-pair-wise comparisons between the reference and
the read (edit distance computation)

Execution u Verification
i (5 i |95% |
m Other
0 5000 10000 15000 20000

= Goal: Speed up the mapper by reducing the cost of
verification
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Notas del ponente
Notas de la presentación
It turns out the performance of existing hash table based mappers is very poor. They are very slow.

This is because of the expensive verification computation. To perform a verification, the mapper has to access the memory once for the reference genome and conduct many base-pair wise comparisons between the reference genome and the read, in order to locate the errors.

In fact, from our profiling result, the verification process can consume up to 95% of the execution time. Moreover, most of the verification calculations are unnecessary.

Our goal is to speedup the mapper by reducing the execution time of the verification process.


Overarching Key Idea

Filter fast before you align

Minimize costly
edit distance computations
(“approximate string comparisons”)

83



Overarching Key Idea

_— T~

Quickly find these Focus processing power
and filter them out on these
w/0 costly computation ) ée.g., edit distance comp.)/
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Accelerating Genome Analysis: Overview

Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"”

IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]

[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zlrich University of lllinois at Urbana-Champaign and
Ziilal Bing61 Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

Bilkent University
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Our First Filter: Pure Sottware Approach

= Download the source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin' Donghyuk Lee' Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu', Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2013. 87
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=
Reducing the Cost of Veritication

= Most verification (edit distance computation) calculations are
unnecessary

a 1 out of 1000 potential locations passes the verification process

= We can get rid of unnecessary verification calculations by
a Detecting and rejecting early invalid mappings (filtering)
a Reducing the number of potential mappings to examine
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Notas del ponente
Notas de la presentación
How can we do that? It turns out most of the verification calculations are unnecessary. We observe that usually only 1 out of 1000 potential mapping locations passes the verification process becoming a valid mapping.

We also observe that we can get rid of unnecessary verification calculations by
Detecting and rejecting early invalid mappings
and by Reducing the number of potential mappings


=
Key Observations [Xin+, BMC Genomics 2013

Observation 1

o Adjacent k-mers in the read should also be adjacent in the
reference genome

a Read mapper can quickly reject mappings that do not satisfy
this property

Observation 2

o Some k-mers are cheaper to verify than others because they
have shorter location lists (they occur less frequently in the
reference genome)

Mapper needs to examine only e+ k-mers’ locations to tolerate e
errors

a Read mapper can choose the cheapest e+1 k-mers and verify
their locations
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Notas del ponente
Notas de la presentación
Observation 1: For valid mappings, Adjacent k-mers in the read should also be adjacent in the reference genome.
Hence, mapper can quickly reject mappings that do not satisfy this property.

Observation 2: Some k-mers are cheaper than others because they have shorter location lists, which means they occur less frequently in the reference genome. Previous work proved that the mapper only needs to examine e+1 k-mers’ locations to tolerate e errors.
Hense, the mapper can choose the cheapest e+1 k-mers and verify their locations.


)
FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations to verify
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Notas del ponente
Notas de la presentación
In our work, FastHASH, we have two mechanisms to leverage the two observations respectively.

Mechanism 1: Adjacency Filtering, which ….
Mechanism 2: Cheap k-mer Selection, which ….

Let us first take a look at Adjacency Filtering.


Adjacency Filtering (AF)

Goal: detect and filter out invalid mappings at early stage

Key Insight: For a valid mapping, adjacent k-mers in the
read are also adjacent in the reference genome

ggg%f%é\q\gééécg:cccccccc| [TJT{TTT < read

Valid mapping Invalid mapping ererence genome

Key Idea: search for adjacent locations in the k-mers’
location lists (in the index)

o If more than e k-mers fail = there must be more than e
errors - invalid mapping
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Notas del ponente
Notas de la presentación
The goal of AF is to detect invalid mappings at early stage.

This is based on the insight that, for a valid mapping, adjacent k-mers in the read are also adjacent in the reference genome.
Let’s take a look at the previous example. The read is divided into 3 k-mers and they occur at different locations in the reference genome

From the figure, we can see that, only the location in the blue box is a valid mapping, as the three adjacent k-mers of the read are adjacent in the reference genome. Other locations are all invalid mappings because they only map to a single isolated k-mers from the read.

The key idea is instead of performing the expensive verification calculation, we can search for adjacent locations in the k-mers’ location lists and if more than e k-mers fail this process, we know there must be more than e errors present, concluding that the mapping is invalid


Adjacency Filtering (AF)

YrinininiininiriririhCCCEeeeeeeB T TTTTTTTTT1T «— read
- +12 +24
CCCCCAAAEEERTTTT «— k-mers
Reference
Hash Table C Cenome
(HT) A
9527 e
\
AAAAAAAAAAAA 12 |24 | 557 | 940 . |ARAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT
\/
CCCCCCCCCCCC Hlze_Llso | 744 | o5 f3s0
AMAAAAAAAAAACCCCCCCCCCCCTTTTITTTITTTTI

36

535

123
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Notas del ponente
Notas de la presentación
Let us look back to the previous example. With Adjacency Filtering, we still traverse the location lists but with each location, before the verification, we check if adjacent locations are in adjacent k-mers’ location lists.

In this case, with location 12 from the first k-mer, and the k-mer length being 12, we will be looking for location 24 in the second k-mer’s location lists, which is there and the third k-mer’s location list, which is also there. Because all adjacent locations are found in adjacent k-mers, we pass location 12 towards the verification process.

For the next location, 324, we search for adjacent location 336 in 2nd k-mer and it’s not there. We conclude there must be at least an error and skip the verification process and move on to the next location 577. We search for adjacent location 589, which is also not there. Then we move to the next 940 and search for 952, which is also not there. So on and so forth for all locations. In this way, we only do verification once and that is for the single valid mapping of this read.



)
FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations to verify
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Notas del ponente
Notas de la presentación
In our work, FastHASH, we have two mechanisms to leverage the two observations respectively.

Mechanism 1: Adjacency Filtering, which ….
Mechanism 2: Cheap k-mer Selection, which ….

Let us first take a look at Adjacency Filtering.


=
Cheap K-mer Selection (CKS)

Goal: Reduce the number of potential mappings to examine

Key insight:
o K-mers have different cost to examine: Some k-mers are

cheaper as they have fewer locations than others (occur less
frequently in reference genome)

Key idea:

o Sort the k-mers based on their number of locations
o Select the k-mers with the fewest humber locations to verify
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Notas del ponente
Notas de la presentación
The goal of Cheap K-mer Selection is to reduce the number of potential mappings

The key insight is that the k-mers have different cost to examine. Some k-mers are cheaper as they have fewer locations in their location lists than others, which also means they occur less frequently in the reference genome.

The key idea is to sort the k-mers based on their number of locations and select the k-mers with fewest locations to verify.


Cheap K-mer Selection

= e=2 (examine 3 k-mers) read
326 338 326 376 388
Cafions1 1451
2 loc. 2 loc.
Nﬂmber of Logatiqns—_
1K loc. 2K loc. 1K loc.
Bleapsst Bkamners
Previous work needs FastHASH verifies only:
to verify:
8 locations
3004 locations
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Notas del ponente
Notas de la presentación
In this example, we have a longer read which can be divided into 6 k-mers. The error tolerance threshold e is set to 2, which means we need to select at least 3 k-mers to verify their locations. 

Here is the location list of a k-mer. The first several entries here are locations while the last entry summarizes the number of locations of this k-mer.

We can see that for this read, some of the k-mers are cheap, having fewer than 10 locations, whereas some of them are expensive, having morethan thousands of locations.

Previous work selects k-mers at uniform locations, hence verifying 3004 locations. FastHASH however, selects only the cheap k-mers and verifies only 6 locations.


.

Methodology

Implemented FastHASH on top of state-of-the-art mapper: mrFAST
o New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

Tested with real read sets generated from Illumina platform
o 1M reads of a human (160 base pairs)

o 500K reads of a chimpanzee (101 base pairs)

o 500K reads of a orangutan (70 base pairs)

Tested with simulated reads generated from reference genome
o 1M simulated reads of human (180 base pairs)

Evaluation system
o Intel Core i7 Sandy Bridge machine
o 16 GB of main memory

96


Notas del ponente
Notas de la presentación
We implemented FastHASH on top of state-of-the-art mapper mrFAST, updating it to a new version 2.5

We evaluated the algorithm on two data sets.

Data set one are real read sets generated from illumina platform.

Data set two are simulated read sets generated from the reference genome.

All the evaluations were obtained from an Intel Core i7 Sandy Bridge machine with 16GB of main memory


FastHASH Speedup: Entire Read Mapper
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Notas del ponente
Notas de la presentación
Here we present the performance result of FastHASH, which is the speedup verses the old mrFAST.

We run the program with different error threshold e.
And the x axis shows the error threshold e.
The y axis shows the times of speedup.
The data is obtained with different read sets as well.

From this graph, we can see that With FastHASH, mrFAST obtains up to 19x speedup over previous version.


.

Analysis

# of potential mappings (Log10 Scale)

Reduction of potential mappings with FastHASH

I — | B Number of potential mappings

0 Number of potential mappings with FastHASH

@ Number of valid mappings
o
2 - 99% 99% 99%

0
999, 99%

m —]
(o —]
<

FastHASH filters out over 99% of the potential
mappings without sacrificing any valid mappings
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Notas del ponente
Notas de la presentación
This graph shows where the speedup comes from.

In this graph, we show the reduction of potential mappings with FastHASH. The x axis shows the error threshold e and the y axis shows the number of potential mappings. Notice that y axis is log10 scaled.

With FastHASH, we observe that over 99% of the potential mappings are filtered out at low cost, reducing a large amount of verification calculation.


=
FastHASH Summary & Conclusion

Problem: Existing read mappers perform poorly, especially
in the presence of errors

Observation: Most of the verification (edit distance)
calculations are unnecessary - filter them out

Key Idea: Exploit the structure of the genome to
o Reject invalid mappings early (Adjacency Filtering)

o Reduce the number of possible mappings to examine (Cheap
K-mer Selection)

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings
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Notas del ponente
Notas de la presentación
In this work, we talked about the problem, which is poor performance of existing read mappers to map billion of short reads to the reference genome, in the presence of errors.

We made the observation that most of the verification calculations are unnecessary.

The key idea of FastHASH is to reduce the cost of unnecessary verification calculations.
We have 2 mechanisms:
The first one rejects invalid mappings early, which is AF.
The second one Reduces the number of possible mappings to examine, which is Cheap K-mer Selection

As a result, we achieved up to 19x speedup over previous state-of-the-art mapper



More on FastHASH

= Download source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin' Donghyuk Lee' Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu', Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2013, 100
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Future Opportunities: New Technologies & Applications
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Shifted Hamming Distance: SIMD Acceleration

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553—1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko?,
Carl Kingsford?, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

.

Shifted Hamming Distance

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2£ shifts (of one of the strings).

Insight: Shifting a string by one “corrects” for one “error”

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2E Hamming
Distances of two strings, to filter out invalid mappings

Uses bit-parallel operations that nicely map to SIMD instructions

Key result:

a SHD is 3x faster than SegAn (the best implementation of Gene
Myers’ bit-vector algorithm), with only a 7% false positive rate

o The fastest CPU-based filtering (pre-alignment) mechanism
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Notas del ponente
Notas de la presentación
To the best of our knowledge, SHD is the fastest CPU-based filter. It depends on the fact the a deleted character causes all trailing characters to be shifted to the left direction. To correctly pairwise compare this sequence, we need to shift it back to the right direction then compare. Generally we need 2E shifts to compare any two sequences regardless the edit is insertion or deletion. 

GateKeeper is another recent filter that uses FPGA to improve the speed and the read length support of SHD.



Hamming Distance QD)

3 matches 5 mismatches
Edit = 1 Deletion

SIT{A[N||BlJU|IL

[ I [ [
N HOK

1 IS|| TI#NN|B||U||L

To cancel the effect of a
} deletion, we need to shift in

the right direction
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Notas del ponente
Notas de la presentación
Our second proposed method to accelerate read mappers is to parallelize the matrix computation.

To explain our new matrix, here is an example of exact match sequences. Now imagine there is a base deletion for any reason.




.
Insight: Shifting a String Helps Similarity Search

3 matches 5 mismatches

SIT{A[N||BlJU|IL

*-- I

| [|S||T||N||B||U||L

To cancel the effect of the
} deletion, we need to shift in

the right direction
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Notas del ponente
Notas de la presentación
After deletion, the trailing bases will be shifted to left to form a single sequence.

But when we align it back, we get too many mismatches though the number of edits is only ONE.

To cancel the effect of deletion and correctly align the sequences, we have to shift the sequence to right and align again.


.
Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

| |S|[T{|AIN|/B[|Ul|L
I S I I I
ISTNBULIJ]E
Sl

11/S|| TIN||BJJUJ|L
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Notas del ponente
Notas de la presentación
With the help of another right-shifted copy of the original sequence, we can have more similarities between the two sequences. Think about other scenarios where you have an insertion? Or a combination of deletion and insertion?


=
Shifted Hamming Distance

LISHTIHAINIBI UL
XOR -E i E E i E EEa’it 1 Deletion
/VV E
OLOlO111111111 ! ¢ XOR
AND<
11111111l0(/0]|0]|0
C°““t{o 001000

O 7 matches 1 mismatch
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Notas del ponente
Notas de la presentación
With the help of another right-shifted copy of the original sequence, we can have more similarities between the two sequences. Think about other scenarios where you have an insertion? Or a combination of deletion and insertion?


Highly Parallel Matrix Computation

Reference

CTATAATACG

2 Deletion Hamming masks

/

We need to compute 2E+1
vectors, E=edit distance
threshold

dp[i][j]= @ if X[i]=Y[]]
1 if X[1i]#Y[]]
No data dependencies!

Query
OQOP>=HP=HAD>D=H0O>

2 Insertion Hamming
masks
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Notas del ponente
Notas de la presentación
So this is how we compute the filter matrix. We pairwise compare each character from a sequence to its corresponding character from the other sequence. Match =0, Mismatch=1

The yellow diagonal vector represents XOR between the two sequences. The pink diagonal vectors represent right-shifted copies of the query sequence then compared to the reference. The blue vectors represent left-shifted copies of the query. By this we can guarantee that we can correctly examine any two sequences regardless the type of edits they have. AND NO DATA DEPENDENCIES between the cells.


Key Idea of SHD Filtering

Generate 2E+1
masks

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

Amend random zeros:
101 > 111 & 1001 »> 1111

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000§01811011010010101
1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011

11101101001010
10111011101111
11101110111110
11000111101100
11010111001000

--- Masks after amendment ---

Hamming Mask :/000000000010000000000001111111111110001111111101111111111110001000001111111111111111

1-Deletion Mask :111111111111111111111111/000000000000000000000000000000000000000000011000000000000000

2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111
l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :0000001111111111111111111111000111111111111111111311111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : | ILEVELLEE DERREEREETEE DEVEELEEE R PR LR P L P P e s L e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.


Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch Neighborhood Map
CTATAATACG CTATAATACG
*
A |- A
C |- CI N
T T ¢
A A ¢
T T ¢
A A 0 0
T T 0
A A :
c c 0
G G :
|dp[1][J 1] -1 // InSeP dplill[il=]l0@ if X[il=Y[1i]

Our goal is to track the diagonally consecutive matches
in the neighborhood map

it et NO data dependencies!
pre-computed cells!
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Notas del ponente
Notas de la presentación
How to achieve a filter that is even much faster than the banded alignment algorithm?

1- Removing the data dependencies between the cells of the dynamic programming matrix.
In NW algorithm, each cell depends on three pre-computed cells (top, diagonal, and left cells). This restricts the way we computed the entire matrix (left to right, or top to bottom, or anti-diagonal), which limits the parallelism effort. In GateKeeper, we just perform a pairwise comparison (ZERO means a match and ONE means a mismatch). NO data dependencies in GateKeeper!!
2- Generating a binary matrix and backtrack the solution using only bitwise operations.


Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
4
A A [«
‘ 0
T T | 0
A A 0
T T \

A 3] - A 0 0
Independent vectors can be processed in parallel using
hardware technologies

DRAM Layers

//

;l B //

/% ///

T ] //
Logic Layer
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Notas del ponente
Notas de la presentación
How to achieve a filter that is even much faster than the banded alignment algorithm?

1- Removing the data dependencies between the cells of the dynamic programming matrix.
In NW algorithm, each cell depends on three pre-computed cells (top, diagonal, and left cells). This restricts the way we computed the entire matrix (left to right, or top to bottom, or anti-diagonal), which limits the parallelism effort. In GateKeeper, we just perform a pairwise comparison (ZERO means a match and ONE means a mismatch). NO data dependencies in GateKeeper!!
2- Generating a binary matrix and backtrack the solution using only bitwise operations.


New Bottleneck: Filtering (Pre-Alignment)

Sequencing generates many reads, each of which
potentially mapping to many locations

9

Filtering (Pre-alignment) eliminates the need to verify/align
read to invalid mapping locations

9

Alignment/verification (costly edit distance computation) is
performed only on reads that pass the filter

New bottleneck in read mapping becomes the “filtering
(pre-alignment)” step
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More on Shifted Hamming Distance

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553—1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko?,
Carl Kingsford?, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications

SAFARI 4



o
Location Filtering (Pre-alignment)

Alignment is expensive
o We need to align millions to billions of reads

Modern read mappers reduce the time spent on alignment
for increased performance. Can be done in two ways:

Optimize the algorithm for alignment

Reduce the number of alignments necessary by filtering
out mismatches quickly

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck (xin+, BMc Genomics 2013]

SAFARI 5


Notas del ponente
Notas de la presentación
[CLICK]
Alignment is the algorithm for determining a match between a read and a reference substring. This is very expensive and requires the use of an O(n2) dynamic programming algorithm. 
[CLICK]
To give the scale of required computation, a single human can generate millions to billions of reads, and each read results in multiple locations
[CLICK]
Modern read mappers reduce the time spent on alignment for increased performance. This can be done in two ways:
[CLICK]
By further optimizing the alignment algorithm, which many prior works have done.. OR 
[CLICK]
By reducing the number of alignments necessary by quickly discarding mismatches. We refer to this as filtering.
[CLICK]
Both methods are used by mappers today, but now filtering has replaced alignment as the bottleneck.
[CLICK]
Our goal is to improve the filtering step in read mappers
[END-CLICK]


o
Location Filtering (Pre-alignment)

Alignment is expensive
o We need to align millions to billions of reads

M ¢
' Our goal is to accelerate read mapping
by improving the filtering step

VUL 1111IJ111JUlT TGO \.‘IUI\.—I\IY

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck (xin+, BMc Genomics 2013]
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Notas del ponente
Notas de la presentación
[CLICK]
Alignment is the algorithm for determining a match between a read and a reference substring. This is very expensive and requires the use of an O(n2) dynamic programming algorithm. 
[CLICK]
To give the scale of required computation, a single human can generate millions to billions of reads, and each read results in multiple locations
[CLICK]
Modern read mappers reduce the time spent on alignment for increased performance. This can be done in two ways:
[CLICK]
By further optimizing the alignment algorithm, which many prior works have done.. OR 
[CLICK]
By reducing the number of alignments necessary by quickly discarding mismatches. We refer to this as filtering.
[CLICK]
Both methods are used by mappers today, but now filtering has replaced alignment as the bottleneck.
[CLICK]
Our goal is to improve the filtering step in read mappers
[END-CLICK]


Ideal Location Filtering Algorithm

Step 3

Read
Alignment

1. Filters out most of the incorrect mappings
2. Preserves all correct mappings
3. Does this quickly

SAFARI 7


Notas del ponente
Notas de la presentación
Ideal pre-alignment filter should be both accurate and fast:
1- Faster than typical aligners to compensate the computation overhead introduced by its filtering technique (as we added an extra filtering stage).
2- We define the accuracy of pre-alignment filtering as follows: It’s the ability of the filter to reject most of the incorrect mappings (i.e., maximizing the true reject rate and minimizing the false accept rate) while keeping all the correct ones (i.e., zero false reject rate). 



Location Filtering Example

Read Sequence (100 bp) X

AVebdng... Mlgnaigh. Fraise
Accept

----------------------------------------------------
. .

. .

. ‘e

Hash Table Reference Genome
Filter
37 140 E
894 1203 %

.
......
---------------------------------------------------
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Notas del ponente
Notas de la presentación
[CLICK]
Again, we split the read into k-mers of length 5 and query the hash table for their location lists 
[CLICK]
We then pass the locations through the filter and attempt to efficiently discard as many locations as possible before having to run alignment. Here we see that locations that are obviously mismatches get discarded, before needing alignment.  
[CLICK]
The read must then be aligned against the strings that pass the filter to determine location matches
[CLICK]
Any location that passes through the filter, but then fails the alignment is called a false negative. False negative rates and filtering speed are important metrics for analyzing a filter.

note that when the filter was added, we were able to forego 3 instances of alignment thus saving us execution time.
[END-CLICK]



Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch SHD
VTVAVTAATA G TATAATACG

>=P>=-0OP
P=Pp=-0D>

Independent vectors can be processed in parallel using
hardware technologies

DRAM Layers

/1

/]
[ T d

g pd
d % ///
T 1] //

Logic Layer
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Notas del ponente
Notas de la presentación
How to achieve a filter that is even much faster than the banded alignment algorithm?

1- Removing the data dependencies between the cells of the dynamic programming matrix.
In NW algorithm, each cell depends on three pre-computed cells (top, diagonal, and left cells). This restricts the way we computed the entire matrix (left to right, or top to bottom, or anti-diagonal), which limits the parallelism effort. In GateKeeper, we just perform a pairwise comparison (ZERO means a match and ONE means a mismatch). NO data dependencies in GateKeeper!!
2- Generating a binary matrix and backtrack the solution using only bitwise operations.



GateKeeper: FPGA-Based Alignment Filtering

st

Alignment B ot 8
Filter - FPGA-based

Alignment Filter.

x1012 x103

mappings mappings
- - T;':'ATAATA G

ACGTACGTACGTACGT
AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

wwwwwwwwwwwwwwwwww
GACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

TATATATACGTACTAGTACGT
GTTTTTAAAACGTA
AAAAAAAAAAAAAAAAA
GACGGGGAGTACGTACGT
ATATATACGTACTAAAGTACGT

OBPAP AP0

Billions of Short Reads

E High throughput DNA Read Pre-Alignment Filtering Read Alighment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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Notas del ponente
Notas de la presentación
To bridge the widening gap between the sequencer & the mapper, we propose the concept of pre-alignment filtering. We added a new examination step before the accurate alignment step. The main objective of this step is to detect the incorrect mappings accurately and rapidly. Only the mappings that pass our filter are examined by the alignment step. We also explore exploiting todays’ hardware accelerators to further boost the filtering speed of such filters.



GateKeeper: FPGA-Based Alignment Filtering

= Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for
Accelerating Pre-Alighment in DNA Short Read Mapping"”
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

GateKeeper Walkthrough

Generate 2E+1
masks

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

Amend random zeros:
101 > 111 & 1001 »> 1111

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :000000000010000000000001111111011110001110110101101111111110001000001111011010010101
1-Deletion Mask :111111111110011111011111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100010011101101001010
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110010110111011101111

l1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000101011101110111110
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001111111000111101100
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011101111010111001000

-—-—- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :111111111111111111111111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :000000111111111111111111111100011111111111111111111111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : LLLECLLDEE TREEERREEET CEEREEEE R e i et e e e e e e e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.


GateKeeper Walkthrough (cont’d)

Generate 2E+1

masks

AND all masks,
ACCEPT iff number of ‘1’ £ Threshold

Amend random zeros:
101 > 111 & 1001 »> 1111

E right-shift registers (length= ReadLength)
E left-shift registers (length=ReadLength)
(2E+ 1) (ReadLength) 2-XOR operatlons ;

» (2E)*(ReadLength) 2-AND
operations.

| * (ReadLength/4) 5-input LUT.
| + log,ReadLength-bit counter.

C

VVVVVVl A 4

\_ i l ‘
0111100011.10001111 11111100011110

Hamming mask after amending

-
dL

» (2E+1)*(ReadlLength) 5-input LUT.
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Notas del ponente
Notas de la presentación
So basically we have three main steps in GateKeeper:
Step 1: Building the matrix that involves 2E shift registers (each diagonal bit-vector is generated by shifting the read then pairwise compare the shifted read with the reference), each of length =ReadLength. 

Step 2: Cancelling the meaningless short zeros by changing them to ones (101 is changed to 111 and 1001 to 1111) using 5-input LUT of the VC709 FPGA. 

Step 3: AND all vectors and count the number of zeros in the AND mask.

Alignment filters do not replace the alignment verification.
Alignment filters eliminate most of incorrect mappings.
Alignment filters keep the correct (or nearly correct) mappings.


GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU)

-
2K

Input stream :
of binary pairs !

reference

input reads
genome (.fasta) ;

(.fastq)

GateKeeper

D A— -------

GateKeeper

Alignment Filtering (FPGA)

GateKeeper

read pairs Read Controller
(mrEAST qlﬁ » FIFO FIFO
output) . Encoder EI¥ oo1
p read#1 read#N

GateKeeper
Processing
Core #N

Processing
Core #1

Mapping Controller

'Alignment Verification
(CPU/FPGA)

ACTATAATACG

QOP=AP=AHDP-HO>O

Accepted Alignments
E (correct & false positives)

#lmap#ﬂ} [ [map.#N|

PCie

SAFARI
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Notas del ponente
Notas de la presentación
Here, we present the architecture of GateKeeper. Each processing core is able to examine a single mapping in a single clock cycle. We integrate many hardware processing cores in the architecture of GateKeeper for examining many mappings in a parallel fashion. The input read-reference pairs are transferred from the host to the FPGA via PCIe third generation 4-lane at the rate of 13.3 billion bases/sec. With this data throughput, we can have 16 processing cores work concurrently to examine 16 read-reference pairs. Our architecture occupies only 50% of the FPGA resource for a read length of 100 bp and 91% for a read length of 300 bp.  
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FPGA Chip Layout
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GateKeeper vs. SHD

= FPGA (Xilinx VC709) = Intel SIMD

= Multi-core (parallel) = Single-core (sequential)

= Examines a single = Examines a single
mapping @ 125 MHz mapping @ ~2MHz

= Limited to PCle Gen3(4x) = Limited to a read length
transfer rate (128 bits @ of 128 bp (SSE register

250MHz) size)
= Amending requires: = Amending requires:
o (2E+1) 5-input LUT. o 4(2E+1) bitwise OR.

o 4(2E+1) packed shuffle.
a 3(2E+1) shift.
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper
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https://github.com/BilkentCompGen/GateKeeper

GateKeeper Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing
o Paves the way to on-device genome analysis
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More on GateKeeper

= Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for
Accelerating Pre-Alighment in DNA Short Read Mapping"”
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ™, Can Alkan

Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

MAGNET Accelerator [Alser+, TIR 2017]
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Notas del ponente
Notas de la presentación
We implement our algorithm in Verilog and design a hardware accelerator for it. Each processing core is able to examine a single mapping. We integrate many hardware processing cores in the architecture of MAGNET for examining many mappings in a parallel fashion.�


Can We Do Better?

Faster, More Accurate,
More Scalable
Pre-Alignment Filtering

SAFARI



Algorithm-Arch-Device Co-Design 1s Critical

Computer Architecture SW/HW Interface

(expanded view)
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Shouji (FEF) [Alser+, Bioinformatics 2019]

Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,

"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment"

Bioinformatics, [published online, March 28], 2019.

[Source Code]

[Online link at Bioinformatics Journal]

SAFARI

Bioinformatics, 2019, 1-9

doi: 10.1093/bicinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment
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Shouyt
Key observation:
o Correct alignment always includes long identical subsequences
o Processing the entire sequence at once is ineffective for hardware
design
Key idea:

o Use an overlapping sliding window approach to quickly and
accurately find all long identical subsequences (consecutive zeros)

Key result:

o Shouji accelerates the best-performing CPU read aligner Edlib
(Bioinformatics 2017) by up to 18.8x using 16 filtering units that
work in parallel

o Shouji on FPGA is up to 10,000x faster than on CPU

o Shouji is 2.4x to 467x more accurate than GateKeeper
(Bioinformatics 2017) and SHD (Bioinformatics 2015)
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Shouyt
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Shouji Walkthrough

Build the Neighborhood
Map

Find all common
subsequences
(diagonal segments of
consecutive zeros)
shared between two
given sequences

Store longest subsequence
in Shouji Bit-vector
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Hardware Implementation
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SneakySnake

= Key observation:
o Correct allgnment IS a sequence of non overlapplng long matches
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SneakySnake

Key observation:
o Correct alignment is a sequence of non-overlapping long matches
Key idea:

o Reduce the approximate string matching problem to the Single
Net Routing problem in VLSI chip layout

VLSI chip layout
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SneakySnake

Key observation:
o Correct alignment is a sequence of non-overlapping long matches

Key idea:
o Reduce the approximate string matching problem to the Single
Net Routing problem in VLSI chip layout

Key result:

a SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics'19) and GateKeeper (Bioinformatics’17)

o SneakySnake greatly accelerates state-of-the-art CPU sequence
aligners, Edlib (Bioinformatics’17) and Parasail (BMC Bioinformatics'16)
o by up to 37.7x and 43.9% (>12x on average), on CPUs
o by up to 413x and 689x (>400x on average) with FPGAs/GPUs

SAFARI 143



SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.


=
SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path

Main Diagon

I’ Lower Diagc
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.


=
SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.


SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build - 3
and it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.


FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,
Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register § No. of Filtering Units

GateKeeber 2 0.39% 0.01% 16

P 0.71% 0.01% 16

B 0.69% 0.08% 16
Shouji

1.72% 0.16% 16
0.68% 0.16% 16
1.42% 0.34% 16

L N0 NN

Snake-on-Chip
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Key Results of SneakySnake

o SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics’'19) and GateKeeper (Bioinformatics'17)

o Short reads:

o SneakySnake accelerates Edlib (Bioinformatics’17) and Parasail (BMC
Bioinformatics'16) by

up to 37.7x and 43.9x (>12x on average), on CPUs
up to 413x and 689x (>400x on average) using FPGAs/GPUs

o Long reads:

o SneakySnake accelerates Parasail and KSW2 by 140.1x and 17.1x on
average, respectively, on CPUs
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LOﬂg Read Mappmg (SneakySnake vs Parasail)

10K bp reads

100K bp reads

SneakySnake I Parasail SneakySnake I Parasail
I Parasail after SneakySnake —B— Accept rate of SneakySnake I Parasail after SneakySnake —B— Accept rate of SneakySnake
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Fig. 10: The execution time of SneakySnake, Parasail, and SneakySnake integrated with Parasail
using long sequences, (a) 10Kbp and (b) 100Kbp, and 40 CPU threads. The left y-axes of (a) and (b)
are on a logarithmic scale. For each edit distance threshold value, we provide in the right y-axes of
(a) and (b) the rate of accepted pairs (out of 100,000 pairs for 10Kbp and out of 74,687 pairs for
100Kbp) by SneakySnake that are passed to Parasail. We present the end-to-end speedup values
obtained by integrating SneakySnake with Parasail.
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LOﬂg Read Mappmg (SneakySnake vs KSW2)

SneakySnake Il Ksw2 SneakySnake I Ksw2
I KSW2 after SneakySnake —B— Accept rate of SneakySnake I KSW2 after SneakySnake —l— Accept rate of SneakySnake
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Fig. 11: The execution time of SneakySnake, KSW2, and SneakySnake integrated with KSW2 using
long sequences, (a) 10Kbp and (b) 100Kbp, and a single CPU thread. The left y-axes of (a) and (b) are
on a logarithmic scale. For each edit distance threshold value, we provide in the right y-axes of (a)
and (b) the rate of accepted pairs (out of 100,000 pairs for 10Kbp and out of 74,687 pairs for 100Kbp)
by SneakySnake that are passed to KSW2. We present the end-to-end speedup values obtained by
integrating SneakySnake with KSW2.
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More on SneakySnake [Alser+, Bioinformatics 2020]

Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment
Filter for CPUs, GPUs, and FPGAs"

Bioinformatics, to appear in 2020.

rsource COde] Bioinformatics
[Online link at Bioinformatics Journal] dol.10.1093/bicinformatics 00000
Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

SneakySnake: A Fast and Accurate Universal
Genome Pre-Alignment Filter for CPUs, GPUs, and
FPGAs

Mohammed Alser 2*, Taha Shahroodi', Juan Gémez-Luna 2,
Can Alkan**, and Onur Mutlu 1-2:3:4.*

1 Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland

2Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland
3Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
4Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
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https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015

GenASM Framework [MICRO 2020]

= Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
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.

Problem & Our Goal

 Multiple steps of read mapping require approximate string matching
o ASM enables read mapping to account for sequencing errors and
genetic variations in the reads

2 ASM makes up a significant portion of read mapping (more than 70%)

- One of the major bottlenecks of genome sequence analysis

Our Goal:

Accelerate approximate string matching by
designing a fast and flexible framework,
which can be used to accelerate multiple steps of
the genome sequence analysis pipeline

SAFARI


Notas del ponente
Notas de la presentación
As a result, read mapping must perform approximate string matching (ASM). Several algorithms exist for ASM, but state-of-the-art read mapping tools typically make use of an expensive dynamic programming based algorithm that scales quadratically in both execution time and required storage. This ASM algorithm is the major bottleneck for many steps of the genome sequence analysis pipeline.

Thus, our goal in this work is to design a fast and flexible framework for both short and long reads, which can be used to accelerate multiple steps of the genome sequence analysis pipeline. 




GenASM: ASM Framework for GSA

Our Goal:

Accelerate approximate string matching
by designing a fast and flexible framework,
which can accelerate multiple steps of genome sequence analysis

O GenASM: First ASM acceleration framework for GSA

o Based on the Bitap algorithm
= Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
= Highly-parallel Bitap with long read support
= Bitvector-based novel algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators
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Notas del ponente
Notas de la presentación
[CLICK] Our goal in this work is to design a fast and flexible framework for both short and long reads, which can accelerate multiple steps of genome sequence analysis (GSA). 
[CLICK] To this end, we propose GenASM
[CLICK] We base GenASM on Bitap, an ASM algorithm that uses only fast and simple bitwise operations, making it amenable to efficient hardware acceleration. To our knowledge, GenASM is the first work that enhances and accelerates Bitap, and also it is the first ASM acceleration framework for genome sequence analysis.
[CLICK] We modify Bitap to support long reads and to enable parallelization. 
We also develop a novel Bitap-compatible algorithm for traceback, which uses information collected during ASM about the different types of errors to identify the optimal alignment of reads. 
[CLICK] And, we co-design specialized, low-power and area-efficient hardware for both algorithms.






.

GenASM: Hardware Design

Main
Memory

DC-SRAM

Host
CPU

|

GenASM-DC
Accelerator

.

GenASM-DC GenASM-TB

v
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TB-SRAM,
TB-SRAM, »| GenASM-TB

- Accelerator
TB-SRAM,,

GenASM-DC:
generates bitvectors
and performs edit
Distance Calculation

SAFARI

GenASM-TB:
performs TraceBack
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Notas del ponente
Notas de la presentación
Our co-designed hardware consists of two components: 
(1) GenASM-DC, which provides hardware support to efficiently execute our modified Bitap algorithm to perform distance calculation; and 
(2) GenASM-TB, which provides hardware support to efficiently execute our novel traceback algorithm to find the optimal alignment.
GenASM also has two types of SRAM buffers:
DC-SRAM, and
TB-SRAMs








GenASM: Hardware Design

Main
Memory

DC-SRAM

Host
CPU

|

GenASM-DC
Accelerator

GenASM-DC GenASM-TB

TB-SRAM,

v

TB-SRAM, »] GenASM-TB
- Accelerator

TB-SRAM,

Our specialized compute units and on-chip SRAMs help us to:

—> Match the rate of computation with memory capacity and bandwidth

—> Achieve high performance and power efficiency
—> Scale linearly in performance with

the number of parallel compute units that we add to the system

Damla Senol Cali
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Notas del ponente
Notas de la presentación
Our specialized compute units and on-chip SRAMs help us to: 
[CLICK] (1) Match the rate of computation with memory capacity and bandwidth 
[CLICK] (2) Achieve high performance and power efficiency
[CLICK] (3) Scale linearly in performance with the number of parallel compute units that we add to the system 








GenASM-DC: Hardware Design

O Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and

memory footprint
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Processing Core (PC)
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Notas del ponente
Notas de la presentación
[CLICK] We implement GenASM-DC as a linear cyclic systolic array based accelerator, using small and very simple logic components. 
[CLICK] This design helps us to maximize parallelism and minimize memory BW and footprint.

[CLICK] Processing Core is the basic compute component which computes the intermediate bitvectors
[CLICK] and when we add the flip-flop-based storage logic around Processing Core, we define a Processing Element (PE)
[CLICK] Multiple PEs are concatenated to define a Processing Block
[CLICK]  We also have DC-SRAM, which stores the reference text, the pattern bitmasks for the query read, and the intermediate data generated from PEs, and we also have
[CLICK] TB-SRAMs, which store the intermediate bitvectors generated by each PE of GenASM-DC for later use by GenASM-TB. 



GenASM-TB: Hardware Design
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[ Very simple logic:

@) Reads the bitvectors from one of the TB-SRAMs using the computed

address

to main
memory

@) Performs the required bitwise comparisons to find the traceback output

for the current position

€) Computes the next TB-SRAM address to read the new set of bitvectors
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Notas del ponente
Notas de la presentación
[CLICK] We implement GenASM-TB hardware using very simple logic, which 
[CLICK] 1) reads the bitvectors from one of the TB-SRAMs using the computed address, 
[CLICK] 2) performs the required bitwise comparisons to find the traceback output for the current position, and 
[CLICK] 3) computes the next TB-SRAM address to read the new set of bitvectors. 
After GenASM-TB finds the complete traceback output, [CLICK] it writes this output to main memory and completes its execution. 


Key Results — Area and Power

[ Based on our synthesis of GenASM-DC and GenASM-TB accelerator
datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

GenASM-DC (64 PEs)
GenASM-TB

DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

Total (1 vault):
Total (32 vaults):
% of a Xeon CPU core:

Damla Senol Cali

Area (mm?)

0.256

0.049 0.016
0.013

0.334 mm?
10.69 mm?

1%

SAFARI

Power (W)

0.033

0.055

0.004
0.009

0.101 W
3.23 W
1%
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Notas del ponente
Notas de la presentación
[CLICK] We synthesize our DC and TB accelerator datapaths with a typical 28nm low-power process:
[CLICK] Both accelerators operates at 1GHz.

[CLICK] We find that for 32 GenASM accelerator (one for each HMC vault), total area overhead is ten point sixty nine millimeter square and total power consumption is three point twenty-three watts.
We observe that both area and power consumption of GenASM (at 1 vault) is around 1% of the area and power consumption of a single Xeon CPU core.


&
Key Results — Area and Power

[ Based on our synthesis of GenASM-DC and GenASM-TB accelerator
datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Area (mm?2) Power (W)
GenASM-DC (64 PEs) 0.049°7 o.016
GenASM-TB 0.013 D85
DC-SRAM (8 KB) 0.055
TB-SRAMS (64 x 1.5 KB) S
0.004
0.009

GenASM has low area and power overheads

\
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Notas del ponente
Notas de la presentación
Thus, GenASM has low area and power overheads.


Use Cases of GenASM

Reference _,
genome

lHash table based index

Reads from |
—
sequenced
genome

lCandidate mapping locations

Pre-Alignment Filtering

Remaining candidate mapping locations

Read Alignment

Optimal alignment
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Notas del ponente
Notas de la presentación
GenASM is flexible and can be used for a number of use cases. 
In this work, we evaluate three of them in detail and two of them are from the read mapping pipeline: 
Pre-alignment filtering and read alignment


Use Cases of GenASM (cont'd.)

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference
regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

O We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole
genome alignment, generic text search
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Notas del ponente
Notas de la presentación
[CLICK] (1) read alignment
is the most time consuming step of read mapping that we align each read to all of its candidate reference regions and then find the optimal alignment.
[CLICK] (2) in pre-alignment filtering for short reads, 
we aim to quickly identify and filter out the unlikely candidate reference regions of each read by approximating the edit distance between them and filter out if it is above a threshold.
[CLICK] And our third use case is edit distance calculation 
Which is one of the fundamental operations in genomics that measures the similarity or distance btw two sequences

In our paper, we also briefly discuss several other use cases such as generic text search


Key Results

(1) Read Alignment

O 116x speedup, 37x less power than Minimap2 (state-of-the-art SW)

0 111x speedup, 33x less power than BWA-MEM (state-of-the-art SW)

O 3.9x better throughput, 2.7x less power than Darwin (state-of-the-art HW)

O 1.9x better throughput, 82% less logic power than GenAX (state-of-the-art HW)

(2) Pre-Alignment Filtering
 3.7x speedup, 1.7x less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
) 22-12501x speedup, 548-582x |less power than Edlib (state-of-the-art SW)
) 9.3-400x speedup, 67x less power than ASAP (state-of-the-art HW)
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Notas del ponente
Notas de la presentación
We find that, for all the three use cases, GenASM is significantly more efficient in terms of both speed and power consumption than state-of-the-art software and hardware baselines
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
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https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
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Notas del ponente
Notas de la presentación
Hello, I am Damla Senol Cali. Today, I'll be presenting our work “SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping ". 

mailto:damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Genome Sequence Analysis

O Mapping the reads to a reference genome (i.e., read mapping) is a
critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT
Alternative Sequence: ACGTTACGT
Alternative Sequence: ACG-ACGT

Sequence-to-Sequence (52S) Mapping

Graph-based Reference:

Read: ACGG

Sequence-to-Graph (S2G) Mapping

Sequence-to-graph mapping results in notable quality improvements.
However, it is a more difficult computational problem,
with no prior hardware design.

Damla Senol Cali
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Notas del ponente
Notas de la presentación
Read mapping, which is the process of mapping the reads to a reference genome is a critical step in genome sequence analysis
Traditionally, we perform seq2seq mapping, where we
Map reads collected from an individual to a known linear reference genome sequence
Emphasizes the genetic variations that are present in the single reference genome
Ignores other variations that are not represented in the single linear reference sequence
Introduces reference bias
However, s2s mapping is a well studied problem with many available tools and accelerators

Recent works replace the linear reference sequence with a graph-based representation of  the reference genome (genome graph). Thus, we can perform seq2graph mapping.
Captures the genetic variations and diversity across many individuals in a population
[CLICK] Results in notable quality improvements in GSA




.

SeGraM: First Graph Mapping Accelerator

Our Goal:

Specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in
multiple steps of sequence-to-graph mapping

SeGraM: First universal algorithm/hardware co-designed genomic
mapping accelerator that can effectively and efficiently support:

 Sequence-to-graph mapping
J Sequence-to-sequence mapping

[ Both short and long reads
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Notas del ponente
Notas de la presentación
[CLICK] Thus, our goal is to come up with a specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in both the seeding and alignment steps of sequence-to-graph mapping. 
[CLICK] To this end, we propose SeGraM, a universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads. To our knowledge, SeGraM is the first algorithm/hardware co-design for accelerating
sequence-to-graph mapping.


Use Cases & Key Results

(1) Sequence-to-Graph (52G) Mapping

O 5.9x/106x speedup, 4.1x/3.0x less power than GraphAligner
for long and short reads, respectively (state-of-the-art SW)

0 3.9x/742x speedup, 4.4x/3.2x less power than vg
for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (52G) Alignment
1 41x-539x% speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (52S) Alignment

) 1.2x/4.8x higher throughput than GenASM and GACT of Darwin
for long reads (state-of-the-art HW)

2 1.3x/2.4x higher throughput than GenASM and SillaX of GenAX
for short reads (state-of-the-art HW)
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Notas del ponente
Notas de la presentación
[CLICK] [CLICK] [CLICK] We demonstrate that SeGraM provides significant improvements for multiple steps of the sequence-to-graph (i.e., S2G) and sequence-to-sequence (i.e., S2S) mapping pipelines.
==================================================================================================================
[CLICK] We show that (1) SeGraM provides greatly higher throughput and lower power consumption on both short and long reads compared to state-of-the-art software tools for sequence-to-graph mapping, and
[CLICK] (2) BitAlign significantly outperforms a state-of-the-art sequence-to-graph alignment tool and [CLICK] three state-of-the-art hardware solutions that are specifically designed for sequence-to-sequence alignment.
===========================================================================================================
We also show that MinSeed can be employed for the seeding step of both sequence-to-graph and sequence-to-sequence mapping pipelines.


SeGraM Talk Video

Sequence-to-Graph Mapping Pipeline

Linear reference - N Pre-Processing
S Genome Graph Construction
genoime Steps (Offline
struct the graph usang a inear reference genome and vanations

Known geneti l Genome qgraph

Indexing

7

Reads from -
Seeding

query the index & find the seed matches

J
‘ Candidate mapping location

sequenced

genome

Filtering/Chaining/Clustering d

(filter owt dissamdar query read and subgraph pairs) )

‘ Remaining candidate mapping locations (subgraphs)

‘

526G Alignment

(perform destance/score calculation & traceback)

Seed-and-Extend
Optimal alignment between read & subgraph Steps (Online)
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Sequence-to-Graph Mapping Pipeline

Linear reference = ol Pre-Processing
enome Grap onstruction .
enome
9 (construct the graph using a linear reference genome and variations) ] Steps (Offlme)
variations -
Indexing
(index the nodes of the graph)
i Hash-table-based index (of graph nodes)
Reads from :
sequenced , Segdlng ]
(query the index & find the seed matches)
genome

(filter out dissimilar query read and subgraph pairs)

Filtering/Chaining/Clustering ]

¢ Remaining candidate mapping locations (subgraphs)

[a l Candidate mapping locations (subgraphs)

S2G Alignment
(perform distance/score calculation & traceback)
{ Seed-and-Extend
Optimal alignment between read & subgraph Steps (Online)
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Notas del ponente
Notas de la presentación
Which brings us to seq2graph mapping. 
Sequence-to-graph mapping pipeline has [CLICK] two pre-processing and [CLICK] three main steps.
[CLICK] The first pre-processing step constructs the genome graph using a linear reference genome and the associated variations for that genome. 
[CLICK] The second pre-processing step indexes the nodes of the graph. The resulting index is used in the first main step of the pipeline, [CLICK] seeding, which aims to find seed matches between the query read and a region of the graph. 
[CLICK] After optionally filtering these seed matches with a filtering, chaining, or clustering step, [CLICK] alignment is performed between all of the non-filtered seed locations within the graph and the query read to find the optimal alignment. Alignment is the most expensive step of the pipeline, so let’s look at it in detail.


S2Svs. S2G Alignment

Single linear
reference

A A HHAA AT

C
Query _|
read G

Sequence-to-Sequence (52S) Alignment
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Notas del ponente
Notas de la presentación
[CLICK] Traditional sequence-to-sequence (S2S) alignment typically employs DP-based algorithms with quadratic time and space complexity.
A DP-based algorithm operates on a table, where each column of the table corresponds to a reference character, and each row of the table corresponds to a query read character.
[HIGHLIGHT] In S2S alignment, a new cell in the table is determined with simple rules from 3 of its neighbor cells.


S2Svs. S2G Alignment

Graph-based

reference OP
<) <)

Query _|
read G

T~
\\

\/

Sequence-to-Graph (52G) Alignment

In contrast to S25 alignment,
S2G alignment must incorporate non-neighboring characters
as well whenever there is an edge (i.e., hop)
from the non-neighboring character to the current character
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Notas del ponente
Notas de la presentación
[CLICK] In contrast to S2S alignment, S2G alignment must incorporate non-neighboring characters as well whenever there is an edge (i.e., hop) from the non-neighboring character to the current character. [HIGHLIGHT] For example, when computing the green-shaded cell, we need information from all of the light green-shaded cells.
=======================================================================================================
Even though sequence-to-sequence mapping is a well-studied problem, given the additional complexities and overheads of processing a genome graph instead of a linear reference genome, sequence-to-graph mapping is a more difficult computational problem with a smaller number of practical software tools currently available.


&
Analysis of State-of-the-Art Tools

Based on our analysis with GraphAligner and vg: SW
Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates
Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable AW

for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle
S2G alignment
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Notas del ponente
Notas de la presentación
In order to further understand the performance bottlenecks of the state-of-the-art sequence-to-graph mapping tools, we rigorously analyze two such tools, GraphAligner [61] and vg [36], and we make four key observations.
[CLICK] (1) Among the three online steps of the read mapping pipeline alignment i) constitutes majority of the end-to-end execution of sequence-to-graph mapping, and ii) is even more expensive than its counterpart in the traditional read mapping pipeline.
[CLICK] (2) Alignment suffers from high cache miss rates, due to the high amount of internal data that is generated and reused during this step. 
[CLICK} (3) Seeding suffers from the main memory (DRAM) latency bottleneck, due to the high number of irregular memory accesses. 
[CLICK] (4) Both state-of-the-art tools scale sublinearly as thread count increases, wasting available thread-level parallelism in hardware. 
[CLICK] We also investigate the existing HW accelerators. It is important to note that there is no existing hardware accelerator for sequence-to-graph mapping or alignment problems.
[CLICK] Even though there are several hardware accelerators designed to alleviate bottlenecks in several steps of traditional sequence-to-sequence (S2S) mapping, none of these
designs can be directly employed for the sequence-to-graph (S2G) mapping problem. This is because S2S mapping is a special case of S2G mapping, where all nodes have only one incoming edge. Existing accelerators are limited to only this special case, and are unsuitable for the more general S2G mapping problem, where we also need to consider multiple edges (i.e., hops) that a node can have.
[CLICK] We also look at the possibility of exploiting existing several graph accelerators. While existing graph accelerators could potentially be customized to help the seeding step of the sequence-to-graph mapping pipeline, they are unable to handle the major bottleneck of sequence-to-graph mapping, which is alignment. Alignment is not a graph traversal workload, and instead is an expensive bitvector-based or DP-based computational problem.

Thus, we need to have a specialized, balanced, and scalable design for compute units, on-chip memory, and main memory accesses for both the seeding and alignment steps of sequence-to-graph mapping.


SeGraM: Universal Genomic Mapping Accelerator

O First universal genomic mapping accelerator that can support both
sequence-to-graph mapping and sequence-to-sequence mapping,
for both short and long reads

3 First algorithm/hardware co-design for accelerating
sequence-to-graph mapping

0 We base SeGraM upon a minimizer-based seeding algorithm

0 We propose a novel bitvector-based alignment algorithm to
perform approximate string matching between a read and
a graph-based reference genome SW

[ We co-design both algorithms with high-performance, scalable,
and efficient hardware accelerators HW
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Notas del ponente
Notas de la presentación
[CLICK] the first universal genomic mapping accelerator that can support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and
long reads. 
[CLICK] To our knowledge, SeGraM is the first algorithm/hardware co-design for accelerating sequence-to-graph mapping.
[CLICK] We base SeGraM upon a minimizer-based seeding algorithm and we propose a novel bitvector-based alignment algorithm for sequence-to-graph alignment. 
[CLICK] these cover the algorithmic contributions of SeGraM
[CLICK] We co-design both algorithms with high-performance, scalable, and efficient hardware accelerators.
[CLICK] and this covers the hardware-level contributions of SeGraM





SeGraM Hardware Design

Main Memory (graph-based reference & index)
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Notas del ponente
Notas de la presentación
A SeGraM accelerator consists of two main components:
[CLICK] MinSeed (MS), which is responsible for the seeding step and it is the first hardware accelerator for minimizer-based seeding, and second component is
[CLICK] (2) BitAlign (BA), which is responsible for the alignment step and it is the first hardware accelerator for sequence-to-graph alignment.


.

SeGraM Hardware Design

Main Memory (graph-based reference & index)
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Notas del ponente
Notas de la presentación
Let’s look at the overview of our hardware design.
[CLICK] Before SeGraM execution starts, as pre-processing steps, we (1) generate each chromosome’s graph structure, (2) index each graph’s nodes, and (3) pre-load both the resulting graph and hash table index into the main memory. Both the graph and its index are static data structures that can be generated only once and reused for multiple mapping executions.
[CLICK] SeGraM execution starts when the query read is streamed from the host and MinSeed writes it to the read scratchpad ( 1 ). 
[CLICK] Using all of the k-length subsequences (i.e., k-mers) of the query read, [CLICK] MinSeed finds the minimum representative set of these k-mers (i.e., minimizers) according to a scoring mechanism and [CLICK] writes them to the minimizer scratchpad ( 2 ). 
[CLICK] For each minimizer, MinSeed fetches its occurrence frequency from the hash table in main memory ( 3 ) and [CLICK] filters out each minimizer whose occurrence frequency is above a user-defined threshold ( 4 ). We aim to select the least frequent minimizers and filter out the most frequent minimizers such that we minimize the number of seed locations to be considered for the expensive alignment step. 
[CLICK] Next, MinSeed fetches the seed locations of the remaining minimizers from main memory, and writes them to the seed scratchpad ( 5 ). 
[CLICK] Finally, MinSeed calculates the candidate reference region (i.e., subgraph surrounding the seed) for each seed ( 6 ), [CLICK] fetches the graph nodes from memory for each candidate region in the reference and writes the nodes to the input scratchpad of BitAlign. ( 7 ). 
[CLICK] BitAlign starts by reading the subgraph and the query read from the input scratchpad, and generates the bitvectors ( 8 ) required for performing approximate string matching and edit distance calculation. 
While generating these bitvectors, [CLICK] BitAlign writes them to the hop queues ( 9 ) in order to handle the hops required for graph-based alignment, and also, [CLICK] to the bitvector scratchpad ( 10 ) to be later used as part of the traceback operation.
Once BitAlign finishes generating and writing all the bitvectors, [CLICK] it starts reading them back from the bitvector scratchpad, performs the traceback operation ( 11 ), finds the optimal alignment between the subgraph and the query read, and [CLICK] streams the optimal alignment information back to the host ( 12 ).


.

MinSeed HW

(J MinSeed = 3 computation modules + 3 scratchpads + memory interface

o Computation modules: Implemented with simple logic

o Scratchpads: 50kB in total; employ double buffering technique to
hide the latency of MinSeed

o High-Bandwidth Memory (HBM): Enables low-latency and
highly-parallel memory access

Main Memory (High Bandwidth Memory)

Minimizer Candidate
Read Minimizer Minimizer »| Filter Seed Seed candidate
queryread ) seratchpad ™ Einder Scratchpad by »| Scratchpad »| Region L5 subgraph
(INPUT) (6 kB) (40 kB) Frequency (4 kB) Calculator (ouUTPUT)
‘ (<?) (+/-/%)
frequency error rate,
threshold read length
(INPUT) (INPUT)
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Notas del ponente
Notas de la presentación
Let’s look at the HW design of MinSeed.
MinSeed accelerator consists of three computation modules, three scratchpads, and the memory interface
Computation modules are implemented with simple logic, since we require only basic operations (e.g., comparisons, simple arithmetic operations, scratchpad R/W operations)
For all three scratchpads, we employ a double buffering technique to hide the latency of the MinSeed accelerator.
We couple MinSeed with High-Bandwidth Memory (HBM) to enable low-latency and highly-parallel memory access.



.

BitAlign HW

 Linear cyclic systolic array-based accelerator

J Based on the GenASM hardware design*

to feed the bitvectors of
non-neighboring characters/nodes (i.e., hops)
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Notas del ponente
Notas de la presentación
Let’s look at the HW design of BitAlign.
[CLICK] We implement BitAlign as a linear cyclic systolic array based accelerator. 
[CLICK] While this design is based on the GenASM hardware, where bitvectors are written to Bitvector Scratchpads during bitvector generation step for later use in traceback, [CLICK] our new design incorporates hop queue registers in order to feed the bitvectors of non-neighboring characters/nodes.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf

.

Overall System Design of SeGraM
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Notas del ponente
Notas de la presentación
[CLICK] SeGraM is connected to a host system that is responsible for the pre-processing steps and for transferring the query read to the accelerator.
[CLICK] Next to each HBM2E channel, we place one SeGraM accelerator, such that it will have exclusive access without any interference from other SeGraM accelerators.
[CLICK] Each SeGraM accelerator is a combination of one MinSeed accelerator and one BitAlign accelerator. 
[CLICK] Each HBM2E stack has eight memory channels, thus connected to 8 SeGraM accelerators, which define one SeGraM module.
[CLICK] Our hardware platform includes four off-chip HBM2E stacks, thus 4 SeGraM modules, thus 32 SeGraM accelerators in total. ====================================================================================================================
Each SeGraM accelerator has exclusive access to one HBM2E channel to ensure low-latency memory access, without any interference from other SeGraM accelerators in each module. 
There is no communication required between different SeGraM accelerators in a single SeGraM module, and each SeGraM accelerator communicates with the host independently of other SeGraM accelerators.
[CLICK] We replicate the graph-based reference and hash-table-based index across all 4 independent HBM2E stacks, which enables us to have 32 independent SeGraM accelerators running in parallel.
[CLICK] Within each stack, to balance the memory footprint across all channels, we distribute the graph and index structures of all chromosomes (1–22, X, Y) based on their sizes across the eight independent channels
[CLICK] We design each SeGraM accelerator (MinSeed + BitAlign) to operate in a pipelined fashion and we employ double buffering technique for all MS scratchpads, such that we can hide the latency of the MinSeed accelerator.


Use Cases of SeGraM

(1) Sequence-to-Graph
Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence
Alignment

(4) Seeding

Damla Senol Cali SAFARI

MS BA
v
other | BA
foo.



Notas del ponente
Notas de la presentación
As a result of the flexibility and modularity of the SeGraM framework, we can run each accelerator together or separately. Thus, we describe four use cases of SeGraM: [CLICK] (1) end-to-end mapping w/ SeGraM, [CLICK] (2) standalone s2g alignment w/ BitAlign and can be coupled with any seeding tool or accelerator, [CLICK] (3) similarly, standalone s2s alignment w/ BitAlign, and [CLICK] (4) standalone seeding for both s2g and s2s w/ MinSeed and can be coupled with any alignment tool or accelerator.
=========================================================================================================
[CLICK] For sequence-to-graph mapping, the whole SeGraM design (MinSeed + BitAlign) should be employed, since both seeding and alignment steps are required. With the help of the divide-and-conquer approach inherited from the GenASM algorithm, we can use SeGraM to perform sequence-to-graph mapping for both short reads and long reads. 
[CLICK] Since BitAlign takes in a graph-based reference and a query read as its inputs, it can be used as a standalone sequence-to-graph aligner, without MinSeed. BitAlign is orthogonal to and can be coupled with any seeding (or filtering) tool/accelerator.
[CLICK] BitAlign can also be used for sequence-to-sequence alignment, as sequence-to-sequence alignment is a special and simpler variant of sequence-to-graph alignment. [CLICK] Similarly, MinSeed can be used without BitAlign as a standalone seeding accelerator for both graph-based mapping and traditional linear mapping. MinSeed is orthogonal to and can be coupled with any alignment tool or accelerator.


Key Results — Area & Power

[ Based on our synthesis of MinSeed and BitAlign accelerator datapaths

using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Component Area (mm?) Power (mW)
MinSeed — Logic 0.017 10.8
Read Scratchpad (6 kB) 0.012 7.9
Minimizer Scratchpad (40 kB) 0.055 22.7
Seed Scratchpad (4 kB) 0.008 6.4
BitAlign — Edit Distance Calculation Logic with Hop Queue Registers (64 PEs)
BitAlign — Traceback Logic 0.020 2.7
Input Scratchpad (24 kB) 0.033 13.3
Bitvector Scratchpads (128 kB)
Total - 1 SeGraM Accelerator 0.867 758.0 (0.8 W)
Total - 4 SeGraM Modules (32 SeGraM Accelerators)
HBM2E (4 stacks)
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Notas del ponente
Notas de la presentación
Based on our synthesis of MinSeed and BitAlign accelerator datapaths, [CLICK] total area overhead of SeGraM attached to all 32 channels is around 28mm2 and the total power consumption is around 28 W, including the HBM power. 
[CLICK] We find that the main contributors for the area overhead and power consumption are (1) hopQueueRegisters since they constitute more than 60% of the area and power of BitAlign logic, and (2) the bitvector scratchpads. 



Key Results — SeGraM with Long Reads
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SeGraM provides 5.9x and 3.9x throughput improvement
over GraphAligner and vg,
while reducing the power consumption by 4.1x and 4.4x
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Notas del ponente
Notas de la presentación
Let’s look at our long read analysis for s2g mapping with SeGraM. Here we only show our throughput numbers in the plot, not the power numbers.
Compared to two state-of-the-art s2g mapping software tools, GraphAligner and vg, we find that [CLICK]


Key Results — SeGraM with Short Reads

@ GraphAligner Ovg O SeGraM

7 [ e 115x 728x ' 106x 742x
1E+06 ~ =5 1 i

| =

1E+04
1E+03
1E+02
1E+01

1E+00

Throughput (short reads/sec)

lllumina - 100bp lllumina - 150bp Illumina - 250bp Average

( )

SeGraM provides 106x and 742x throughput improvement
over GraphAligner and vg,
while reducing the power consumption by 3.0x and 3.2x

\. J
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Notas del ponente
Notas de la presentación
and when we look at our short read analysis, we find that [CLICK][CLICK]



Key Results — BitAlign (52G Alignment)

I PaSGAL O BitAlign

1E+06 .

% 1E+05 i 247x
£ |
g 1E+04 i
= 1E+03 |
S :
2 1E+02 |
a 1
¢ 1E+01
L |
1E+00 |

LRC-L1 MHC1-M1 LRC-L2 MHC1-M2 Average
(100bp x 317.6K reads) (100bp x 497K reads)  (10kbp x 3.2K reads) (10kbp x 4.9K reads) :
<« Short Reads ¢ Long Reads

BitAlign provides 41x-539x speedup over PaSGAL
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Notas del ponente
Notas de la presentación
Let’s look at the key results for the sequence-to-graph alignment module of SeGraM, which is BitAlign.


Conclusion

1 SeGraM: First universal algorithm/hardware co-designed genomic
mapping accelerator that supports:
= Sequence-to-graph (52G) & sequence-to-sequence (525) mapping
= Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

0 SeGraM supports multiple use cases:
o End-to-end S2G mapping
o S2Galignment
o S2S alignment

o Seeding

[ SeGraM outperforms state-of-the-art software & hardware solutions
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Notas del ponente
Notas de la presentación
[CLICK] To conclude, in this work, we propose SeGraM, the first universal… To our knowledge, SeGraM is also the first alg/hw co-design for accelerating S2G mapping. 
[CLICK] SeGraM consists of 2 components: MinSeed … and BitAlign …
[CLICK] SeGraM supports multiple steps of S2G and S2S mapping pipelines, and
[CLICK] Based on our extensive analysis, we show that SeGraM outperforms state-of-the-art SW and HW solutions



Accelerating Sequence-to-Graph Mapping

= Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications
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Read Mapping & Filtering

Problem: Heavily bottlenecked by Data Movement

GateKeeper, Shouji, SneakySnake performance limited by
DRAM bandwidth [Alser+, Bioinformatics 2017,2019,2020]

Ditto for SHD [Xin+, Bioinformatics 2015]
Solution: Processing-in-memory can alleviate the bottleneck

We need to design mapping & filtering algorithms to fit
processing-in-memory

SAFARI 1



Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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Near-Memory Pre-Alignment Filtering

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“"FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.
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Near-Memory SneakySnake

Problem: Read mapping is heavily bottlenecked by data
movement from main memory

Solution: Perform read mapping near where data resides
using specialized logic

We carefully redesign the accelerator logic of SneakySnake to
exploit near-memory computation capability on real FPGA
boards that use HBM (high-bandwidth memory)

Near-memory SneakySnake improves performance and
energy efficiency by 27.4x and 133X, respectively, over a
16-core (64-thread) IBM POWER9 CPU
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=
Near-Memory Acceleration using FPGAs

= AL A0 il

“ Source: AlphaData
Source: IBM

IBM POWER9 CPU HBM-based FPGA board

Near-HBM FPGA-based accelerator

Two communication technologies: CAPI2 and OCAPI
Two memory technologies: DDR4 and HBM
Two workloads: Weather Modeling and Genome Analysis
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Notas del ponente
Notas de la presentación
To this end we build a  [CLICK] near-HBM FPGA based accelerator which is connected to a server-grade IBM POWER9-based CPU system


=
Performance & Energy Greatly Improve

10"

| _____ POWER socket (64 threads) __ 510
) » =e=HBM+OCAP! @
g =o=HBM_multi+OCAPI 3 8
= == HBM+CAPI2 =
o 10l =e= DDR4+CAP2 P
= ' % 4| == HBM+OCAPI
S 0.27 = «=o== HBM_multi+OCAPI
. =
Y — > | == HBM+CAPI2
R o _ 0.21 % e=@== DDR4+CAPI2
107" 1 2 3 4 8 152 [ ol..POWERY socket (64 threads)
1234 g 12
Number of PEs Number of PEs

5-27 x performance vs. a 16-core (64-thread) IBM POWER9 CPU
12-133 X% energy efficiency vs. a 16-core (64-thread) IBM POWERS CPU

HBM alleviates memory bandwidth contention vs. DDR4
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Notas del ponente
Notas de la presentación
[CLICK]


More On Near-Memory SneakySnake
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Location Filtering in 3D-Stacked PIM

= Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January
2018.
[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan &4 & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses | 39 Citations | 9 Altmetric | Metrics
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GRIM-Filter

Key observation: FPGA and GPU accelerators are heavily bottlenecked
by data movement

Key idea: exploit the high memory bandwidth and the logic layer of 3D-
stacked memory to perform highly-parallel filtering in the DRAM chip itself

GRIM-Filter, an algorithm-hardware co-designed PIM system for
pre-alignment filtering

Key results:

o GRIM-Filter is 1.8x-3.7x (2.1x on average) faster than the FastHASH
filter (BMC Genomics'13) across real data sets

o GRIM-Filter has 5.6x-6.4x (6.0x on average) lower false accept rate
than the FastHASH filter (BMC Genomics'13) across real data sets

SAFARI 199



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2.  Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI
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GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Binx-23 Bin x - 1

»sx GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ...

—_—) I | —_
Bin x -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA |71 AAAAA
permutations of a small string (token) in AAAAC | 0 | existsin
the bin AAAAT | 1 | binx
ccece | 1
0 T_o account for matches that st.raddle cceer (ol cecer
bins, we employ overlapping bins CCCCG doesn't
= A read will now always completely fall within o | o | existin
a Sing|e bin GGGGG 1 bin x
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Notas del ponente
Notas de la presentación


[CLICK]
We first partition the genome in large sequences that we refer to as bins 
[CLICK]
[CLICK]

We show the genome with an arbitrary bin highlighted
[CLICK]
We then generate a bitvector that represents the bin and holds the occurrence of all permutations of a small string called a token in the bin
we see in the figure that tokens that exist in the bin are represented with a 1, and those not in the bin are a 0.
[CLICK]
so AAAAA exists in Bin x 
and CCCCT does not exist in bin x 
[CLICK]
to account for matches straddling two bins, we employ overlapping bins so that a read will now always fall within a single bin


[END-CLICK]


GRIM-Filter: Bitvectors

Bin x Bitvector
_|
)
>
@
— :
[ — [— ) [ —

Q)
_|
Q)
. 2.
. Q)
[ —)
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GRIM-Filter: Bitvectors

bin1
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA o

Reference

Genome Storing all bitvectors
requires 4™ x t bits
by by in memory,
CAAAAA | 1 AAAAA | O where t = number
AAAAC | 1 AAAAC | 1 of bins.
AAAAG | 0 AAAAG | O
AAAAT | 0 . :
: : AGAAA | 1
CCCCT | 1 . :
: : GAAAA | 1 ..
tokens { . _ _ _ c o For bin size ~200,
GACAG | 1 and n =5,
: : . : memory footprint
GCATG | 1 GCATG | 1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT | O
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Notas del ponente
Notas de la presentación
We use bitvectors to quickly figure out existence within a bin 



We see here a list of bit vectors that are associated with a particular bin. The memory required to store all bit vectors is found by multiplying the number of bins by 4^q bits (which is the size of the bit vectors)

For a bin size of 200 and a q of 5, the memory footprint comes to around 3.8 GB 

[END-CLICK]


Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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&
GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA .. CGAG

o Get tokens

___________
T >
~
~
~
~
____________________ .>
~
~
~
\\
~ ~
\\\ \\
\\ \\
~ S ~
~ SN \\
~ SN ~,
- o S~ o A
~ S o
So S~
| ~ \‘
~
S
tokens \ " >
~
~
~
~
~
RS

9 Match tokens to bitvector

9 Read bitvector for bin_num(x)

v

1

0
1: e Sum e Compare
' +

= Threshold?

: NS/ NES

Discard Send to
Read Mapper
for Sequence

Alignment

- O

oo .
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Notas del ponente
Notas de la presentación
Talk about why GRIM-Filter is faster than alignment. This is obviously faster than dynamic programming. 

This threshold value changes error tolerance


In this example, we will use a token size of 5 
We show how GRIM-Filter determines the need for alignment in a bin X. We use the read to generate a mask to selectively sum bit vectors. 
[CLICK]
For the given read sequence in red, we find all indices corresponding to the q-grams found in the read. 
[CLICK]
We then query and [CLICK] sum the bits of bin X’s pre-computed bit vector of the reference genome.
This final value is then compared to a threshold to determine the likelihood of this read’s existence in Bin X
These are all very simple operations and can be run in parallel across different bins
[END-CLICK]



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2.  Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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Integrating GRIM-Filter into a Read Mapper

INPUT: Read Sequence

INPUT: All Potential Seed Locations

++( 020128 ). .. 020131 )...( 414415 )...

GAACTTGCGAG s« GTATT g
”o ) S KEEP " KEEP
GRIM_FiIter: lll00010_0lll01_010Ill
Filter Bitmask Generator DfSCARDl
. J/ X
220001010 424011010 244 eReference Segment Storage
Seed Location Filter Bitmask refarence reference
segment segment
@ 020]3] @ 4] 4415
O Rread Mapper: Edit-Distance Calculation
Sequence Alignment

|

SAFARI
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OUTPUT: Correct Mappings


Notas del ponente
Notas de la presentación
REWRITE 

In this example, we will use a token size of 5 
We show how GRIM-Filter determines the need for alignment in a bin X. We use the read to generate a mask to selectively sum bit vectors. 
[CLICK]
For the given read sequence in red, we find all indices corresponding to the q-grams found in the read. 
[CLICK]
We then query and [CLICK] sum the bits of bin X’s pre-computed bit vector of the reference genome.
This final value is then compared to a threshold to determine the likelihood of this read’s existence in Bin X
These are all very simple operations and can be run in parallel across different bins
[END-CLICK]



B
Key Properties of GRIM-Filter

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM
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Notas del ponente
Notas de la presentación
As a recap,
[CLICK]
GRIM-Filter is comprised of very simple addition/comparison operations 
[CLICK]
To check a given bin, we sum the bits corresponding to each token in the read
[CLICK]
and then we compare the sum against a threshold to determine whether we need to align
[CLICK]
It is also highly parallel
each bin is operated on independently and there are many many bins 
[CLICK]
These three properties together make it a suitable algorithm to be run in 3D stacked DRAM
[END-CLICK]


Opportunity: 3D-Stacked Logic+Memory

Logic

Other “True 3D" technologies
under development
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1&]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2¥], [22]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [3]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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3D-Stacked Memory

DRAM Layers
//
| B d

: A | < TSVs
/% d

//
||||//

Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI 2


Notas del ponente
Notas de la presentación
THICKEN TSV lines

[CLICK]
3D stacked memory stacks a logic layer and DRAM layers with vertical connections called TSVs. This vertical structure allows for a much higher number of connections increasing the available bandwidth. The customizable logic layer enables processing-in-memory, which avoids overloading the memory bus by offloading computation to this layer in the 3D stacked module. 
We can design the simple operations required for GRIM-Filter into the customizable logic layer and appropriately distribute the bitvectors to enable an efficient filter
[CLICK]
Real 3D-stacked DRAM technologies are commercially available now such as high bandwidth memory
[CLICK]
And micron’s hybrid memory cube, among others 
[END-CLICK]



&
3D-Stacked Memory

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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Notas del ponente
Notas de la presentación
[CLICK]
3D stacked memory stacks a logic layer and DRAM layers with vertical connections called TSVs. This vertical structure allows for a much higher number of connections increasing the available bandwidth. The customizable logic layer allows for processing-in-memory, which avoids overloading the memory bus by offloading computation to this layer in the 3D stacked module. 
We can design the simple operations required for GRIM-Filter into the customizable logic layer and appropriately distribute the bit vectors to enable an efficient filter
[CLICK]
Real 3D-stacked DRAM technologies are commercially available now such as high bandwidth memory
[CLICK]
And micron’s hybrid memory cube, among others 
[END-CLICK]



.

3D-Stacked Memory

Micron’s HMC

Micron has working demonstration

components
http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png



Notas del ponente
Notas de la presentación
[CLICK]
3D stacked memory stacks a logic layer and DRAM layers with vertical connections called TSVs. This vertical structure allows for a much higher number of connections increasing the available bandwidth. The customizable logic layer allows for processing-in-memory, which avoids overloading the memory bus by offloading computation to this layer in the 3D stacked module. 
We can design the simple operations required for GRIM-Filter into the customizable logic layer and appropriately distribute the bit vectors to enable an efficient filter
[CLICK]
Real 3D-stacked DRAM technologies are commercially available now such as high bandwidth memory
[CLICK]
And micron’s hybrid memory cube, among others 
[END-CLICK]



'S
GRIM-Filter in 3D-Stacked DRAM

Bank

Row 0: AAAAA || 5| Ll 7

Row 1: AAAAC || S| 5|5 c|| Bank-qy /DRAM Layers

Row 2: AAAAG || 5| 5l 5 ‘g / /
Y= | 4= fu— O = —=
sl gls . Y
kel k= g / ,—7/ S TSVs
=l 2l 2 (] 5 rE

. 25 = = 4 —> Vault
Row R—1: TTTTT - -

ol

[ Row Buffer =
w Buffer Logic Layer

Each DRAM layer is organized as an array of banks
a A bank is an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many
bins in parallel
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Notas del ponente
Notas de la presentación
[CLICK]
Each DRAM layer is organized as an array of Banks
[CLICK]
and a bank is an array of cells with a row buffer. The row buffer holds one row at a time and uses this structure to transfer data with high bandwidth into the logic layer via TSVs
[CLICK]
We now show the distribution of bit vectors across the DRAM arrays to enable parallel processing of many bins. 
[CLICK]
Each row represents a token's occurrence across many sequential bins. and the row of the appropriate token gets queried to find a vector showing the occurrence of the token across many bins.
These are the vectors are brought down into the logic layer to be operated on.
[CLICK]

[END-CLICK]
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GRIM-Filter in 3D-Stacked DRAM

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask
Bank -+ DRAM Layers . g 6-_5_\
/L/ /ﬁé .Sg %:Lé
/ /_7;// < TSVS EE § g— O
‘ L S| ISHE
A Svault S
Z L <
L

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and
comparators in logic layer
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Notas del ponente
Notas de la presentación
[CLICK]
We now look at the implementation of logic in the logic layer 
[CLICK]
GRIM-Filter only requires a very simple design for enabling the bitvector sum and threshold compare across many bins simultaneously. One comparator, incrementer, accumulator, and buffer for each bin that we are checking in parallel
[CLICK]
This results in a very low area overhead and ease of implementation
[END-CLICK]


Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in a mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 When using mrFAST, but GRIM-Filter can be
used with ANY read mapper
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GRIM-Filter Performance

Time (x1000 seconds)

Benchmarks and their Execution Times
[ FastHASH filter B GRIM-Filter

70
28 ] Sequence Alignment
40 - Error Tolerance (e)
30 - e =0.05
20 -
10 - I
0 N N A Q
bé\'\(/o’ bé\’{/o /\’1//\ D‘/\’\j\ /\’\c/b /\’ﬁ) /\’79 /\'79 /\”)Q' Q/\”)Q' Q}Ibq

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
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Notas del ponente
Notas de la presentación
We ran 10 separate experiments with real read data sets, consisting of approximately 4 million reads each, and got the following results. Compared to the previous best filter, our filter enjoys a 2x average end-to-end read mapper performance gain across the data sets, and a 6x average lower false negative rate. Again, these are the locations that were not discarded by the filter, but were then later discarded after alignment 


&
GRIM-Filter False Negative Rate

Benchmarks and their False Negative Rates
[ FastHASH filter (I GRIM-Filter

Q
TB' 0,5
& (44— - |Sequence Alignment
Q ! Error Tolerance (¢)
2 0,3 -
® 02 - e = 0.05
(=)
0,1 7
z olmmimmminmimmnln
Q
S o > ) S ! N " ~ N o

L PO VA AN AR SR SR A AR G S Gt
(] N N T A N N A A w
. & & & & & K K& K& & &L

& Q& S S S S S S & 8

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter
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Notas del ponente
Notas de la presentación
We ran 10 separate experiments with real read data sets, consisting of approximately 4 million reads each, and got the following results. Compared to the previous best filter, our filter enjoys a 2x average end-to-end read mapper performance gain across the data sets, and a 6x average lower false negative rate. Again, these are the locations that were not discarded by the filter, but were then later discarded after alignment 


More on GRIM-Filter

= Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January
2018.
[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]

Research | Open Access | Published: 09 May 2018

GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies

Jeremie S. Kim &, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser,
Hasan Hassan, Oguz Ergin, Can Alkan &4 & Onur Mutlu

BMC Genomics 19, Article number: 89 (2018) | Cite this article
4340 Accesses | 39 Citations | 9 Altmetric | Metrics
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https://arxiv.org/pdf/1711.01177.pdf
http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GRIM-filter-DNA-pre-alignment-in-memory_apbc18-talk.pdf
https://github.com/CMU-SAFARI/GRIM
https://arxiv.org/pdf/1711.01177.pdf
https://www.youtube.com/watch?v=j5-I84iNVd8

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications
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In-Storage Genome Filtering [ASPLOS 2022]

= Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 2/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali®* Can Firtina® Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar?* Mohammed Alser! Onur Mutlu!

1ETH Ziirich “Bionano Genomics *KMUTNB *University of Toronto
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

B
Genome Sequence Analysis

‘I Data Movement from Storage

Alignment
Computation
Storage Main Unit
System Memory Cache (CPU or
Accelerator)
x Computation overhead
x Data movement overhead
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Notas del ponente
Notas de la presentación
Read mapping performs alignment on large genomic datasets, containing millions of reads. [CLICK]
Therefore, read mapping is both computationally expensive [CLICK]
And incurs high data movement overhead [CLICK]




B
Accelerating Genome Sequence Analysis

Heuristics Accelerators Filters
Computation
Mai .
Storage ain Cache Unit

System Memory (CPU or
Accelerator)

\/ Computation overhead

x Data movement overhead
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Notas del ponente
Notas de la presentación
There has been significant effort into improving read mapping performance [CLICK]
Through efficient heuristics [CLICK]
hardware accelerators [CLICK]
 and various filters that prune reads that do not require expensive computation [CLICK]. 
While these approaches address the computation overhead in read mapping [CLICK]
[While Reads Move] None of them alleviate the data movement overhead from storage, whose impact becomes even larger when the computation overhead gets alleviated [CLICK]


Key Idea

Y Filter reads that do not require alignment
inside the storage system

ﬁfCGTTCCTTGGCAl Computation

[AAICCTTTGGGTCCA Main Cache Unit
GAATGGGGCCA

|TT:[1TCCCCGGGGCCA| Memory (CPUor
[GCTTCCAGAATG| Accelerator)

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment
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Notas del ponente
Notas de la presentación
Our key idea is to filter reads that do not require the expensive alignment computation in the storage system [CLICK] …
[While Reads Move] To fundamentally reduce the data movement overhead of read mapping

Examples of the reads that not require the costlt alignment step

Exactly-matching reads to the reference genome that do not need approximate string matching performed during alignment

Non-matching reads that have no potential matching locations in the reference genome hence skip the alignemt step






Filtering Opportunities

* Sequencing machines produce one of two kinds of reads
- Short reads: highly accurate and short

- Long reads: less accurate and long
Reads that do not require the expensive alignment step:

[Exactly-matching reads }

Do not need expensive approximate string matching during alignment

* Low sequencing error rates (short reads) combined with
* Low genetic variation

[Non-matching reads ]_

Do not have potential matching locations, so they skip alignment

* High sequencing error rates (long reads) or
* High genetic variation (short or long reads)
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Notas del ponente
Notas de la presentación
Let’s take a look at filtering opportunities based on the input reads.
Sequencing machines produce one of two kinds of reads 
Short reads: highly accurate (99.9%)  and short (e.g., up to a few hundreds of DNA characters)
Long reads: less accurate (85-90%)  and long (e.g., from hundreds to millions of DNA characters)

Based on these, We leverage two filtering opportunities

First, we can filter exactly matching reads, which are reads that match exactly to one or more subsequences of the reference genome and do not require approximate string matching during alignment. Exact matches can frequently occur in short read sets with low sequencing errors and low genetic variations

Second, we can filter non-matching reads. Such reads do not have any potential matching locations in the reference genome can skip the expensive alignment step. Non-matching reads can frequently occur in long read sets with high sequencing errors and short or long read sets with high genetic variations



B
Challenges

Y Filter reads that do not require alignment
inside the storage system

Storage
System

Filtered Reads

Main
Memory

Cache

Computation
Unit
(CPU or
Accelerator)

Read mapping workloads can exhibit different behavior

There are limited hardware resources
In the storage system
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Notas del ponente
Notas de la presentación
However, filtering reads in a modern SSD can be challenging [CLICK]
Due to different behavior across read mapping workloads. [CLICK]
And the limited hardware resources in the SSD. By addressing these challenges [CLICK]




GenStore

Y Filter reads that do not require alignment
inside the storage system

Computation
GenStore-Enabled Main Unit
Storage M Cache CPU
System emory ( or
Accelerator)
\/ Computation overhead
\/ Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and

energy reduction (3.9x - 29.2x) at low cost
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Notas del ponente
Notas de la presentación
We propose GenStore, the first in-storage processing system designed for genome sequence analysis. [CLICK]
To reduce both the computation [CLICK]
And the data movement overhead [CLICK]
GenStore provides high-performance and energy benefits compared to state-of-the-art HW and SW baselines [CLICK]




In-Storage Genome Filtering [ASPLOS 2022]

= Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing
System for Genome Sequence Analysis"
Proceedings of the 2/th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim' Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali®* Can Firtina® Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar?* Mohammed Alser! Onur Mutlu!

1ETH Ziirich “Bionano Genomics *KMUTNB *University of Toronto
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu?®®, Saugata GhoseP¢, Juan Gémez-Luna?, Rachata Ausavarungnirun“l

SAFARI Research Group

“ETH Ziirich
bCarnegie Mellon University
¢ University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.or df/1903.03988.pdf 229


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand”  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®f

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 20109.

[Preliminary arXiv version]

https://arxiv.or df/1907.12947.pdf 230


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Mote on Processing-in-Memory

= Onur Mutluy,
"Memory-Centric Computing Systems"”
Invited Tutorial at 66¢h International Electron Devices
Meeting (IEDM ), Virtual, 12 December 2020.
Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[ Tutorial Video (1 hour 51 minutes)]
Executive Summary Video (2 minutes)]
Abstract and Bio]
Related Keynote Paper from VLSI-DAT 2020]
Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
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https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

Memory-Centric

Computing Systems

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutiu
12 December 2020
IEDM Tutorial

SAFARI ETH:zurich CarnegieMellon
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<« P Pl o) 006/1:51:05

IEDM 2020 Tutorial: Memory-Centric Computing Systems, Onur Mutlu, 12 December 2020

1,641 views * Dec 23, 2020 |b 48 0 SHARE SAVE
@ 0 Mutlu L
Q i b https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures



https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

Processing-in-Memory Landscape Today

[Alibaba 2022]
[Samsung 2021] =
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[SK Hynix 2022] [Samsung 2021] [UPMEM 2019]

This does not include many experimental chips and startups 233



UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandwidth

8GB/128xDPU PIM R-DIMM Module

LIPMEM LIPMERA LIPRAE M LIPMENRI LIPMIERA LIPRAERA UPRER LPKEM
ER ZTH] (] Pkl Pk [N P FlKA
chip chip thip chip chip thip chip thip

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 234
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM Memory Modules

* E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
e P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

SAFARI www.upmem.com 235
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2,560-DPU Processing-in-Memory System

Main Memory

PiM-enabled Memory

Main Memory

)

\\

PiM-enabled Memory

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

IZZAT EL HAJ), American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOULA, ETH Zirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
‘memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason s that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
‘movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM motivated by the of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM The UPMEM PIM i combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUS), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as bound. We evaluate the and scaling ch: t of PrIM
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and
architecture designers of future PIM systems.

https://arxiv.org/pdf/2105.03814.pdf 236
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Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN G OMEZ-LU NA, ETH Ziirich, Switzerland

IZZAT EL HA}J, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Zirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.org/pdf/2105.03814.pdf
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Upcoming TECHCON Presentation

= Dr. Juan Gomez-Luna

o Benchmarking Memory-Centric Computing Systems: Analysis of Real

Processing-in-Memory Hardware

o Based on two major works
s https://arxiv.org/pdf/2105.03814.pdf
s https://arxiv.org/pdf/2207.07886.pdf

Workshop on Computing with Unconventional Technologies (CUT 2021)

Benchmarking Memory-Centric
Year: 2021, Pages: 1-7 Computing Systems:

Memory Hardware

DOI Bookmark: 10.1109/1GSC54211.2021.9651614 Analysis of Real Processing-in-Memory Hardwa

Juan Gémez Luna, |zzat El Hajj
Author ' :
uthors Ivan Fernandez, Christina Giannoula,

. . Geraldo F. Oliveira, Onur Mutl
Juan Gémez-Luna, ETH Zirrich SRS e A
https://arxiv.org/pdf/2110.01709.pdf

Izzat El Hajj, American University of Beirut :

s://arxiv.org/pdf/2105.03814.pdf
lvan Fernandez, Univers'lty Of Ma|aga https://github.com/CMU-SAFARI/prim-benchmarks
Christina Giannoula, National Technical University of Athens
Geraldo F. Oliveira, ETH Zurich

Benchmarking Memory-Centric Computing Systems: Analysis of Real PIM Hardware - CUT'21 Invited Talk

Onur M Utlu, ETH Zu rich 502 views + Premiered Dec 6, 2021 e 23 GPDISLKE ) SHARE L DOWNLOAD

SAFARI https: / / www.youtube.com/watch?v=nphV36SrysA
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https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA

UPMEM PIM System Summary & Analysis

= Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo
F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan G6émez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens
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https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

PriIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS
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PriIM Benchmarks are Open Source

* All microbenchmarks, benchmarks, and scripts

* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 {7 star | 2 % Fork 1
<> Code (©) Issues 11 Pull requests (*) Actions [71] Projects [ wiki () Security |~ Insights {51 Settings
¥ main ~  prim-benchmarks / README.md Go to file
Juan Gomez Luna PrIM -- first commit Latest commit 3de4b49 9 days ago %) History
A 1 contributor

168 lines (132 sloc) 5.79 KB Raw Blame & Z O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PriM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.
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Understanding a Modern PIM Architecture

Benchmarking a New Paradigm:
Experimental Analysis and
Characterization of a Real
Processing-in-Memory System

JUAN GOMEZ-LUNA', IZZAT EL HAJJ?, IVAN FERNANDEZ'-3, CHRISTINA GIANNOULA?-4,
GERALDO F. OLIVEIRA', AND ONUR MUTLU!

'ETH Ziirich

2 American University of Beirut

3 University of Malaga

“National Technical University of Athens

Corresponding author: Juan Gémez-Luna (e-mail: juang @ethz.ch).

https://arxiv.orqg/pdf/2105.03814.pdf
https://qithub.com/CMU-SAFARI/prim-benchmarks
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Understanding a Modern PIM Architecture

ETHzirich

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,

Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0 > SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED ﬂ
18.7K subscribers =

«T
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More on Analysis of the UPMEM PIM Engine

Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

oraM | DRAN DRAM| [ ORAM|[DRAMN DRAMIDRAM|[ORAMN
Chvip )| Cnip || Chip || Cvip || i || Cvip || Onip || Evip
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c Chp Chip

w || cip o || cre | oo || o
. - /o XN

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers :

* Example communication patterns:
- Merging of partial results to obtain the final result
* Only DPU-CPU transfers
- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

< p >l o) 833/25710"

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

1,868 views * Streamed live on Jul 12, 2021 |. 81 0 »~» SHARE =} SAVE

@ Onur Mutlu Lectures ANALYTICS EDIT VIDEO

&> 17.6K subscribers

Talk Title: Understanding a Modern Processing-in-Memory Architecture: Benchmarking and

Experimental Characterization
Dr. Juan Gémez-Luna, SAFARI Research Group, D-ITET, ETH Zurich

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL5Q2s0XY2Zi tOTAYm--dYByNPL7JhwR9
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More on Analysis of the UPMEM PIM Engine

Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,
- 40% in scientific applications*,

- 35%in mobile applications®
Data Movement

Display |
Engine

* Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data N in Scientific Applications,” ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” ISWC 2014

SAFARI
P »l RN 227/21:28

Understanding a Modern Processing-in-Memory Arch: Benchmarking & Experimental Characterization; 21m

3,482 views * Premiered Jul 25, 2021 |. 38 0 SHARE SAVE

@ Onur MUﬂU_LeCthES ANALYTICS EDIT VIDEO
&> 17.9K subscribers

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2s0XY2Zi8 VVChACnON4sfh2bJ5IrD&index=159
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More on PRIM Benchmarks

= Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina
Giannoula, Geraldo F. Oliveira, and Onur Mutluy,
"Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory
Architecture”
Preprint in arXiv, 9 May 2021.

[arXiv_preprint]

[PrIM Benchmarks Source Code]

Slides (pptx) (pdf)]

'Long Talk Slides (pptx) (pdf)]

[Short Talk Slides (pptx) (pdf)]

[SAFARI Live Seminar Slides (pptx) (pdf)]

[SAFARI Live Seminar Video (2 hrs 57 mins)]

Lightning Talk Video (3 minutes)]
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https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

UPMEM PIM System Summary & Analysis

= Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo
F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]

Benchmarking Memory-Centric Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan G6émez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Ziirich American University University National Technical ETH Ziirich ETH Ziirich
of Beirut of Malaga University of Athens
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https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152

ML Training on a Real PIM System

Machine Learning Training on
a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard®? Julien Legriel?

Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!
'ETH Ziirich “UPMEM

An Experimental Evaluation of Machine Learning Training
on a Real Processing-in-Memory System

Juan Gémez-Luna! Yuxin Guo! Sylvan Brocard? Julien Legriel?

Remy Cimadomo? Geraldo F. Oliveira! Gagandeep Singh! Onur Mutlu!
'ETH Ziirich *UPMEM

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=geukNs5XI3g&t=11226s
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https://arxiv.org/pdf/2206.06022.pdf

AIM (PIM Sequence Alignment Framework)

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gomez-Luna,

Onur Mutlu, Izzat El Hajj

“A Framework for High-throughput Sequence Alignment using Real
Processing-in-Memory Systems"

arXiv, 2022

[Source code]

A Framework for High-throughput Sequence
Alignment using Real Processing-in-Memory
Systems

Safaa Diab', Amir Nassereldine', Mohammed Alser?, Juan G6mez Luna®, Onur Mutlu?, Izzat El Hajj'

! American University of Beirut, Lebanon 2ETH Ziirich, Switzerland
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https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim

Connecting Basecalling and Read Mapping in PIM

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur
Mutlu,

"GenPIP: In-Memory Acceleration of Genome Analysis via Tight
Integration of Basecalling and Read Mapping"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, Illinois, October 2022.

GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping

Haiyu Mao! Mohammed Alser' Mohammad Sadrosadati' Can Firtina!® Akanksha Baranwal!
Damla Senol Cali? Aditya Manglik! Nour Almadhoun Alserr’ Onur Mutlu!

LETH Ziirich 2Bionano Genomics
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications

SAFARI 252



Newer Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinlON

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]
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https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo

New Applications: Graph Genomes

= Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali’ Konstantinos Kanellopoulos® Joél Lindegger® Ziilal Bingol’®
Gurpreet S. Kalsi* Ziyi Zuo® Can Firtina® Meryem Banu Cavlak? Jeremie Kim?
Nika Mansouri Ghiasi’® Gagandeep Singh? Juan Gémez-Luna’? Nour Almadhoun Alserr?
Mohammed Alser® Sreenivas Subramoney? Can Alkan® Saugata Ghose® Onur Mutlu?

!Bionano Genomics 2ETH Ziirich  *Bilkent University  *Intel Labs
>Carnegie Mellon University  ®University of Illinois Urbana-Champaign
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https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf

New Applications: Ret Genome Updates

RESEARCH

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim!, Can Firtinal, Meryem Banu Cavlak?, Damla Senol Cali3, Nastaran Hajinazar1'4,
Mohammed Alser!, Can Alkan? and Onur Mutlu-23*

https: eople.inf.ethz.ch/omutlu/pub/AirLift genome-remapper arxiv2l.pdf
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Remapping Reads Between References

= Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,
"AirLift: A Fast and Comprehensive Technique for Remapping
Alignments between Reference Genomes"
Preprint in arXiv and bioRxiv, 2021.
[bioRxiv preprint]
[arXiv preprint]
[AirLift Source Code and Data]

METHOD

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim!T, Can Firtinalf, Meryem Banu Cavlak?, Damla Senol Cali®, Nastaran Hajinazarl#,
Mohammed Alser!, Can Alkan? and Onur Mutlu:23*
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https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf
https://arxiv.org/abs/1912.08735
https://doi.org/10.1101/2021.02.16.431517
https://doi.org/10.1101/2021.02.16.431517
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift

Mapping Constant Regions Between Reterences

= Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Can Alkan,
and Onur Mutlu,

"FastRemap: A Tool for Quickly Remapping Reads between Genome
Assemblies"
Bioinformatics, btac554.

[FastRemap Source Code]

FastRemap: A Tool for Quickly Remapping Reads
between Genome Assemblies

Jeremie S. Kim! Can Firtinal Meryem Banu Cavlak! Damla Senol Cali?3
Can Alkan* Onur Mutlu!»%4

IETH Ziirich 2Carnegie Mellon University JBionano Genomics 4Bilkent University
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https://doi.org/10.1093/bioinformatics/btac554
https://github.com/CMU-SAFARI/FastRemap

Newer Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinlON

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

SAFARI 258
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https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo

Recall: High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from
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=
Nanopore Sequencing Technology

Nanopore sequencing is an emerging and a promising
single-molecule DNA sequencing technology

First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore

Technologies (ONT) in May 2014.
o Inexpensive

o Long read length (> 882K bp)

o Portable: Pocket-sized

a Produces data in real-time

SAFARI 260


Notas del ponente
Notas de la presentación
MinION is an inexpensive, pocket-sized, portable, high-throughput sequencing apparatus that produces data in real-time. These properties enable new potential applications of genome sequencing, such as rapid surveillance of Ebola, Zika or other epidemics, near-patient testing, and other applications that require real- time data analysis.
In addition, the MinION technology has two major advantages. First, it is capable of generating ultra-long reads (e.g., 882 kilobase pairs or longer). MinION’s long reads greatly simplify the genome assembly process by decreasing the computational requirements. Second, it is small and portable. MinION is named as the first DNA sequencing device used in outer space to help the detection of life elsewhere in the universe with the help of its size and portability. 
With the help of continuous updates to the MinION device and the nanopore chemistry, the first nanopore human reference genome was generated by using only MinION devices. 
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= First nanopore sequencing device, MinION, made
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Technologies (ONT) in May 2014.
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o Long read length (> 882K bp)
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Notas del ponente
Notas de la presentación
MinION is an inexpensive, pocket-sized, portable, high-throughput sequencing apparatus that produces data in real-time. These properties enable new potential applications of genome sequencing, such as rapid surveillance of Ebola, Zika or other epidemics, near-patient testing, and other applications that require real- time data analysis.
In addition, the MinION technology has two major advantages. First, it is capable of generating ultra-long reads (e.g., 882 kilobase pairs or longer). MinION’s long reads greatly simplify the genome assembly process by decreasing the computational requirements. Second, it is small and portable. MinION is named as the first DNA sequencing device used in outer space to help the detection of life elsewhere in the universe with the help of its size and portability. 
With the help of continuous updates to the MinION device and the nanopore chemistry, the first nanopore human reference genome was generated by using only MinION devices. 


Oxford

Oxtford Nanopore Sequencers {JNANOPORE

MinlON Mk1B MinlON Mk1C GridlON Mk1 PromethlON 24/48

MinION MinION . PromethION PromethION
Mk1B mMkic  SMAION Mki 24 48

Read length

Yield per flow cell

Number of flpw 24 48
cells per device

Yield per device <250 Gb <5.2Tb <10.5Tb

Starting price $49,995 $195,455 $327,455
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https://nanoporetech.com/products/comparison

[llumina Sequencers

llumina’

)
— i
nﬂ = .
=

T "

[ U]
| S
L ———

iSeq 100 MiniSeq MiSeq NextSeq 550 NextSeq 2000 NovaSeq 6000
Run time 9.5-19 hrs 4-24 hrs 4-55 hrs 12-30 hrs 24-48 hrs 13-44 hrs
Max. reads 4 million | 25 million | 25 million | 400 million | 1 billion 20 billion
per run
Max.read |, 150pp | 2x150bp | 2 x300bp | 2 x 150 bp | 2 x 150 bp | 2 x 250
length
Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb
gfitc':‘ated $19,900 $49,500 | $128,000 | $275,000 | $335,000 | $985,000
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How Does Nanopore Sequencing Work?

graphene
nanopore

i DNA
strand

= Nanopore is a nhano-scale hole (<20nm).

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

264
SAFAR’ Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.htm|
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Advantages of Nanopore Sequencing

Nanopores:

Do notrequire any labeling of the DNA or nucleotide for
detection during sequencing

Rely on the electronic or chemical structure of the different
nucleotides for identification

Allow sequencing very long reads, and

Provide portability, low cost, and high throughput.
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Challenges of Nanopore Sequencing

One major drawback: high error rates

Nanopore sequence analysis tools have a critical role to:
a overcome high error rates
o take better advantage of the technology

Faster tools are critically needed to:

o Take better advantage of the real-time data production
capability of nanopore sequencing

o Enable fast, real-time data analysis
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Nanopore Genome Assembly Pipeline

Raw signal
data

-
Basecalling

Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

I

J \\

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

\

Assembly <€— Assembly

Improved
assembly

Tools: Canu, Miniasm

J

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing

Tools: Nanopolish, Racon

44—

\,

J/

DNA reads

Overlaps

Draft assembly

Mappings of reads
against draft
assembly

Figure 1. The analyzed genome assembly pipeline using nanopore

sequence data, with its five steps and the associated tools for each

~ step.
SAFARI

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome

Assembly” Briefings in Bioinformatics, 2018.

267



Nanopore Genome Assembly Tools (I)

Table 12. Accuracy analysis results for the full pipeline with a focus on the last two steps.

Number of Number of Identity Coverage Number of Number of

Bases Contigs (%) (%) Mismatches Indels

1 | Metrichor + — + Canu + BWA-MEM + Nanopolish| 4,683,072 1 99.48 99.93 8,198 15,581
2 | Metrichor + Minimap + Miniasm+ BWA-MEM + Nanopolish| 4,540,352 1 9233 96.31 162,884 182,965
3 | Metrichor + GraphMap+ Miniasm+ BWA-MEM + Nanopolish| 4,637,916 2 9238 95.80 159,206 180,603
4 | Metrichor + — + Canu + BWA-MEM + Racon 4,650,502 1 98.46 100.00 18,036 51,842
5 | Metrichor + — + Canu + Minimap + Racon 4,648,710 1 98.45 100.00 17,906 52,168
6 | Metrichor + Minimap + Miniasm+ BWA-MEM + Racon 4,598,267 1 97.70 99.91 24,014 82,906
7 | Metrichor + Minimap + Miniasm4 Minimap + Racon 4,600,109 1 97.78 100.00 23,339 79,721
8 | Nanonet + — + Canu + BWA-MEM + Racon 4,622,285 1 98.48 100.00 16,872 52,509
9 | Nanonet + — + Canu + Minimap + Racon 4,620,597 1 98.49 100.00 16,874 52,232
10| Nanonet + Minimap + Miniasm+ BWA-MEM + Racon 4,593,402 1 98.01 99.97 20,322 72,284
11| Nanonet + Minimap + Miniasm+ Minimap + Racon 4,592,907 1 98.04 100.00 20,170 70,705
12| Scrappie + — + Canu + BWA-MEM + Racon 4,673,871 1 98.40 99.98 13,583 60,612
13| Scrappie + — + Canu + Minimap + Racon 4,673,606 1 98.40 99.98 13,798 60,423
14| Scrappie + Minimap + Miniasm+ BWA-MEM + Racon 5,157,041 8 97.87 99.80 18,085 78,492
15| Scrappie + Minimap + Miniasm+ Minimap + Racon 5,156,375 8  97.87 99.94 17,922 77,807
16 | Nanocall + — + Canu + BWA-MEM + Racon 1,383,851 86 9349 28.82 19,057 65,244
17 | Nanocall + — + Canu + Minimap + Racon 1,367,834 86 94.43 28.74 15,610 55,275
18 | Nanocall + Minimap + Miniasm+ BWA-MEM + Racon 4,707,961 5  90.75 97.11 91,502 347,005
19| Nanocall + Minimap + Miniasm+ Minimap + Racon 4,673,069 5 9223 97.10 72,646 291,918
20| DeepNano + — + Canu + BWA-MEM + Racon 7,429,290 106  96.46 99.24 27,811 102,682
21| DeepNano + — + Canu + Minimap + Racon 7,404,454 106  96.03 99.21 34,023 110,640
22 | DeepNano + Minimap + Miniasm+ BWA-MEM + Racon 4,566,253 1 96.76 99.86 25,791 125,386
23 | DeepNano + Minimap + Miniasm+ Minimap + Racon 4,571,810 1 96.90 99.97 24,994 119,519
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Nanopore Genome Assembly Tools (II)

Table 13. Performance analysis results for the full pipeline with a focus on the last two steps.

Step 4: Read Mapper Step 5: Polisher
Wall Wall
Clock CPUTime " om°Y|  Clock CPUTime V™Y
. Usage . Usage
Time (h:m:s) (GB) Time (h:m:s) (GB)
(h:m:s) (h:m:s)
1 | Metrichor + — + Canu + BWA-MEM + Nanopolish 24:43  15:47:21 526 5:51:00 191:18:52 13.38
2 | Metrichor + Minimap + Miniasm + BWA-MEM + Nanopolish 12:33 7:50:54 3.75 | 122:52:00 4458:36:10 31.36
3 |Metrichor + GraphMap + Miniasm + BWA-MEM + Nanopolish 12:47 7:57:58 3.60 | 129:46:00 4799:03:51 31.31
4 | Metrichor + — + Canu + BWA-MEM + Racon 24:20  15:43:40 6.60 14:44 9:09:22 8.11
5 | Metrichor + — + Canu  + Minimap + Racon 3 1:35 0.26 15:12 9:45:33 14.55
6 | Metrichor + Minimap + Miniasm + BWA-MEM + Racon 12:10 7:48:10 5.19 15:43 9:33:39 9.98
7 | Metrichor + Minimap + Miniasm + Minimap + Racon 3 1:24 0.26 20:28 8:57:40 18.24
8 | Nanonet + — + Canu + BWA-MEM + Racon 9:08 5:53:18 4.84 6:33 4:02:10 4.47
9 |Nanonet + — + Canu + Minimap + Racon 2 54 0.26 6:45 4:17:26 7.93
10 | Nanonet  + Minimap + Miniasm + BWA-MEM + Racon 4:40 2:58:02 3.88 7:08 4:19:30 5.35
11 | Nanonet + Minimap + Miniasm + Minimap + Racon 2 46 0.26 7:01 4:18:48 9.53
12 | Scrappie + — + Canmu  + BWA-MEM + Racon 33:41  21:11:06 8.66 13:32 8:24:44 7.58
13 | Scrappie  + — + Canu + Minimap + Racon 3 1:39 0.27 18:45 7:43:17 13.20
14 | Scrappie =+ Minimap + Miniasm + BWA-MEM + Racon 22:41  14:31:00 6.08 14:37 8:53:59 9.50
15 | Scrappie  + Minimap + Miniasm + Minimap + Racon 3 1:27 0.27 15:10 9:02:45 12.72
16 | Nanocall + — + Canu  + BWA-MEM + Racon 4:52 3:01:15 3.80 11:07 3:26:52 5.63
17 | Nanocall + — + Canu  + Minimap + Racon 3 1:16 0.22 7:28 2:50:35 3.62
18 | Nanocall + Minimap + Miniasm + BWA-MEM + Racon 16:06  10:27:20 5.06 18:56 11:32:45 11.47
19 | Nanocall + Minimap + Miniasm + Minimap + Racon 4 1:18 0.26 11:49 7:08:59 10.98
20 | DeepNano + — + Canu + BWA-MEM + Racon 17:36 11:30:20 4.43 12:48 7:13:04 8.88
21 | DeepNano + — + Canmu  + Minimap + Racon 3 1:24 0.28 11:39 6:55:01 3.73
22 | DeepNano + Minimap + Miniasm + BWA-MEM + Racon 8:15 5:22:29 4.11 14:16 8:34:32 10.30
23 | DeepNano + Minimap + Miniasm + Minimap + Racon 3 1:10 0.26 12:29 7:55:32 17.11
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Nanopore Genome Assembly Tools (I11)
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More on Nanopore Sequencing & Tools

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 E -
Published: 02 April2018 Article history v

] EE%E

BiB arXiv

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Preliminary arxiv.org version]
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Why Do We Care? An Example trom 2020

200 Oxford Nanopore sequencers have left UK for China, to support
rapid, near-sample coronavirus sequencing for outbreak surveillance

Fri 31st January 2020

Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional
200 MinlON sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current
coronavirus outbreak, adding to a large number of the devices already installed in the country.

Each MinlON sequencer is approximately the size of a stapler, and
can provide rapid sequence information about the coronavirus.

700Kg of Oxford Nanopore sequencers and consumables are on
their way for use by Chinese scientists in understanding the
current coronavirus outbreak.

272

Source: https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample
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Sequencing of COVID-19

Whole genome sequencing (WGS) and sequence
data analysis are important

o To detect the virus from a human sample such as saliva,
Bronchoalveolar fluid etc.

o To understand the sources and modes of transmission of the virus

o To discover the genomic characteristics of the virus, and compare
with better-known viruses (e.g., 02-03 SARS epidemic)

o To design and evaluate the diagnostic tests and deep-dive studies

Two key areas of COVID-19 genomic research

o To sequence the genome of the virus itself, COVID-19, in order to
track the mutations in the virus.

o To explore the genes of infected patients. This analysis can be used
to understand why some people get more severe symptoms than
others, as well as, help with the development of new treatments in
the future.

SAFARI



COVID-19 Nanopore Sequencing (I)

SARS-CoV-2 Whole genome sequencing

RT Step ~1 hr

PCR ~ 2.30 hr

Add Barcodes ~1hr ; h r
Add Adapter ~30m

Sequence ~1 hr

Analyse ~1hr RNA to

answer
Of which ~1 hr
sequencing time

From ONT (https://nanoporetech.com/covid-19/overview)
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COVID-19 Nanopore Sequencing (11

Oxford

How are scientists using nanopore sequencing NANOPORE
to research COVID-19?

—> + SARS-CoV-2 positive samples

Samples
are collected L SARS-CoV-2 negative samples:
used as negative controls

How can this be used? What are the results? How?
——
Genomic epidemiology: analyse variants From RNA to full Targeted amplification of Targeted SARS-CoV-2 *
& mutation rate, track spread of virus, SARS-CoV-2 consensus ~ SARS-CoV-2 genome + multiplexed, nanopore sequencing D |
identify clusters of transmission sequence in ~7 hours rapid nanopore sequencing

How? What are the results? How can this be used?
Metagenomic 1 x RNA metagenomic RNA: data for RNA viruses (including Characterise co-infecting bacteria
. sequencing run SARS-CoV-2) + microbial transcripts & viruses, identify any correlation
nanopore sequencing 1 x DNA metagenomic DNA: data for bacteria + DNA viruses of risk factors, research potential
sequencing run future treatment implications

SARS-CoV-2 Direct RNA whole Immune repertoire: assess Whole human genome
genome sequencing: assess response of the immune system to sequencing: investigate what

viral genome in its native RNA SARS-CoV-2 infection by might cause different responses What's next?
form and the effect of base sequencing of full-length immune to the virus in different people
modifications cell receptor genes and transcripts based on their genome

Find out more at nanoporetech.com/covid19 MINION™ imgm GridION™ ’ PromethION™ SIKID

Oxford Nanopore Technologies, the Wheel icon, GridION, PromethiON and MinlON are registered trademarks of Oxford Nanopore Technologies in various countries. @ 2020 Oxford Nanopore Technologies. All rights reserved. Oxford Nanopore Technologies' products are currently for ressarch use only. IG_1061(EN)_V1_03April2020

From ONT (https://nanoporetech.com/covid-19/overview)
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A Bright Future for Intelligent Genome Analysis

Mohammed Alser, Zulal Bingdl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” |EEE Micro, August 2020.

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

MinlON from ONT

SmidglON from ONT
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory & Storage

Future Opportunities: New Technologies & Applications
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Conclusion




Things Are Happening In Industry




[lumina DRAGEN Bio-IT Platform (2018)

= Processes whole genome at 30x coverage in ~25 minutes
with hardware support for data compression
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v0.9-000

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html
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NVIDIA Clara Parabricks (2020)

A University of Michigan startup in
2018 joined NVIDIA in 2020

GPU board(s)

PERFORMANCE COMPARISON
Germline End-to-End Secondary Analysis

1,200 minutes

l \ 52 minutes 35 minutes 23 minutes

—_—
CPU/GATK 8X T4 8X V100 8X A100

SAFARI https://developer.nvidia.com/clara-parabricks 281
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NVIDIA Hopper DPX Instructions (2022)

NVIDIA Hopper GPU Architecture Accelerates Dynamic Programming
Up to 40x Using New DPX Instructions

Dynamic programming algorithms are used in healthcare, robotics, quantum computing, data science and more.

SAFAR’ https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-d
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Recall Our Dream (from 2007)

= An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

= Still a long ways to go
o Energy efficiency
a Performance (latency)
o Security & privacy
o Huge memory bottleneck
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Conclusion

= System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

= This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

= We covered various recent ideas to accelerate read mapping
o My personal journey since September 2006

= Many future opportunities exist
o Especially with new sequencing technologies
a Especially with new applications and use cases
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A Bright Future for Intelligent Genome Analysis

Mohammed Alser, Zulal Bingdl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” |EEE Micro, August 2020.

Accelerating Genome Analysis: A Primer on
an Ongoing Journey

Sept.-Oct. 2020, pp. 65-75, vol. 40
DOI Bookmark: 10.1109/MM.2020.3013728

FPGA-Based Near-Memory Acceleration of
Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

MinlON from ONT

SmidglON from ONT
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Accelerating Genome Analysis: Overview

= Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can
Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"”
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zlrich University of lllinois at Urbana-Champaign and
Ziilal Bing61 Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

Bilkent University
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https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A

PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu?®®, Saugata GhoseP¢, Juan Gémez-Luna?, Rachata Ausavarungnirun“l

SAFARI Research Group

“ETH Ziirich
bCarnegie Mellon University
¢ University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.or df/2012.03112.pdf 288


https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf

PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand”  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®f

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 20109.

[Preliminary arXiv version]

https://arxiv.or df/1907.12947.pdf 289


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

More on Memory-Centric System Design

Onur Mutluy,
"Memory-Centric Computing Systems"”

Invited Tutorial at 66th International Electron Devices
Meeting (TEDM ), Virtual, 12 December 2020.

Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]

[ Tutorial Video (1 hour 51 minutes)]

Executive Summary Video (2 minutes)]
Abstract and Bio]

Related Keynote Paper from VLSI-DAT 2020]
Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
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https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
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https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

Memory-Centric

Computing Systems

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutiu
12 December 2020
IEDM Tutorial
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Special Research Sessions & Courses

Special Session at ISVLSI 2022: 9 cutting-edge talks

In-Memory Processing
ISVLSI 2022 Special Session

IEEE Computer Society Annual Symposium on VLSI

laV La]
202 Adonis room

Ailathon resort, Paphos, Cyprus
July 4th, 2022

& 4
> }| QQ 0:04 /3:36:35 -« Dr. Juan Gomez-Luna, "Introduction to the ISVLSI 2022 Special Session on Processing-in-Memory" >

ISVLSI 2022 Special Session on Processing-in-Memory
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Overview Readings (II)

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos,
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“"FPGA-Based Near-Memory Acceleration of Modern Data-Intensive

Applications"
IEEE Micro, 2021.

[Source Code]
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IEEE Micro

FPGA-Based Near-Memory Acceleration of

Modern Data-Intensive Applications

July-Aug. 2021, pp. 39-48, vol. 41
DOI Bookmark: 10.1109/MM.2021.3088396

Authors

Gagandeep Singh, ETH ZUrich, Zlrich, Switzerland

Mohammed Alser, ETH Zlrich, Zirich, Switzerland

Damla Senol Cali, Carnegie Mellon University, Pittsburgh, PA, USA

Dionysios Diamantopoulos, Zlrich Lab, IBM Research Europe, Rlischlikon, Switzerland
Juan Gomez-Luna, ETH Zlrich, Zurich, Switzerland

Henk Corporaal, Eindhoven University of Technology, Eindhoven, The Netherlands
Onur Mutlu, ETH Zirich, Zurich, Switzerland
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Overview Readings (I1I)

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations: Intelligent Algorithms and
Architectures for Intelligent Genome Analysis”

Computational and Structural Biotechnology Journal, 2022

[Source code]
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https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
https://arxiv.org/pdf/2205.07957.pdf

Detailed Lectures on Genome Analysis

= Computer Architecture, Fall 2020, Lecture 3a
o Introduction to Genome Sequence Analysis (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=CrRb32v7S]c&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=5

= Computer Architecture, Fall 2020, Lecture 8
o Intelligent Genome Analysis (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=ygmQpdDTL70&list=PL50Q2s0XY2Zi9xidyIgBxU
Z/XRPS-wisBN&index=14

= Computer Architecture, Fall 2020, Lecture 9a

o GenASM: Approx. String Matching Accelerator (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=XoLpzmN-
Pas&list=PL502s0XY2Zi9xidyIgBxUz7xRPS-wisBN&index=15

= Accelerating Genomics Project Course, Fall 2020, Lecture 1

o Accelerating Genomics (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL502s0XY2Zi9E2bBVAgCqL
gwiDRQDTyId

SAFARI https://www.youtube.com/onurmutlulectures 295



https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures
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= Spring 2022 Edition:
o https://safari.ethz.ch/projects and semi
nars/spring2022/doku.php?id=bioinforma
tics

Spring 2022 Meetings/Schedule

= Youtube Livestream:

- https : //WWW * VOUtu be - ComlwatCh ?V = D E L W1 11.3 | YoufIB Live M1: P&S Accelerating Genomics Required
5A Y3TI&list= PLSQZSOXYZZISN rPDC]OR il Course Introduction & Project Materials

Week Date Livestream Meeting Learning Assignments
Materials

. Prt als Recommended
1vRU Cxxjw-ul8 mo(lzcl)Z)sF)m(PPT) Materials
w2 18.3 | Yl Live M2: Introduction to Sequencing
Fri. ¢m (PDF) @ (PPT)
w3 | 253  Ywl Premiere = M3: Read Mapping
Fri. ¢z (PDF) @l (PPT)
. 04 Y remiere ¢ ef
= Project course B e R |
Y / W5 08.04 Yol Premiere = M5: MAGNET & Shouji
o Taken by Bachelor's/Master’s students o T
o Genomics lectures Be | e | W praers apemyyind
o Hands-on research exploration W7 | 204 YD Premiere | M7:GenStore
. Fri. ¢ (PDF) @l (PPT)
Q Many researCh readlngs w8 06.05 | Youll™ Premiere | M8: GRIM-Filter

Fri. am (PDF) zm (PPT)

w9 13.05 Yol Premiere = M9: Genome Assembly
Fri. am (PDF) mm (PPT)

W10 | 20.05 Yol Live M10: Genomic Data Sharing Under
Fri. Differential Privacy

am (PDF) @ (PPT)

W11 10.06 | YullH Premiere M11: Accelerating Genome
SA ‘ A R ' Fri. Sequence Analysis

am (PDF) @i (PPT)



https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18

Genomics (Fall 2021)

ot

= Fall 2021 Edition:

o https://safari.ethz.ch/projects and semi
nars/fall2021/doku.php?id=bioinformatic
S

= Youtube Livestream:

o https://www.youtube.com/watch?v=Mno
gTeMjY8k&list=PL5Q2s0XY2Zi8sngH-
TrNZnDhDkPg55]9]

= Project course
o Taken by Bachelor's/Master’s students
o Genomics lectures
o Hands-on research exploration
o Many research readings

e [ a i .
Understandmg genetic variation redicting the presence and relative
bundances of microbes in a sample
o A

A - E-’.L

disease outhreaks Develonina nersonalized medicine

Fall 2021 Meetings/Schedule

Week Date Livestream Meeting Learning Assignments
Materials
w1 510 YoufD Live = M1: P&S Accelerating Genomics Required Materials
Tue. Course Introduction & Project Recommended
Proposals Materials
am (PDF) mm (PPT)

Youff® video
w2 20.10 Vw Live | M2: Introduction to Sequencing

Wed. ¢ (PDF) s (PPT)

w3 27.10 Yol Live | M3: Read Mapping
Wed. m (PDF) zm (PPT)

W4 3.11 | Yul Live  M4: GateKeeper
Wed. ¢ (PDF) s (PPT)

w5 | 1041 Yol Live = M5: MAGNET & Shouiji
Wed. ¢ (PDF) s (PPT)

wWe 17.11 M6.1: SneakySnake
Wed. am (PDF) am (PPT)

% Video

M6.2: GRIM-Filter
@z (PDF) 1 (PPT)
Yol Video

w7 2411 M7: GenASM
Wed. am (PDF) am (PPT)
Youl[® Video

w8 01.12  Youfl¥ Live = M8: Genome Assembly

Wed. @z (PDF) 1w (PPT)
w9 1312 Yol Live = M9: GRIM-Filter
Mon. @z (PDF) & (PPT)

W10  15.12 Yol Live | M10: Genomic Data Sharing Under
Wed. Differential Privacy
@ (PDF) s (PPT)


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=bioinformatics
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=MnogTeMjY8k&list=PL5Q2soXY2Zi8sngH-TrNZnDhDkPq55J9J
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Comp Arch (Fall’21) .

Announcements

Materials

= Lectures/Schedule
= Lecture Buzzwords

Fall 2021 Edition:

o https://safari.ethz.ch/architecture/fall2021/doku. - &=~
php?id=schedule

Fall 2020 Edition:

o https://safari.ethz.ch/architecture/fall2020/doku.
php?id=schedule

= Tutorials

Resources

Course Webpage

+ & Computer Architecture FS20:

Lecture Videos

+ & Digitaltechnik SS21: Course
Webpage

+ & Digitaltechnik SS21: Lecture
Videos

= 4 Moodle

. @ HolCRP

« g Verilog Practice Website
(HDLBits)

Youtube Livestream (2021):

o https://www.youtube.com/watch?v=4yfkM 5EFg
o&list=PL502s0XY2Zi-Mnk1PxjEIG32HAGILKTOF

Youtube Livestream (2020):

o https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL50Q2s0XY2Zi9xidyIgBxUz7xRPS-wisBN

Master’s level course
o Taken by Bachelor's/Masters/PhD students

o Cutting-edge research topics + fundamentals in
Computer Architecture

o 5 Simulator-based Lab Assignments
o Potential research exploration
o Many research readings

https: //www.youtube.com/onurmutlulectures

+ & Computer Architecture FS20:

l% Computer Architecture - Fall 2021

Lecture Video Playlist on YouTube

4 Livestream Lecture Playlist

Watchon (@BYoulube E

% Recorded Lecture Playlist

== https:/ /arxiv.0

Search

df/2105.03814.pdf

» ML accelerator: 260 mm?, 6 billion transistors,

600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.
= Two redundant chips for better safety.

Watch on (£ YouTube

Fall 2021 Lectures & Schedule

Week Date Livestream

w1 30.09
Thu.

Youl D Live

01.10
Fri.

Yol Live

w2 07.10
Thu.

Youfll Live

08.10
Fri.

Y[ Live

Lecture

L1: Introduction and Basics
a(PDF) i (PPT)

L2: Trends, Tradeoffs and Design
Fundamentals

azi(PDF) s (PPT)

L3a: Memory Systems: Challenges and
‘Opportunities

«m(PDF) &z (PPT)

L3b: Course Info & Logistics
a(PDF) 5 (PPT)

L3c: Memory Performance Attacks
«am(PDF) @ (PPT)

L4a: Memory Performance Attacks
an(PDF) @ (PPT)

L4b: Data Retention and Memory Refresh
au(PDF) i (PPT)

L4c: RowHammer
ami(PDF) i (PPT)

Readings

Required
Mentioned

Required
Mentioned

Described
Suggested

Described
Suggested
Described
Suggested
Described
Suggested

Described
Suggested

Lab

Lab 1
Out

Lab 2
Qut

Recent Changes Media Manager Sitemap

HW

HW 0
Out

HW 1
Out


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures

! w Digital Design and Computer Architecture - Dearcii

‘N Spring 2021

DDCA (Spring 2022) -~

Announcement ts

Spring 2022 Edition: i

= L cture Buzzwords

o https://safari.ethz.ch/digitaltechnik/spring2022/do : &=
ku.php?id=schedule ,gsg:mn;:zj“

Spring 2021 Edition: e Ao

S§815: Lecture Videos
Computer Architecture (CMU)

o https://safari.ethz.ch/digitaltechnik/spring2021/do . s v

Videos

ku u Dh D?id = SChed u |e = 4 Digitaltechnik SS18: Course

Website

= 4 Digitaltechnik SS19: Lecture
Videos

= 4 Digitaltechnik SS19: Course
Website

= 4 Digitaltechnik $S20: Lecture

Youtube Livestream (Spring 2022): N

o https://www.youtube.com/watch?v=cpXdE3HWvK =~
08&list=PL5Q250XY2Zi97Ya5DEUpMpO2bbA0aG7c6

Youtube Livestream (Spring 2021):

o  https://www.youtube.com/watch?v=LbCOEZY8yw
4&list=PL50Q2s0XY2Zi uej3aY39YB5pfW4SJ]7LIN

Bachelor’s course

o 2" semester at ETH Zurich

Rigorous introduction into “"How Computers Work”
Digital Design/Logic

Computer Architecture

10 FPGA Lab Assignments

O O O O

bR /www.youtube.com/onurmutlulectures

Recent Changes Media Manager  Siten

Lecture Video Playlist on YouTube

w Livestream Lecture Playlist

= Computing landscape is very different from 10 20 years ago

= Applications and technology both demand novel architectures

Hybrid Mai W

Persistent Memory/Storage
Processors and

Accelerators Every component and its
1 interfaces, as well as
@ 1 entire system designs
- are being re-examined

General Purpose GPUs
Watch on @ YouTube

%/ Recorded Lecture Playlist

How Com{iZiers Work

(from the ground up)

Watch on @ Youlube

Spring 2021 Lectures/Schedule

Week Date Livestream Lecture Readings

w1 25.02  Youf® Live L1: Introduction and Basics Required
Thu. am (PDF) zi (PPT) Suggested
Mentioned

26.02 Yo} Live L2a: Tradeoffs, Metrics, Mindset Required

Fri. am (PDF) 2 (PPT)

L2b: Mysteries in Computer Architecture Required
am (PDF) zi(PPT) Mentioned

w2 04.03 | Y[ Live L3a: Mysteries in Computer Architecture Il = Required
Thu. am (PDF) zs#(PPT) Suggested
Mentioned

Lab HW


https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/onurmutlulectures

Seminar in Comp Arch (Spring & Fall)

mw Seminar in Computer Architecture - Spring Seanch

Spring 2022 Edition: & 2022 Recen Changes. Meda Mrager

o https://safari.ethz.ch/architecture seminar/spring20 ™"
22/doku.php?id=schedule

Fall 2021 Edition:

o https://safari.ethz.ch/architecture seminar/fall2021 : %
/dOkU . Dh D?Id - SChed u |e Ty Exponential Growth of Neural Networks

= @Fall 2021

- & Spring 2021 100000 s A R
= @Fall 2020 3 2 019 = i tr Injust 2 years

= @ Spring 2020 b

= @Fall 2019
= & Spring 2019

Youtube Livestream (Spring 2022): - T

Lecture Video Playlist on YouTube

% Lecture Playlist

Computer Architecture

o https://www.youtube.com/watch?v=rS9UPK509AQ& : i woumvee

= §yFall 2020

list=PL5Q2s0XY2Zi hxizriwKmFHgcoe2Q8-m0 o

= §Fall 2019: Lecture Videos Watch on BB YouTube
= @Fall 2018

Youtube Livestream (Fall 2021): e

Avchiecture Spring 2022 Lectures/Schedule
D httDs://WWW-voutu be.com/WatCh ?V=4TCP297mdSI& : :i:::; 5351 Lecture Videos Week Date Livestream Lecture Readings Assignments

= @ Spring 2020

list=PL5Q2s0XY2Zi 7UBNmMC9B8Yr5JSwTG9yH4 : B ||V R e

= s Spring 2019: Lecture Videos

L1b: Infroduction and Basics Suggested
tm (PDF) & (PPT)

L1c: Architectural Design Fundamentals Suggested
@ (PDF) & (PPT)

w2 03.03 | Youl Live L2: Memory-Centric Computing Suggested
Thu. & (PDF) @ (PPT)
-y = - K] 10.03  Youfl§ Live L3: Memory-Centric Computing Il Suggested
Critical analysis course ) PP
W4 17.03 Yol Live L4: Memory-Centric Computing 1l Suggested
’ Thu. em (PDF) sl (PPT)
D Ta ke n by Ba C h e | O r S/ M a Ste rS/ P h D Stu d e nts W5 24.03 | Yol Live L5: Accelerating Genome Analysis Suggested
Thu. &m (PDF) i (PPT)
o Cutting-edge research topics + fundamentals in Mo B e S

Com puter Arch itectu re L6b: Rethinking Virtual Memory Il Suggested

{a (PDF) b (PPT)
w7 | 07.04 Yl Live $1.1:% A Logic-in-Memary Computer”,

o 20+ research papers, presentations, analyses

s (PDF) fasi (PPT)

SR IS A S Ak A A TAnb b ian S

SAFARI S0



https://safari.ethz.ch/architecture_seminar/spring2022/doku.php?id=schedule
https://safari.ethz.ch/architecture_seminar/spring2022/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture_seminar/fall2021/doku.php?id=schedule
https://www.youtube.com/watch?v=rS9UPk509AQ&list=PL5Q2soXY2Zi_hxizriwKmFHgcoe2Q8-m0
https://www.youtube.com/watch?v=4TcP297mdsI&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4
https://www.youtube.com/watch?v=rS9UPk509AQ&list=PL5Q2soXY2Zi_hxizriwKmFHgcoe2Q8-m0
https://www.youtube.com/watch?v=4TcP297mdsI&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4
https://www.youtube.com/watch?v=4TcP297mdsI&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4

PIM Course (Spring 2022)

= Spring 2022 Edition:

o https://safari.ethz.ch/projects and semi

nars/spring2022/doku.php?id=processing

in_ memory

= Youtube Livestream:

o https://www.youtube.com/watch?v=9e4

Chnwdovo&list=PL5Q2s0XY?2Zi-

841fUYYUK9ESXKhQKRPyX

= Project course

o Taken by Bachelor's/Master’s students
o Processing-in-Memory lectures

o Hands-on research exploration

o Many research readings

SAFARI

Watch on  @YouTube

A Modern Primer on Processing in Memoryj

Onur Mutlu*®, Saugata Ghose"®, Juan Gémez-Luna*, Rachata Ausavarungnirun®
SAFARI Research Group

bCarn iversity

“Univers .
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

A Modern Primer on Processing in Memory"
Inwled Book L‘hapler in Emgg g gq ymputing: From Devices to Systems -
okir ea eumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf 108

Spring 2022 Meetings/Schedule

Week

w1

w2

w3

w4

W5

we

w7

ws

w9

w10

w11

w12

w13

W14

w16

w17

w18

Date Livestream Meeting Learning Assignments.
Materials
10.03 Yol D Live M1: P&S PIM Course Presentation = Required Materials HW 0 Out
Thu. (i (PDF) am (PPT) Recommended
Materials
15.03 Hands-on Project Proposals
Tue.

17.03 Yol Premiere = M2: Real-world PIM: UPMEM PIM

Thu. (i (PDF) am (PPT)
24.03 YoullD Live M3: Real-world PIM:
Thu. Microbenchmarking of UPMEM
PIM
(@ (PDF) am (PPT)
31.03 YoullD Live M4: Real-world PIM: Samsung
Thu. HBM-PIM
(@ (PDF) am (PPT)
07.04 Yool D Live MS5: How to Evaluate Data
Thu. Movement Bottlenecks
(@ (PDF) am (PPT)
14.04 Yool Live M6: Real-world PIM: SK Hynix AiM
Thu. am (PDF) @m (PPT)

21.04 YoufflD Premiere | M7: Programming PIM
Thu. Architectures
am (PDF) @m (PPT)
28.04 Yo Premiere  M8: Benchmarking and Workload
Thu. Suitability on PIM
a (PDF) zm (PPT)

05.05 Yo Premiere = M9: Real-world PIM: Samsung
Thu. AXDIMM
am (PDF) s (PPT)

12,05 Youff[) Premiere M10: Real-world PIM: Alibaba HB-

Thu. PNM
m (PDF) @m (PPT)
19.05 YoufflD Live M11: SpMV on a Real PIM
Thu. Architecture
m (PDF) s (PPT)
26.05 Yool Live M12: End-to-End Framework for
Thu. Processing-using-Memory
i (PDF) s (PPT)
02,06 YoullD Live M13: Bit-Serial SIMD Processing
Thu. using DRAM
@i (PDF) s (PPT)
09.06 Yool Live M14: Analyzing and Mitigating ML
Thu. Inference Bottlenecks
i (PDF) am (PPT)
15.06 YoullD Live M15: In-Memory HTAP Databases
Thu. with HW/SW Co-design
(i (PDF) m (PPT)
23.06 Yoo Live M16: In-Storage Processing for
Thu. Genome Analysis

(@ (PDF) am (PPT)
18.07 Yol Premiere = M17: How to Enable the Adoption
Mon. of PIM?
(@ (PDF) am (PPT)
09.08 Yool Premiere | SS1: ISVLSI 2022 Special Session
Tue. on PIM
(PDF & PPT)


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

Hetero. Systems (Spring’22

= Spring 2022 Edition:
o https://safari.ethz.ch/projects and semi
nars/spring2022/doku.php?id=heterogen
eous_systems

= Youtube Livestream:

o https://www.youtube.com/watch?v=0FO
S5fTrgFIY&list=PL5Q2s0XY2Zi9XrgXR38IM
FTimY6h7Gzm

= Project course
o Taken by Bachelor's/Master’s students
o GPU and Parallelism lectures
o Hands-on research exploration
o Many research readings

Watch on @3 YouTube
jg for Heterogeneous Integrated Systems,” ICPE 2017.

ARRANAR
‘J“Jj ‘GPU"AUMU‘

DOE .0

I3
‘ Non-coherent bu

| Coherent bus

Spring 2022 Meetings/Schedule

Week Date
w1 15.03
Tue.
w2 22.03
Tue.
W3 29.03
Tue.
W4 05.04
Tue.
W5 12.04
Tue.
Wwé 19.04
Tue.
w7 26.04
Tue
w8 03.05
Tue.
w9 10.05
Tue.
W10  17.05
Tue.
W11 24.05
Tue.
W12  01.06
Wed.
W13  07.06
Tue.
W14  15.06
Wed.
W15  24.06
Fri.
W16  14.07
Thu.

Livestream

Yool Premiere

Yol Premiere
Yool Premiere
Vuu Premiere

Yw Premiere

Vuu Premiere

Yoo Premiere

Yol Premiere

You® Premiere

Yool Premiere

Vw Premiere

Yuu Premiere

Vuu Premiere

Vw Premiere

Yol Premiere

Vull Premiere

Meeting

M1: P&S Course Presentation
m (PDF) mm (PPT)

M2: SIMD Processing and GPUs
am (PDF) @i (PPT)

M3: GPU Software Hierarchy
am (PDF) @i (PPT)

M4: GPU Memory Hierarchy
m (PDF) @ (PPT)

M5: GPU Performance
Considerations
om (PDF) zzi (PPT)

M6: Parallel Patterns: Reduction
am (PDF) @zl (PPT)

M7: Parallel Patterns: Histogram
az (PDF) @x (PPT)

M8: Parallel Patterns: Convolution
am (PDF) @ (PPT)

M9: Parallel Patterns: Prefix Sum
(Scan)
am (PDF) @m (PPT)

M10: Parallel Patterns: Sparse
Matrices
am (PDF) @ (PPT)

M11: Parallel Patterns: Graph
Search
@ (PDF) @r (PPT)

M12: Parallel Patterns: Merge
Sort
om (PDF) @x (PPT)

M13: Dynamic Parallelism
@ (PDF) @r (PPT)

M?14: Collaborative Computing
am (PDF) i (PPT)

M15: GPU Acceleration of
Genome Sequence Alignment
a (PDF) @m (PPT)

M16: Accelerating Agent-based
Simulations
{m (PDF) ¢ma (ODP)
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Materials

Required Materials
Recommended
Materials

g

HW 0 Out


https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

HW /SW Co-Design (Spring 2022)

- K P SNASH I atdera S oftiare CoapeatheopalseVatidaComp
Enables highly-efficien matrix compression and computation

General across a diverse set of sparse matrices and sparse matrix operation

= Spring 2022 Edition:

o https://safari.ethz.ch/projects and semi
nars/spring2022/doku.php?id=hw sw co Efficient Unit that scans

design compression bitmaps to
using a Hierarchy accelerate

Software Hardware

of Bitmaps indexing

= Youtube Livestream:

o https://youtube.com/plavlist?list=PL50Q2s
0XY2Zi8nH7un3ghD2nutKWWDKk-NK

* Memory management is delegated

to the Memory Translation Layer fm-mef
L]

(MTL) in the memory controller
- Address translation
o 1

= Project course 'Ph”mlmem””""cm ey
o Taken by Bachelor's/Master’s students 8

* Pros: Many benefits, in

- Physical memory is allocated only
when the location needs to be written

o HW/SW co-design lectures to memory
o Hands-on research exploration
a

Watch on @B YouTube

Many research readings
2022 Meetings/Schedule (Tentative) =
Week Date Livestream Meeting Materials Assignments

wo 16.03 Yol Live | Intro to HW/SW Co-Design | Required = HW 0 Out
aE (PPTX) am (PDF)

Wi 23.03 Project selection Required

w2 3003 YwilD Live | Virtual Memory (1)
1m (PPTX) azi (PDF)

w3 13.04 Youlll® Live  Virtual Memory (I1)
i (PPTX) am (PDF)


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=hw_sw_codesign
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi8nH7un3ghD2nutKWWDk-NK

SSD Course (Spring 2022)

Spring 2022 Edition:

o https://safari.ethz.ch/projects and semi
nars/spring2022/doku.php?id=modern s
sds

Youtube Livestream:

o https://www.youtube.com/watch?v=_qg4r
m71DsY4&list=PL50Q2s0XY2Zi8vabcselkL
22DEcgMI2RAq

Project course

o Taken by Bachelor's/Master’s students
o SSD Basics and Advanced Topics

o Hands-on research exploration

o Many research readings

P&S Modern SSDs
Basics of NAND Flash-Based SSDs

Dr. Jisung Park
Prof. Onur Mutlu
ETH Zirich
Spring 2022
25 March 2021

Modern Solid-State Drives (SSDs) Course - Meeting 2: Basics of NAND Flash-Based SSDs (Spring 2022)

sssss

P&S Modern SSDs

Introduction to MQSim

Rakesh Nadig
Dr. Jisung Park  *®
Prof. Onur Mutlu
ETH Zirich
Spring 2022
8th April 2022

Modern Solid-State Drives (SSDs) Course - Meeting 4: Introduction to MQSim (Spring 2022)

310 views - Streamed live on Apr 8, 2022 i 17 GP DISLIKE /> SHARE L DOWNLOAD

ed live on Mar 25, 2022 e 16 QP DISLIKE /> SHARE L DOWNLOAD

ANALYTICS | EDIT VIDEO


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=modern_ssds
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
https://www.youtube.com/watch?v=_q4rm71DsY4&list=PL5Q2soXY2Zi8vabcse1kL22DEcgMl2RAq
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SAFARI Research Grou

Think Big, Aim High

Dear SAFARI friends,

2019 and the first three months of 2020 have been very positive eventful times for SAFARI.


https://safari.ethz.ch/safari-newsletter-april-2020/
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Think Big, Aim High, and
Have a Wonderful 2021!

Dear SAFARI friends,

Happy New Year! We are excited to share our group highlights with you in this second edition
of the SAFARI newsletter (You can find the first edition from April 2020 here). 2020 has
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Referenced Papers, Talks, Artifacts

= All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

https://www.youtube.com/onurmutlulectures

https://github.com/CMU-SAFARI/

SAFARI


https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/onurmutlulectures

Open Source Tools: SAFARI GitHub

SAFARI

SAFARI Research Group

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

@ ETH Zurich and Carnegie Mellon U...

(0 Overview [] Repositories 71 [ Projects

Pinned

& ramulator  Public

A Fast and Extensible DRAM Simulator, with built-in support for modeling
many different DRAM technologies including DDRx, LPDDRx, GDDRX,
WIOx, HBMXx, and various academic proposals. Described in the...

@®c++ W3 T el

£ DAMOV  Public

DAMOV is a benchmark suite and a methodical framework targeting the
study of data movement bottlenecks in modern applications. It is
intended to study new architectures, such as near-data processin...

@c++ T2 Ya

& MQSim Public

MQSim is a fast and accurate simulator modeling the performance of
modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs.
MQSim faithfully models new high-bandwidth protocol implement...

@®C++ Y146 %93

& Packages

& https://safari.ethz.ch/ [ omutlu@gmail.com

Ay Teams 1 A People 44 {8 Settings

Customize pins

B prim-benchmarks = Public

PrIM (Processing-In-Memory benchmarks) is the first benchmark suite for
a real-world processing-in-memory (PIM) architecture. PrIM is developed
to evaluate, analyze, and characterize the first publ...

®c 153 ¥

H SneakySnake Public

SneakySnake 2, is the first and the only pre-alignment filtering algorithm
that works efficiently and fast on modern CPU, FPGA, and GPU
architectures. It greatly (by more than two orders of magnitude...

@VvHDL Yra41 %8

H rowhammer ' Public

Source code for testing the Row Hammer error mechanism in DRAM
devices. Described in the ISCA 2014 paper by Kim et al. at
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_iscal4.pdf.

®c Yr189 ¥ am

https://github.com/CMU-SAFARI/
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https://github.com/CMU-SAFARI/
https://github.com/CMU-SAFARI/
https://github.com/CMU-SAFARI/

Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
6 September 2022
Barcelona Supercomputing Center

SAFARI ETHzurich CarnegieMellon
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Some Recent Papers




Connecting Basecalling and Read Mapping in PIM

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur
Mutlu,

"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of
Basecalling and Read Mapping"

Proceedings of the 55th International Symposium on Microarchitecture
(MICRQO), Chicago, Illinois, October 2022.

GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping

Haiyu Mao! Mohammed Alser' Mohammad Sadrosadati' Can Firtina!® Akanksha Baranwal!
Damla Senol Cali? Aditya Manglik! Nour Almadhoun Alserr’ Onur Mutlu!

LETH Ziirich 2Bionano Genomics

SAFARI Coming up at MICRO 2022 o1



Finding Approximate Seed Matches

Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali,
Taha Shahroodi, Nika Mansouri-Ghiasi, Gagandeep Singh, Konstantinos
Kanellopoulos, Can Alkan, and Onur Mutlu,

"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed
Matches"

Preprint in arXiv, 2021.

[arXiv_preprint]

[BLEND Source Code and Data]

BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to
Find Fuzzy Seed Matches

Can Firtina!  Jisung Park! Mohammed Alser! Jeremie S. Kim! Damla Senol Cali?
Taha Shahroodi® Nika Mansouri-Ghiasi! Gagandeep Singh! Konstantinos Kanellopoulos!
Can Alkan* Onur Mutlu!

VETH Zurich 2Bionano Genomics 3TU Delft “Bilkent University
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https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/abs/2112.08687
https://arxiv.org/pdf/2112.08687.pdf
https://github.com/CMU-SAFARI/BLEND

Hardware Acceleration for pHMMs

Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol
Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger,

Mohammed Alser, Juan Gomez-Luna, Sreenivas Subramoney, and Onur Mutluy,
"ApHMM: A Profile Hidden Markov Model Acceleration Framework for Genome

Analysis"
Preprint in arXiv, 2022.
[Source Code]

ApHMM: A Profile Hidden Markov Model
Acceleration Framework for Genome Analysis

Can Firtina' Kamlesh Pillai* Gurpreet S. Kalsi®* Bharathwaj Suresh? Damla Senol Cali’
Jeremie S. Kim' Taha Shahroodi* Meryem Banu Cavlak' Joel Lindegger’ Mohammed Alser’
Juan Gémez Luna' Sreenivas Subramoney® Onur Mutlu!

YETH Zurich ®Intel Labs 3 Bionano Genomics *TU Delft

SAFARI 17


https://arxiv.org/pdf/2207.09765.pdf
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

Remapping Reads Between References

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,

"AirLift: A Fast and Comprehensive Technique for Remapping Alignments
between Reference Genomes"

Preprint in arXiv and bioRxiv, 2021.

[bioRxiv preprint]

[arXiv preprint]

[AirLift Source Code and Data]

METHOD

AirLift: A Fast and Comprehensive Technique
for Remapping Alignments between Reference
Genomes

Jeremie S. Kim!T, Can Firtinalf, Meryem Banu Cavlak?, Damla Senol Cali®, Nastaran Hajinazarl#,
Mohammed Alser!, Can Alkan? and Onur Mutlu:23*

SAFARI S18


https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf
https://arxiv.org/abs/1912.08735
https://doi.org/10.1101/2021.02.16.431517
https://doi.org/10.1101/2021.02.16.431517
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift

Mapping Constant Regions Between Reterences

Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Can Alkan,
and Onur Mutlu,

"FastRemap: A Tool for Quickly Remapping Reads between Genome
Assemblies"
Bioinformatics, btac554.

[FastRemap Source Code]

FastRemap: A Tool for Quickly Remapping Reads
between Genome Assemblies

Jeremie S. Kim! Can Firtinal Meryem Banu Cavlak! Damla Senol Cali?3
Can Alkan* Onur Mutlu!»%4

IETH Ziirich 2Carnegie Mellon University JBionano Genomics 4Bilkent University
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https://doi.org/10.1093/bioinformatics/btac554
https://github.com/CMU-SAFARI/FastRemap

COVIDHunter

Mohammed Alser, Jeremie S. Kim, Nour Almadhoun Alserr, Stefan W. Tell,

Onur Mutlu
“"COVIDHunter: COVID-19 Pandemic Wave Prediction and Mitigation via Seasonality

Aware Modeling”
Frontiers in Public Health 2022
[Source Code]

ORIGINAL RESEARCH

:' frontiers | Frontiers in Public Health published: 17 June 2022
doi: 10.3389/fpubh.2022.877621

COVIDHunter: COVID-19 Pandemic
Wave Prediction and Mitigation via
Seasonality Aware Modeling

Mohammed Alser*, Jeremie S. Kim, Nour Alimadhoun Alserr, Stefan W. Tell and Onur Mutlu

Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, Zurich, Switzerland
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https://arxiv.org/pdf/2102.03667.pdf
https://github.com/CMU-SAFARI/COVIDHunter

Packaging Omics Methods

Mohammed Alser, Sharon Waymost, Ram Ayyala, Brendan Lawlor, Richard J. Abdill,
Neha Rajkumar, Nathan LaPierre, Jaqueline Brito, Andre M. Ribeiro-dos-Santos, Can
Firtina, Nour Almadhoun, Varuni Sarwal, Eleazar Eskin, Qiyang Hu, Derek Strong,
Byoung-Do (BD)Kim, Malak S. Abedalthagafi, Onur Mutlu, Serghei Mangul
“Packaging, containerization, and virtualization of computational omics methods:
Advances, challenges, and opportunities”

arrXiv 2022

Packaging, containerization, and virtualization of computational omics methods:
Advances, challenges, and opportunities

Mohammed Alser’, Sharon Waymost?, Ram Ayyala>*, Brendan Lawlor®, Richard J. Abdill°,

Neha Rajkumar’, Nathan LaPierre?, Jaqueline Brito®, André M. Ribeiro-dos-Santos®, Can Firtina®,
Nour Almadhoun?, Varuni Sarwal?, Eleazar Eskin®**'°, Qiyang Hu'!, Derek Strong'?,

Byoung-Do (BD) Kim*?, Malak S. Abedalthagafi******", Onur Mutlu®’, Serghei Mangul*’
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https://arxiv.org/pdf/2203.16261.pdf

Demeter (HD Food Microbiome Profiling)

Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,
Onur Mutlu, Said Hamdioui

“"Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional
Computing in Memory”

IEEE Access, 2022

IEEE Access
=M RESEARCH ARTICLE R s Kb

Demeter: A Fast and Energy-Efficient Food
Profiler Using Hyperdimensional
Computing in Memory

TAHA SHAHROODI !, MAHDI ZAHEDI'', CAN FIRTINA2, MOHAMMED ALSER 2,
STEPHAN WONG!, (Senior Member, IEEE), ONUR MUTLU" 2, (Fellow, IEEE),
AND SAID HAMDIOUI'!, (Senior Member, IEEE)

1Q&CE Department, EEMCS Faculty, Delft University of Technology (TU Delft), 2628 CD Delft, The Netherlands
28 AFARI Research Group, D-ITET, ETH Ziirich, 8092 Ziirich, Switzerland
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https://arxiv.org/pdf/2206.01932.pdf

AIM (PIM Sequence Alignment Framework)

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gomez-Luna,

Onur Mutlu, Izzat El Hajj

“A Framework for High-throughput Sequence Alignment using Real Processing-in-
Memory Systems"

arXiv, 2022

[Source code]

A Framework for High-throughput Sequence
Alignment using Real Processing-in-Memory
Systems

Safaa Diab', Amir Nassereldine', Mohammed Alser?, Juan G6mez Luna®, Onur Mutlu?, Izzat El Hajj'

! American University of Beirut, Lebanon 2ETH Ziirich, Switzerland
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https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim

Scrooge

Joél Lindegger, Damla Senol Cali, Mohammed Alser, Juan Gomez-Luna,

Nika Mansouri Ghiasi, Onur Mutlu

“Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and
ASICs"

arXiv, 2022

[Source code]

Bioinformatics

doi.10.1093/bicinformatics/xxxxx

Advance Access Publication Date: Day Month Year
Original paper

Genome analysis

Scrooge: A Fast and Memory-Frugal Genomic
Sequence Aligner for CPUs, GPUs, and ASICs

Joél Lindegger '*, Damla Senol Cali2, Mohammed Alser,
Juan Gomez-Luna’, Nika Mansouri Ghiasi' and Onur Mutlu '+

' Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland and
2Bionano Genomics, San Diego, CA 92121, USA.
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https://arxiv.org/abs/2208.09985
https://github.com/CMU-SAFARI/Scrooge

Intelligent Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao,
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for
Intelligent Genome Analysis”

Computational and Structural Biotechnology Journal, 2022

[Source code]

1190101001 @R 01010 310

wppowagpooidgn BTOTECHNOLOGY

01010101001 4010108010
1101010:001Mw J 0 U RNAL

journal homepage: www.elsevier.com/locate/csbj e

o gm0 COMPUTATIONAL T =
oo ml::, ANDSTRUCTURAL

Review

From molecules to genomic variations: Accelerating genome analysis via = #)
intelligent algorithms and architectures e

Mohammed Alser *, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh,
Juan Gomez-Luna, Onur Mutlu *

ETH Zurich, Gloriastrasse 35, 8092 Ziirich, Switzerland
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https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations

Pairwise Sequence Alignment using PIM

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gomez Luna, Onur
Mutlu, and Izzat El Hajj,

"High-throughput Pairwise Alignment with the Wavefront Algorithm using
Processing-in-Memory"

Preprint in arXiv, 2022.

High-throughput Pairwise Alignment with the
Waveftront Algorithm using Processing-in-Memory

Safaa Diab!, Amir Nassereldine!, Mohammed Alser?, Juan Gémez Luna?, Onur Mutlu?, Izzat El Hajj!
! American University of Beirut, Lebanon 2ETH Ziirich, Switzerland
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https://arxiv.org/pdf/2204.02085.pdf
https://arxiv.org/abs/2204.02085

Backup Slides for Further Info




Detailed Lectures on PIM (I)

= Computer Architecture, Fall 2020, Lecture 6

o Computation in Memory (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=0GcZAGWfEUE&list=PL50Q2s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=12

= Computer Architecture, Fall 2020, Lecture 7

o Near-Data Processing (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=j2Gliggn1Qw&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=13

= Computer Architecture, Fall 2020, Lecture 11a

o Memory Controllers (ETH Zirich, Fall 2020)
o https://www.youtube.com/watch?v=TeG7730giMQ&list=PL50Q2s0XY2Zi9xidyIgBxUz

7XRPS-wisBN&index=20
= Computer Architecture, Fall 2020, Lecture 12d

o Real Processing-in-DRAM with UPMEM (ETH Zirich, Fall 2020)

o https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL50Q2s0XY2Zi9xidyIgBxUz7
XRPS-wisBN&index=25
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https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=12
https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25
https://www.youtube.com/onurmutlulectures

Detailed Lectures on PIM (1)

=  Computer Architecture, Fall 2020, Lecture 15

o Emerging Memory Technologies (ETH Zurich, Fall 2020)

o https://www.youtube.com/watch?v=AIE1rD9G YU&list=PL502s0XY2Zi9xidyIgBxUz
7XRPS-wisBN&index=28

= Computer Architecture, Fall 2020, Lecture 16a
o Opportunities & Challenges of Emerging Memory Technologies
(ETH Zlrich, Fall 2020)

o https://www.youtube.com/watch?v=pmLszZWGMMGQ&list=PL50Q2s0XY2Zi9xidyIgBx
Uz7xRPS-wisBN&index=29

= Computer Architecture, Fall 2020, Guest Lecture
o In-Memory Computing: Memory Devices & Applications (ETH
Zurich, Fall 2020)

o https://www.youtube.com/watch?v=wNmgQHIEZNk&Ilist=PL502s0XY2Zi9xidyIgBxU
Z7XRPS-wisBN&index=41
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https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=12
https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures

Genome Analysis

N o machine can read the
entire content of a genome
>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......

SAFARI 330



Notas del ponente
Notas de la presentación
Why we can not do that?
Challenges: 1- supercoiled structure, small cell’s size, sensitivity to 1 base, DNA length.


=
Genome Analysis

N o machine can read the
entire content of a genome

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......
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Notas del ponente
Notas de la presentación
Why we can not do that?
Challenges: 1- supercoiled structure, small cell’s size, sensitivity to 1 base, DNA length.


Genome Sequencer 1s a Chopper

Sequencing

CCCCOCTATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

TATATATACGTACTAGTACGT
ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT
TATATATACGTACTAGTACGT
ACGTTTTTAAAACGTA

TATATATACGTACTAGTACGT

ACGACGGGGAGTACGTACGT

r

.

Genome
Analysis

(A1C|
G| T}

44 hours’

<

1x10'2 bases’

e <1000 $

* NovaSeq 6000

SAFARI
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Notas del ponente
Notas de la presentación
Reads lack information about their order and location (which part of genome they are originated from) 

PICO bases/44 hours


Oxford

Oxtford Nanopore Sequencers {JNANOPORE

MinlON Mk1B MinlON Mk1C GridlON Mk1 PromethlON 24/48

MinION MinION . PromethION PromethION
Mk1B mMkic  SMAION Mki 24 48

Read length

Yield per flow cell

Number of flpw 24 48
cells per device

Yield per device <250 Gb <5.2Tb <10.5Tb

Starting price $49,995 $195,455 $327,455

SAFARI https://nanoporetech.com/products/comparison 333
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[llumina Sequencers

llumina’

)
— i
nﬂ = .
=

T "

[ U]
| S
L ———

iSeq 100 MiniSeq MiSeq NextSeq 550 NextSeq 2000 NovaSeq 6000
Run time 9.5-19 hrs 4-24 hrs 4-55 hrs 12-30 hrs 24-48 hrs 13-44 hrs
Max. reads 4 million | 25 million | 25 million | 400 million | 1 billion 20 billion
per run
Max.read |, 150pp | 2x150bp | 2 x300bp | 2 x 150 bp | 2 x 150 bp | 2 x 250
length
Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb
gfitc':‘ated $19,900 $49,500 | $128,000 | $275,000 | $335,000 | $985,000

334
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How Does Illumina Machine Work?

Optical 0
|
Snso,- ‘
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Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�


How Does Illumina Machine Work?

A A A :?

A GA CAr cC g 4

ACpA ACCA ,G6CT G T

T

CGc CGGC cT 61 T 1 4

ii TGec TAAT gC Ap C G G

Optical G égc A G °A G ¢ T L
= G cTAC G £7

Billions of Short Reads
rATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT

Glass flow
cell surface

S TTAGTACGTACGT
TACGTACTAAAGTACGT
A \TACGTACTAGTACGT
PN 'TTTAAAACGTA
\2/6(,\,_,_, _______ Nfo\ ._ 'CGTACTAGTACGT
)—N\ - *GGGAGTACGTACGT
N—H------- o &
d DNA fragment = Read
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Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�


How Does Illumina Machine Work?

A AAg

A GA CAtr c g g

AC p A C cA ‘\(; C T G T T

CGC C G GC CT GT TAA

GT g GT TG (;‘\ TT A c C

@ TGe TAAT gC Ap C p

- ACr~ ACpAA GCe g G 2

Check Illumina virtual tour:

https://emea.illumina.com/systems/sequencing-platforms/iseqg/tour.htmi

CGTACTAGTACGT
'‘GGGAGTACGTACGT 3

d DNA fragment = Read
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Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

How Does Nanopore Machine Work?

graphene
nanopore

i DNA
strand

= Nanopore is a nhano-scale hole (<20nm).

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

338
SAFAR’ Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.htm|
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How Does Nanopore Machine Work?

graphene

A DNA
nanopore il;

+ &) strand

Check Nanopore virtual tour:

https://nanoporetech.com/resource-centre/minion-video

measures the the chaﬁge in current
This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

339
SAFAR’ Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.htm|
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Solving the Puzzle

I
Reference / *

of

| A
genome / .
Reads ’

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Notas del ponente
Notas de la presentación
Rhinoceros

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HTS Sequencing Output

Small pieces of a puzzle Large pieces of a puzzle
short reads (Illumina) long reads (ONT & PacBio)

‘
xl

\

Which sequencing technology is the best?

3 100-300 bp Q 500-2M bp
Q low error rate (~0.1%) A high error rate (~15%)

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI 341


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HiF1 Reads (PacBio)

R

100%
But still very
expensive!
o
e
=
O
<
80%
0] Read Length (kb) 50

Wenger+, "Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome", Nature Biotechnology, 2019

https://labs.wsu.edu/genomicscore/illumina-sequencing/ 342
SAFARI https://pacbio.gs.washington.edu/



Notas del ponente
Notas de la presentación
By sequencing the same DNA segment many times (10 to 30 times),  we can have accurate more longer reads.

https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

®
How Long 1s DNA?
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Notas del ponente
Notas de la presentación
Phi x174 is a virus that Infects E. Coli bacteria

You may be exposed to E. coli from contaminated water or food — especially raw vegetables and undercooked ground beef.

Paris Japonica : A rare Japanese flower 
============================
Phi is 600K time smaller than the genome of human	
E coli is ~600 time smaller than the human genome
Onion has a genome that is 5x larger than that of human
Paris japonica’s genome is 46x larger than the human genome



Cracking the 15* Human Genome Sequence

= 1990-2003: The Human Genome Project (HGP) provides a
complete and accurate sequence of all DNA base pairs that make
up the human genome and finds 20,000 to 25,000 human genes.

- Elye New Pork Eimes ===
Yo i = @ 20
tu: Code of Human %_(e Is Cracked by Scr,enttst [ARN bases

: The Book o
y — oz (e ooz | N SHARD sunm
s | --4, - = e been il
h B A T N [ P ;
o ﬂ | i sieliet s L".'.';".'-'.?L A : 2 Rivals' Announcem 1 3 yea rS
Q‘-,* o Al S e % D y P g Marks New Medic:
f i | THTTINg ¢ r 3
: N

F 2 _l}‘ V_"""V Era, Risks and All

L3 -.'-.. . o ..
ST T/ By FICHMKLAS WAIRE
a 1_‘ Scalnce ST L uwras A
i i By crcisving e Bage L, SCaantiat
J\“ | 5 4 -
- = 4 B i)

] e B L Cotr b P B HJ.-.!.-H' il hl! TERFERETIS 1

iocale the penes and determina e Lnchons '-‘1' ol remman wif & ""M"-ﬂ'ﬂ#
val groeps of scientinis

Inl they hidd dich [tnrﬂl I'H‘M

fimry scripi, e wei ol el

that defines the humon orgass

>3x10° $

............

SAFARI | 344



Notas del ponente
Notas de la presentación
The 13-year long human project is the starting of the genomic era! It opened the door to remarkable biomedical discoveries by providing the first complete human genome sequence. It cost 3 billion dollars to read the entire sequence.�


Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
_#_

——

SAFAR' https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1 157 346


Notas del ponente
Notas de la presentación
There are three main challenges.

First. The mapper needs to find many mappings for each read. Because the read is so short, they can map to multiple locations in the reference genome. How can we efficiently find all mappings of a read?

Second. The mapper needs to tolerate small variance or errors in each read. Since individuals are different, the subject’s DNA might slightly differs from the reference DNA, which can be mismatches, insertions or deletions of base pairs. How can we efficiently map each read with up to a number of e errors present?

Third. The mapper needs to map each read very fast. In another word, performance is important. Because the human DNA is 3.2 billion base-pairs long and each read is only hundreds of base-pairs long, there can be billions of reads subjected to mapping for an individual human. Current state of the art mappers take weeks to map a human’s DNA. So the question is, how can we design a much higher performance read mapper?


Revisiting the Puzzle

http ww.pach.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Reterence Genome Bias

nature genetics

Letter | Open Access | Published: 19 November 2018

Assembly of a pan-genome from deep
sequencing of 910 humans of African
descent

Rachel M. Sherman &, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30-35(2019) | Cite this article

“African pan-genome contains ~10% more DNA
bases than the current human reference genome”

SAFARI Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humansef
African descent” Nature genetics, 2019.



https://www.nature.com/articles/s41588-018-0273-y

®
Time to Change the Reterence Genome

I Genome Biology '

Home About Articles Submission Guidelines

Opinion | Open Access | Published: 09 August 2019
Is it time to change the reference genome?

Sara Ballouz, Alexander Dobin & Jesse A. Gillis

Genome Biology 20, Article number: 159 (2019) | Cite this article

12k Accesses | 11 Citations | 45 Altmetric | Metrics

“Switching to a consensus reference would offer important
advantages over the continued use of the current reference with

few disadvantages”
SAFAR] Ballouz+, "Is it time to change the reference genome?", Genome Biology, 201949



Notas del ponente
Notas de la presentación
a consensus reference represents the most common nucleotide at each position.

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4

S
MAGNET (AACBB 2018, TIR 2017)

Key observation: the use of AND operation to check if a zero
(match) exists in a column introduces filtering inaccuracy.

Key Idea: count the consecutive zeros in each mask and
select the longest in a divide-and-conquer approach.

MAGNET is 17x to 105x more accurate than GateKeeper
and SHD.

GAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCC
GAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

0000000000000000000000001300000000000001111110111100011101101011011111111100010000(11110110100101
0000000000001111111111113300111110111141/000000000000000000000000000000000000000000011000000000000C
00000000000010000000001014101110011113911111111011110001110110101101111111110001000300111011010010C
0000000000001011111111113%01110110011401101110110001001001111111111111001011001100301101110111011
0000000000011111111111113%01111101111¥10111011000100100111111111111100101100110001¢10111011101111
000000000010000000001001%¥111001111113401001000110101010011010111111111111101110011 1111 0001111011
000000000101111111111101%10110011000411111111010110111111001100101110111111110111¢1111010111001C

00000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000C

AAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCC

Frrrerrrreerrrerrreeerrr reeeeerreerr rererrerrrrerrrrererrrerrrer et e e et e e et e e
AAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC
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Notas del ponente
Notas de la presentación
MAGNET will be presented in the next talk.


MAGNET Walkthrough

Read :
Reference :

Upper Diagonal-4 :
Upper Diagonal-3 :
Upper Diagonal-2 :
Upper Diagonal-1 :

Main Diagonal :
Lower Diagonal-1 :
Lower Diagonal-2 :
Lower Diagonal-3 :
Lower Diagonal-4 :

MAGNET bit-vector :

N

ACCEPT iff number of ‘1’ < Threshold

TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA
TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

. D3 |
101100001010001011010011111101101100110110011010101011101111111 D
110111111111110010011110111111001000100100010011111110110111111¢(

| U]

\</
---1101111111001111
--01101101010111111
-001111011001011011
0001111101110010011¢ 101111111111100100111101111110010001001000100111111101101111110
110000101000101101001111110110110011011001101010101110111111111
101111111110111110111111011111110111111011110111111000010110101¢
110010001010111001110011101101111111111111101010111101101010100
101111111011110111111111101101101111110111110111101111111111111
111000001011101011001111100101001111100111001001111010110111111

00011111011100100110
00111101100101101111(
01101101010111111110
11011111110011111011¢

OO = = ==

Find the longest segment of consecutive zeros

Exclude the errors from the search space

Divide the problem into two subproblems and repeat

SAFARI

"MAGNET: understanding and improving the accuracy of genome 351
pre-alignment filtering", arXiv preprint 2017



Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.

https://arxiv.org/abs/1707.01631

What if we got a new version

of the reference genome?

SAFARI 392



Airlift

Key observation: Reference genomes are updated frequently.
Repeating read mapping is a computationally expensive workload.

Key idea: Update the mapping results of only affected reads
depending on how a region in the old reference relates to another
region in the new reference.

Key results:

a reduces number of reads that needs to be re-mapped to new
reference by up to 99%

o reduces overall runtime to re-map reads by 6.94x, 208x, and
16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions

Constant Region Updated Region
Retired Region New Region

Old Reference/ /l Il / /
New Reference L

Fig. 2. Reference Genome Regions.
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More Details on AirLift

arXiv.org > g-bio > arXiv:1912.08735 Search...
Help | Advang

Quantitative Biology > Genomics

[Submitted on 18 Dec 2019]

AirLift: A Fast and Comprehensive Technique for
Translating Alignments between Reference Genomes

Jeremie S. Kim, Can Firtina, Damla Senol Cali, Mohammed Alser, Nastaran Hajinazar,
Can Alkan, Onur Mutlu

GitHub: https://github.com/CMU-SAFARI/AirLift

Kim+, "AirLift: A Fast and Comprehensive Technigue for Translating Alignments
between Reference Genomes", arXiv, 2020
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https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/abs/1912.08735

Nanopore Sequencing

= Nanopore is a nano-scale hole

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SAFARI 390




The Effect of Pre—Alignment (Theoretically)

Processing time (sec) for 1 million mappings

14.000

12.000

10.000

8.000

6.000

4.000

2.000

Filter+ e==Total processing time without pre-alignment (sec)
Alianment e==Total processing time with pre-alignment (sec)
g \ w=m [deal processing time for 90% pre-alignment rejection percentage

\
\
\ assuming alignment processes 100 Mappings/sec
*/l
i ; .

Pre-alignment saves more than

40% to 80%

of the total processing time

Target /’

2X 4x 8x 16x 32x 64x 128x 256x
Pre-alignment rejected mapping percentage and speed compared to alignment step

357



Notas del ponente
Notas de la presentación
What effect pre-alignment has on overall execution time? Well, that depends on how much and how fast it can remove incorrect mappings 


We make
two key observations. (1) The reduction in the end-to-end processing time of the
alignment step largely depends on the accuracy and the speed of the pre-alignment
lter. (2) Pre-alignment ltering can provide unsatisfactory performance (as
highlighted in red) if it can not reject more than about 30% of the potential
mappings while it's only 2x-4x faster than read alignment step.


Aside: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

e IR

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128 . _ +420/0—

0 1 2 3 4
Speedup
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Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank | | | . T T e e -

nk>»

w.edges

2. Little amount of computation
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Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface :
Noncacheable, Physically Addressed) :

§

» Logic

iy

iy iy

7/
| ’

Crossbar Network

1Y

+t

+t +t

+t

In-Order Core

LP PF Buffer

MTP

Message Queue

49||03U0) INVHA

g

=

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.




Communications via

Remote Function Calls

Message Queue




Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI
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Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;

Vault #1 Vault #2
- ——p
Y/ > &w
// | \
- \
«— \
\\
‘‘‘‘‘‘‘‘ — —
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Communications In Tesseract (I111)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
} Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
\Y; &w
4-—-*”/// I‘\
put \\\
TS put
\__‘_\\\H -‘—_“_'_‘“—'——-b W
out | ]
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

[

Local
Core

&func, &w, value

NI

NI

>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 | HMC-000 | HMC-MC | Tesseract

CaCs CeCe '
Bl CBROE ! | |
| I . I - I . I | : X y X Y : X X X y : 32
= 1= e 1= B | 5 Tesseract
i y § 7\ y 7\ i 7§ y y § 7\ i Cores
A\ 4 A\ 4 A\ 4 A\ 4 : vy vy vy vy : \A 4 \A 4 \A 4 vy :
I I 128 128 I
8 000 N 8 000 8 000 . 8 000 InOrder <> InOrder
4GHz 4GHz i 4GHz 4GHz i 2GHz 2GHz i hig > >
! ! v v v $
\ 4 \ 4 i \ 4 4 i \ 4 \ 4 ' PR PR
| 128 128
8000 8000 | 8000 | 8000 | | Soo o oo i % 3
4GHz 4GHz ! 4GHz 4GHz i 2GHz 2GHz i <t <
! i Y W S Y Y i X% i v v v v
y N A N 1 \ 4 v \ 4 \ 4
| T | T | T | T o | | e ME
| | | | | | | |
] ] ] ] ! \4 \ 4 \4 \ 4 ! \4 \4 \4 \ 4 !
I e I !
] ] ] ] 1
| | | | | | | | E |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

>13X Performance Improvement

16
” On five graph processing algorithms 13.8x
19 11.6x
o 10 9.0x
>
o 8
()]
o
Y 6
4
5 +56%  4+25%
, == BN e
DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




_|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) ] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3Xx

A4

, I

HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

B Memory Layers ® Logic Layers [ Cores
1,2

0,8
0,6
0,4

0,2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
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