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Overview
 System design for bioinformatics is a critical problem

 It has large scientific, medical, societal, personal implications

 This talk is about accelerating a key step in bioinformatics: 
genome sequence analysis
 In particular, read mapping

 Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis

 We will cover various recent ideas to accelerate read mapping
 My personal journey since September 2006
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Our Dream (circa 2007)

 An embedded device that can perform comprehensive 
genome analysis in real time (within a minute)
 Which of these DNAs does this DNA segment match with?
 What is the likely genetic disposition of this patient to this 

drug?
 What disease/condition might this particular DNA/RNA piece 

associated with?
 . . . 
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A Bright Future for Intelligent Genome Analysis

4
SmidgION from ONT

MinION from ONT

4

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


A Few Overview Readings (I)
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Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” 
IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf

https://arxiv.org/pdf/2008.00961.pdf
https://arxiv.org/pdf/2008.00961.pdf
https://arxiv.org/pdf/2008.00961.pdf


A Few Overview Readings (II)
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM
https://arxiv.org/pdf/2106.06433.pdf


A Few Overview Readings (III)
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Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations: Intelligent Algorithms and 
Architectures for Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/pdf/2205.07957.pdf

https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
https://arxiv.org/pdf/2205.07957.pdf


Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
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What Is a Genome Made Of?
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Cell
Nucleus

The discovery of DNA’s double-helical structure (Watson+, 1953) 

Notas del ponente
Notas de la presentación
Unlocking the life’s code requires diving into the nucleus of our body cells, where the double-stranded genome resides. Genome is literally the 'code of life' - it is the set of instructions for making everything from you to zebras, strawberries, and even yeast.
�since the discovery of dna’s double-helical structure (watson et al. 1953) 



The Central Dogma of Molecular Biology
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Phenotypes Genotypes 

Notas del ponente
Notas de la presentación
Our DNA is literally a cookbook that contains the information needed to make all of our phenotypes and traits. Our genes are the recipes for making us what we are physically.�
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope

Notas del ponente
Notas de la presentación
Henrietta Lacks,
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CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACA
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG
AGGTGTCAAGGACCTAAACTAAAAAAAAAAAAAGAAAA
AGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAA
AAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATG
TGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAA
GAAATCAAGAATAAATGAAGGACTTGATACATTGGAAGA
GGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAA
AAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGA
AAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAAT
GTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGA
AAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTA
ATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCC
GGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTG



How Large is a Genome?
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Notas del ponente
Notas de la presentación
Phi x174 is a virus that Infects E. Coli bacteria

You may be exposed to E. coli from contaminated water or food — especially raw vegetables and undercooked ground beef.

Paris Japonica : A rare Japanese flower 
============================
Phi is 600K time smaller than the genome of human	
E coli is ~600 time smaller than the human genome
Onion has a genome that is 5x larger than that of human
Paris japonica’s genome is 46x larger than the human genome




DNA Sequencing

 Goal: 
 Find the complete sequence of A, C, G, T’s in an organism’s DNA

 Challenge: 
 There is no machine that takes long DNA as an input, and gives 

the complete sequence as output
 All sequencing machines chop DNA into pieces and identify 

relatively small pieces (but not how they fit together)
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Large DNA molecule

Small DNA fragments

Reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT

Genome Sequencing

Notas del ponente
Notas de la presentación
As the whole genome of most organisms cannot be sequenced all at once, the genome is broken into smaller fragments. 
After each fragment is sequenced, small pieces of DNA sequences (i.e. reads) are generated. 



Genome Sequencing and Analysis
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Current sequencing machines provide
small randomized fragments 

of the original DNA sequence

Alser+, "Technology dictates algorithms: Recent developments in read alignment", Genome Biology, 2021

Read Mapping

Reads

https://arxiv.org/abs/2003.00110


Untangling Yarn Balls & DNA Sequencing
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Notas del ponente
Notas de la presentación
untangling yarn ball



Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000



… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore 
SmidgION

High-Throughput Sequencers

19

Pacific 
Biosciences 
Sequel II

Oxford 
Nanopore 
PromethION



The Genomic Era
 1990-2003: The Human Genome Project (HGP) provides a complete 

and accurate sequence of all DNA base pairs that make up the 
human genome and finds 20,000 to 25,000 human genes.

20

13 year-long
$3,000,000,000 
(in 1991 USD)

Notas del ponente
Notas de la presentación
The 13-year long human project is the starting of the genomic era! It opened the door to remarkable biomedical discoveries by providing the first complete human genome sequence. It cost 3 billion dollars to read the entire sequence.�



The Genomic Era (continued)
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development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

Notas del ponente
Notas de la presentación
However, since the development of high throughput sequencing (HTS) technologies, the cost of genome sequencing has fallen off a cliff (<< 1,000$) making it viable for almost everyone's use.
�

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


Genome Sequencing Cost Is Reducing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


Genome Sequencing Cost Is Reducing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


High-Throughput Sequencing (HTS) 
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= Second Generation 
= Next Generation
= Massively Parallel Sequencing
= High Throughput Sequencing (HTS) 
= Sequencing by Synthesis (Illumina)

flow 
cell

Notas del ponente
Notas de la presentación
Second generation = next generation = massively parallel sequencing = high throughput sequencing (HTS) = Sequencing by Synthesis
Attach large number of DNA molecules to the flow cell then sequence by synthesis using CMOS light sensor to observe the chemical interactions



High-Throughput Sequencing (HTS) 
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Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300 
basepairs long) of copies of the original molecule.

The sequencer adds the molecule “T” 
to all bases near the flow cell surface and 
observes the chemical reaction via a CMOS sensor. 
If a reaction happens then the base is “A”

Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�



High-Throughput Sequencing
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 Massively parallel sequencing technology
 Illumina, Roche 454, Ion Torrent, SOLID…

 Small DNA fragments are first amplified and then 
sequenced in parallel, leading to
 High throughput
 High speed
 Low cost 
 Short reads

 Sequencing is done by either reading optical signals as each base is 
added, or by detecting hydrogen ions instead of light, leading to:
 Low error rates (relatively)
 Reads lack information about their order and which part of genome 

they are originated from



Solving the Puzzle
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Sequenced 
Reads

Reference 
genome

.FASTA file .FASTQ file

Notas del ponente
Notas de la presentación
Rhinoceros

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Newer Genome Sequencing Technologies
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

Oxford Nanopore MinION

https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo


Types of Genomic Reads
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Wenger+, "Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome", Nature Biotechnology, 2019

But still very 
expensive!

https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

Long: 10-20 kb
Accurate: 99.8%

Notas del ponente
Notas de la presentación
By sequencing the same DNA segment many times (10 to 30 times),  we can have accurate more longer reads.

https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/


Genome 
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CCTATAATACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Notas del ponente
Notas de la presentación
Genome analysis starts with sequencing random short DNA fragments of copies of the original molecule. 
Unfortunately, these reads lack information about their order and which part of genome they are originated from. 
Hence the second step is to map these reads to a long reference genome.





Read Mapping Techniques in 111 Pages
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Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Why Do We Care?
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Example Question: If I give you a bunch of 
sequences, tell me where they are the same 

and where they are different.

Multiple sequence alignment



Genome Sequence Alignment: Example

34Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008). 
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

https://commons.wikimedia.org/w/index.php?curid=30550950


The Genetic Similarity Between Species
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99.9%

96%
Human ~ Chimpanzee

Human ~ Human
90%

Human ~ Cat

80%
Human ~ Cow

50-60%
Human ~ Banana



…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAGGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGCCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…
…ACATGTCGACATTTCATAGGCC…
…ACATGTCGACATTTCATAAGCC…

SNP1                           SNP2             Blood Pressure
180
175
170
165
160
145
140
130
120
120
115
110
110
110
105
100

Finding Variations Associated with Traits

Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA 

Individual #1
Individual #2
Individual #3
Individual #4
Individual #5
Individual #6
Individual #7
Individual #8
Individual #9

Individual #10
Individual #11
Individual #12
Individual #13
Individual #14
Individual #15
Individual #16

SNP: single nucleotide polymorphism

Notas del ponente
Notas de la presentación
Genetic association study is a procedure of seeking for the SNPs potentially causing the phenotypic changes. Here in this example of blood pressure, it appears that the left SNP is more strongly associated with the blood pressure than the right SNP, because all the individual with genotype “C” have high blood pressure, and individuals with “T” has low blood pressure.



Genome-Wide Association Studies (GWAS)
 Enables detection of genetic variants associated with 

phenotypes using two groups of people.

37

variant with higher frequency in cases than in controls

https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 

Notas del ponente
Notas de la presentación
the negative logarithm of the association p-value for each single nucleotide polymorphism (SNP) displayed on the Y-axis, meaning that each dot on the Manhattan plot signifies a SNP



SNPs and Personalized Medicine 

38https://opensnp.org/snps/rs12979860

https://opensnp.org/snps/rs12979860


Much Larger Structural Variations
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AUTISM
Weiss, N Eng J Med 2008
Deletion of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

SCHIZOPHRENIA
McCarthy, Nat Genet 2009
Duplication of 593 kb

UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

Deletion in the short arm 
of chromosome 16 (16p11.2)

Duplication in the short arm 
of chromosome 16 (16p11.2)

CNV: copy number variation

Notas del ponente
Notas de la presentación
SNP is 1 bp, INDEL 1-49bp, Structural Variation >=50bp


https://www.nejm.org/doi/full/10.1056/NEJMoa075974
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880448/




Personalized Medicine for Critically Ill Infants

40Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 
cost of hospitalization”, NPJ Genomic Medicine, 2018

 rWGS can be performed in 2-day (costly) or 5-day time to 
interpretation. 

 Diagnostic rWGS for infants
 Avoids morbidity
 Reduces hospital stay length by 6%-69%
 Reduces inpatient cost by $800,000-$2,000,000.

Notas del ponente
Notas de la presentación
There is also an urgent need for rapidly incorporating clinical sequencing into clinical practice for diagnosis of genetic disorders in critically ill infants [53, 54, 55, 56]. While early diagnosis in such infants shortens the clinical course and enables optimal outcomes [57, 58, 59], it is still challenging to deliver ecient clinical sequencing for tens to hundreds of thousands of hospitalized infants each year [60].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/


Recommended Reading
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Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

https://www.nature.com/articles/s41576-019-0180-9
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Metagenomics, genome assembly, de novo sequencing

http://math.oregonstate.edu/~koslickd
uncleaned de Bruijn graph

Question 2: Given a bunch of short sequences, 
Can you identify the approximate species cluster 
for genomically unknown organisms (bacteria)?

Notas del ponente
Notas de la presentación
organism detection in metagenomes 

http://math.oregonstate.edu/%7Ekoslickd


Population-Scale Microbiome Profiling

43https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/


City-Scale Microbiome Profiling

44

Afshinnekoo+, "Geospatial Resolution of Human and 
Bacterial Diversity with City-Scale Metagenomics", Cell 
Systems, 2015

Notas del ponente
Notas de la presentación
In 2015, they sequenced DNA from surfaces across the entire New York City (NYC) subway system.
~ 1,700 microbial taxa detected were dominated mostly by human skin bacteria.
Almost half the DNA present on the subway surfaces matched no known organism. 
And though results showed that the bacteria found in the subways were mostly harmless, they detected pathogenic agents, including fragments of the plague and anthrax genomes !!



MegaBLAST-LCA Pipeline The MegaBLAST-LCA pipeline consisted of five steps explained in detail below. 
Paired-end reads were prepared for BLAST by trimming, filtering on quality scores, and converting to unpaired FASTA sequences. 
Prepared reads were searched for in the NCBI NT database using MegaBLAST (default parameters). 
MegaBLAST hits were filtered such that short and low-scoring hits were ignored in subsequent analysis.
Reads with MegaBLAST hits to multiple taxa were assigned to the LCA taxa in the NCBI Taxonomy using the MEGAN algorithm. For example, hits to multiple species of the same genus are assigned to the common genus by the LCA algorithm. 
Finally, for each sample, the total number of reads assigned to each taxon were counted. We validated our MegaBLAST-LCA pipeline on a mock community of 11 bacterial species (see Tables S2 and S3).

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2


Global-Scale Microbiome Profiling

45
Danko+, "A global metagenomic map of urban microbiomes and antimicrobial resistance", Cell, 2021

https://www.cell.com/cell/fulltext/S0092-8674(21)00585-7


A Tsunami of Sequencing Data

46

A Tera-scale increase in sequencing production in the past 25 years



Another Question: Example from 2020-…
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Source: https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample

https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample


Example: Scalable SARS-CoV-2 Testing

48

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020

https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2


Example: Rapid Surveillance of Ebola Outbreak

49
Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

https://www.nature.com/articles/nature16996


We Need Faster & Scalable Genome Analysis

50

Predicting the presence and relative 
abundance of microbes in a sample

Understanding genetic variations, 
species, evolution, …

Rapid surveillance of disease outbreaks Developing personalized medicine

And, many, many other applications …

Notas del ponente
Notas de la presentación
Knowing what organisms are present in a given environmental sample and how abundant are they




One Problem
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TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000  

2 M
bases/min

on average

(0.6%)

We Are Bottlenecked in Read Mapping

Notas del ponente
Notas de la presentación
Typical sequencer machine generates a flood of reads, for example, Illumina HiSeq4000 generates 300 million bases/minute. 
However, existing computer alignment algorithms can only process 0.6% of these reads in the same amount of time. 
This gap is widening as more advanced sequencers are made available in the market.




The Read Mapping Bottleneck

53

Read Sequencing Read Mapping

* BWA-MEM
** HiSeqX10, MinION

***

150x slower

Million
bases/minute300 Million

bases/minute2

Notas del ponente
Notas de la presentación
12.48
5.2 CPU hours
144x
60 CPU hours

BWA-MEM
25 minutes
Illumine HiSeq X10

25 minutes
Nanopore MinION

Short reads generated in a day using today’s HTS machines (e.g., Illumine HiSeq X10) can be mapped to the human reference genome using BWA-MEM [36], a popular and widely-used read mapper, in 12.5 CPU (central processing unit) days when running on a single core [66, 67]. BWA-MEM also takes about 2.5 CPU days to map long reads that are generated in 25 minutes using today’s Nanopore MinION sequencer [68]






The Read Mapping Bottleneck

54

Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 
processor for precision medicine”, Open Journal of Genetics, 2017.

Notas del ponente
Notas de la presentación
12.48
5.2 CPU hours
144x
60 CPU hours

BWA-MEM
25 minutes
Illumine HiSeq X10

25 minutes
Nanopore MinION

Short reads generated in a day using today’s HTS machines (e.g., Illumine HiSeq X10) can be mapped to the human reference genome using BWA-MEM [36], a popular and widely-used read mapper, in 12.5 CPU (central processing unit) days when running on a single core [66, 67]. BWA-MEM also takes about 2.5 CPU days to map long reads that are generated in 25 minutes using today’s Nanopore MinION sequencer [68]




https://www.scirp.org/journal/paperinformation.aspx?paperid=74603


Problem with (Genome) Analysis Today

55

Special-Purpose Machine
for Data Generation

General-Purpose Machine
for Data Analysis

FAST                        SLOW

Slow and inefficient processing capability

This picture is similar for many “data generators & analyzers” today



One Problem

Need to construct 
the entire genome 

from many sequenced reads

56



Large DNA molecule

Small DNA fragments

Reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT

Genome Sequencing

Notas del ponente
Notas de la presentación
As the whole genome of most organisms cannot be sequenced all at once, the genome is broken into smaller fragments. 
After each fragment is sequenced, small pieces of DNA sequences (i.e. reads) are generated. 



Read Mapping, method of aligning the 
reads against a known reference genome 

to detect matches and variations

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of merging 
the reads in order to construct the 

original sequence (reference genome)

Reference
Genome

Original
Sequence

Genome Sequence Analysis

Notas del ponente
Notas de la presentación
These reads can then be analyzed following two different approaches: read mapping and de novo assembly. Read mapping is the process of aligning the reads against the reference genome to detect variations in the sequenced genome. Reference genome is a DNA sequence accepted as the representation of the genomic sequence of a species. The genome of a species is copied from individual to individual across multiple generations of a population with minimal differences at every step. The genomes of different individuals of the same species have typically the same number of chromosomes and most of the same bases in each chromosome. Thus, we can talk about a reference genome of a species. 
De novo assembly is the method of combining the reads to construct the original sequence when a reference genome does not exist. 

 




Read Mapping
 Map many short DNA fragments (reads) to a known 

reference genome with some differences allowed

59

Reference genome

Reads
DNA, logicallyDNA, physically

Mapping short reads to reference genome is 
challenging (billions of 50-300 base pair reads)

Notas del ponente
Notas de la presentación
Read mapping is a post processing procedure after DNA sequencing. It maps the data output from a DNA sequencer, which are many short DNA fragments, to a known reference genome, with some minor differences allowed.

To illustrate the problem better, let us take a closer look at the DNA itself. Logically, the DNA is a double stranded long string. In reality, within a cell they folded into a sphere in the nucleus like a ball of wool. Since it is very hard to disentangle the DNA at molecular level, to extract the information out, a sequencer cuts the mass into many short DNA pieces which are called reads.

A mapper’s job is to find where these DNA short reads are most likely to be originally placed so that later we can assemble them in the correct order to restore the original DNA.

Mapping these short reads, up to billions of them, with each one being 50 to 300 base-pairs long, to the reference genome is challenging.



Read Mapping for Metagenomic Analysis

60

Reference 
Database

Reads in
“text format”

Genetic material recovered 
directly from environmental 

samples

Reads from different unknown donors at sequencing 
time are mapped to many known reference genomes

Notas del ponente
Notas de la presentación
Read mapping is a post processing procedure after DNA sequencing. It maps the data output from a DNA sequencer, which are many short DNA fragments, to a known reference genome, with some minor differences allowed.

To illustrate the problem better, let us take a closer look at the DNA itself. Logically, the DNA is a double stranded long string. In reality, within a cell they folded into a sphere in the nucleus like a ball of wool. Since it is very hard to disentangle the DNA at molecular level, to extract the information out, a sequencer cuts the mass into many short DNA pieces which are called reads.

A mapper’s job is to find where these DNA short reads are most likely to be originally placed so that later we can assemble them in the correct order to restore the original DNA.

Mapping these short reads, up to billions of them, with each one being 50 to 300 base-pairs long, to the reference genome is challenging.



candidate alignment 
locations (CAL)

4%

Read Alignment
(Edit-distance comp)

93%

SAM printing
3%

Read Mapping Execution Time (Old Times) 

Notas del ponente
Notas de la presentación
An overwhelming majority of the read mapper’s execution time is spent in read alignment.



Matching Each Read to Reference Genome

62

Reference Genome .FASTA file:

Sequenced Reads .FASTQ file:



Base-by-Base Comparison

63

Notas del ponente
Notas de la presentación
 (f) Once the pre-alignment filter accepts the alignment between a read and a region in the reference genome then DP-based (or non-DP based) verification algorithms are used to generate the alignment file (in BAM or SAM formats), which contains alignment information such as the exact number of differences, location of each difference, and their type.




Read Alignment/Verification
 Edit distance is defined as the minimum number of edits 

(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.

N E - T H E R L A N D S
S W I T Z E R L A N D -

NETHERLANDS x SWITZERLAND

match
deletion
insertion
mismatch

Notas del ponente
Notas de la presentación
http://www.let.rug.nl/kleiweg/lev/




Challenges in Read Mapping
 Need to find many mappings of each read

 A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

 How can we find all mappings efficiently?

 Need to tolerate small variances/errors in each read
 Each individual is different: Subject’s DNA may slightly differ from 

the reference (Mismatches, insertions, deletions)
 How can we efficiently map each read with up to e errors present?

 Need to map each read very fast (i.e., performance is important)
 Human DNA is 3.2 billion base pairs long  Millions to billions of 

reads (State-of-the-art mappers take weeks to map a human’s DNA)
 How can we design a much higher performance read mapper?

65

Notas del ponente
Notas de la presentación
There are three main challenges.

First. The mapper needs to find many mappings for each read. Because the read is so short, they can map to multiple locations in the reference genome. How can we efficiently find all mappings of a read?

Second. The mapper needs to tolerate small variance or errors in each read. Since individuals are different, the subject’s DNA might slightly differs from the reference DNA, which can be mismatches, insertions or deletions of base pairs. How can we efficiently map each read with up to a number of e errors present?

Third. The mapper needs to map each read very fast. In another word, performance is important. Because the human DNA is 3.2 billion base-pairs long and each read is only hundreds of base-pairs long, there can be billions of reads subjected to mapping for an individual human. Current state of the art mappers take weeks to map a human’s DNA. So the question is, how can we design a much higher performance read mapper?



Why Is Read Alignment Slow?

 Quadratic-time dynamic-
programming algorithm(s) A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Read Alignment

        CCTATAATACG
C
C
A
T
A
T
A
T
A
C
G

etc

etc
 Data dependencies limit the 

computation parallelism

 Entire matrix computed even 
though strings may be 
dissimilar

Notas del ponente
Notas de la presentación
1- Read alignment follows the basic dynamic-programming doctrine which runs in a quadratic time.
2- Data dependencies between the entries limits the parallelism. Each cell depends or three pre-computed cells (immediate left, upper, and upper-left cells). Thus, we can compute the vectors one after another but not in parallel. Left-to-right, or top-to-bottom, anti-diagonal. 
3- We can solve a significant amount of time, If we can find a way to detect the incorrect mappings with cheap heuristics, much cheaper than computing the alignment.



N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Example: Dynamic Programming Table

NETHERLANDS x SWITZERLAND

immediate left, 
upper left,
upper entries of its own

Notas del ponente
Notas de la presentación
1- Read alignment follows the basic dynamic-programming doctrine which runs in a quadratic time.
2- Data dependencies between the entries limits the parallelism. Each cell depends or three pre-computed cells (immediate left, upper, and upper-left cells). Thus, we can compute the vectors one after another but not in parallel. Left-to-right, or top-to-bottom, anti-diagonal. 
3- We can solve a significant amount of time, If we can find a way to detect the incorrect mappings with cheap heuristics, much cheaper than computing the alignment.



N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Example: Dynamic Programming Table

• Matrix-filling is O(mn) time and space.
• Backtrace is O(m + n) time.

NETHERLANDS x SWITZERLAND

Notas del ponente
Notas de la presentación
1- Read alignment follows the basic dynamic-programming doctrine which runs in a quadratic time.
2- Data dependencies between the entries limits the parallelism. Each cell depends or three pre-computed cells (immediate left, upper, and upper-left cells). Thus, we can compute the vectors one after another but not in parallel. Left-to-right, or top-to-bottom, anti-diagonal. 
3- We can solve a significant amount of time, If we can find a way to detect the incorrect mappings with cheap heuristics, much cheaper than computing the alignment.



N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

Example: Dynamic Programming

 Quadratic-time dynamic-
programming algorithm

etc

etc Data dependencies limit the 
computation parallelism

 Entire matrix is computed 
even though strings can be 
dissimilar

WHY?!

NETHERLANDS x SWITZERLAND
NETHERLANDS x S
NETHERLANDS x SW
NETHERLANDS x SWI
NETERLANDS x SWIT
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE
NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND 

Enumerate all possible prefixes

Notas del ponente
Notas de la presentación
1- Read alignment follows the basic dynamic-programming doctrine which runs in a quadratic time.
2- Data dependencies between the entries limits the parallelism. Each cell depends or three pre-computed cells (immediate left, upper, and upper-left cells). Thus, we can compute the vectors one after another but not in parallel. Left-to-right, or top-to-bottom, anti-diagonal. 
3- We can solve a significant amount of time, If we can find a way to detect the incorrect mappings with cheap heuristics, much cheaper than computing the alignment.



Computational Cost is Mathematically Proven

70https://arxiv.org/abs/1412.0348

https://arxiv.org/abs/1412.0348


Read Mapping Techniques in 111 Pages

71

Mohammed Alser, Jeremy Rotman, Dhrithi Deshpande, Kodi Taraszka, Huwenbo
Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. 
Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky,
Can Alkan, Onur Mutlu, Serghei Mangul
"Technology dictates algorithms: Recent developments in read alignment" 
Genome Biology, 2021
[Source code]

In-depth analysis of 107 read mappers (1988-2020)

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Read Mapping Execution Time (Modern)
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ONT FASTQ size: 103MB (151 reads), Mean length: 356,403 bp, std: 173,168 bp, longest length: 817,917 bp

KSW2
45%

Seed 
Chaining

16%

Sorting 
Seeds
29%

Collect 
Matching 

Seeds
8%

Collect Minimizers
2%

>60%
of the read mapper’s 

execution time is spent 
in sequence alignment

minimap2



Accelerating Read Mapping

73
Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.

https://arxiv.org/pdf/2008.00961.pdf


Detailed Analysis of Tackling the Bottleneck

74

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose,
Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” 
IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
75



Read Mapping Algorithms: Two Styles

 Hash based seed-and-extend (hash table, suffix array, suffix tree)
 Index the “k-mers” in the genome into a hash table (pre-processing)
 When searching a read, find the location of a k-mer in the read; then 

extend through alignment
 More sensitive (can find all mapping locations), but slow
 Requires large memory; this can be reduced with cost to run time

 Burrows-Wheeler Transform & Ferragina-Manzini Index based 
aligners
 BWT is a compression method used to compress the genome index
 Perfect matches can be found very quickly, memory lookup costs 

increase for imperfect matches
 Reduced sensitivity



Hash Table Based Read Mappers

 Key Idea
 Preprocess the reference into a Hash Table
 Use Hash Table to map reads

77



Hash Table-Based Mappers [Alkan+ Nature Gen’09]
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12 324 577 940AAAAAAAAAAAA
AAAAAAAAAAAC

AAAAAAAAAAAT

13 421 412 765 889

......
CCCCCCCCCCCC

......

24 459 744 988 989

......

......

TTTTTTTTTTTT 36 535 123

NULL

Reference genome

k-mer or 12-mer
(string of length k)

Location list—where the k-mer
occurs in reference gnome

Once for a reference

Notas del ponente
Notas de la presentación
In preprocessing, the mapper stores the full permutations of a short fixed-length DNA string called k-mers, with k denoting the length of the string. In this example, k = 12 and they are also called 12-mers. For each k-mer, the mapper sweeps through the reference genome and stores all of the occurrence locations of the k-mer into a location list. The mapper then do this for all k-mers. If a permutation never appeared in the reference genome, there will be an empty list for it.

This data structure, usually implemented as the hash table is only constructed once for a reference genome



Hash Table Based Read Mappers
 Key Idea

 Preprocess the reference into a Hash Table
 Use Hash Table to map reads

79



12

Hash Table-Based Mappers [Alkan+ Nature Gen’09]

12 324 557 940

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

CCCCCCCCCCCCTTTTTTTTTTTT

Reference 
GenomeHash Table 

(HT)

read
k-mers

AAAAAAAAAAAA
CCCCCCCCCCCC

TTTTTTTTTTTT

24 459 744 988 989

36 535 823

…AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT…

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT

AAAAAAAAAAAA

324

..  AAAAAAAAAAAAAACGCTTCCACCTTAATCTGGTTG..

read

***

..****************************************..Invalid 
mapping

80

Valid 
mapping✔

Verification/Local Alignment

Notas del ponente
Notas de la presentación
For a single read, the mapper first divides the read into non-overlapping k-mers, and uses the k-mers to query the hash table. The hash table returns the locations lists of the k-mers and traverses them one by one. 

For each location in the list, the mapper retrieves the reference sequence at the location from the database and verifies if the read differs from the reference with more than e errors. The verification itself, is an expensive string comparison (edit distance computation) function. It compares the two DNA strings base pair by base pair, until the end. Then the mapper moves on to the next step, repeats, until it examined all locations.

This is the best previous work circa 2013.



Our First Step: Comprehensive Mapping
 + Guaranteed to find all mappings  sensitive
 + Can tolerate up to e errors

81

http://mrfast.sourceforge.net/

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

Notas del ponente
Notas de la presentación
It turned out the Hash Table based mappers solve the first 2 challenges pretty well. They guarantee to find all mappings with no more than e errors present.

http://mrfast.sourceforge.net/


Problem and Goal
 Poor performance of existing read mappers: Very slow 

 Verification/alignment takes too long to execute
 Verification requires a memory access for reference genome + 

many base-pair-wise comparisons between the reference and 
the read (edit distance computation)

 Goal: Speed up the mapper by reducing the cost of 
verification
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0 5000 10000 15000 20000

Execution
time (s)

Verification

Other
95%

Notas del ponente
Notas de la presentación
It turns out the performance of existing hash table based mappers is very poor. They are very slow.

This is because of the expensive verification computation. To perform a verification, the mapper has to access the memory once for the reference genome and conduct many base-pair wise comparisons between the reference genome and the read, in order to locate the errors.

In fact, from our profiling result, the verification process can consume up to 95% of the execution time. Moreover, most of the verification calculations are unnecessary.

Our goal is to speedup the mapper by reducing the execution time of the verification process.



Overarching Key Idea

Filter fast before you align

Minimize costly 
edit distance computations

(“approximate string comparisons”)

83



Overarching Key Idea

84

Sequenced Reads

Similar to 
Reference

Too Dissimilar 
to Reference

Focus processing power
on these 

(e.g., edit distance comp.)

Quickly find these 
and filter them out 

w/o costly computation



Accelerating Genome Analysis: Overview
 Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can 

Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A


Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
86



Our First Filter: Pure Software Approach
 Download the source code and try for yourself

 Download link to FastHASH

87Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2013.

http://mrfast.sourceforge.net/
http://www.biomedcentral.com/1471-2164/14/S1/S13/


Reducing the Cost of Verification
 Most verification (edit distance computation) calculations are 

unnecessary
 1 out of 1000 potential locations passes the verification process

 We can get rid of unnecessary verification calculations by
 Detecting and rejecting early invalid mappings (filtering)
 Reducing the number of potential mappings to examine

88

Notas del ponente
Notas de la presentación
How can we do that? It turns out most of the verification calculations are unnecessary. We observe that usually only 1 out of 1000 potential mapping locations passes the verification process becoming a valid mapping.

We also observe that we can get rid of unnecessary verification calculations by
Detecting and rejecting early invalid mappings
and by Reducing the number of potential mappings



Key Observations [Xin+, BMC Genomics 2013]

 Observation 1
 Adjacent k-mers in the read should also be adjacent in the 

reference genome
 Read mapper can quickly reject mappings that do not satisfy 

this property

 Observation 2
 Some k-mers are cheaper to verify than others because they 

have shorter location lists (they occur less frequently in the 
reference genome)
 Mapper needs to examine only e+1 k-mers’ locations to tolerate e

errors
 Read mapper can choose the cheapest e+1 k-mers and verify 

their locations

89

Notas del ponente
Notas de la presentación
Observation 1: For valid mappings, Adjacent k-mers in the read should also be adjacent in the reference genome.
Hence, mapper can quickly reject mappings that do not satisfy this property.

Observation 2: Some k-mers are cheaper than others because they have shorter location lists, which means they occur less frequently in the reference genome. Previous work proved that the mapper only needs to examine e+1 k-mers’ locations to tolerate e errors.
Hense, the mapper can choose the cheapest e+1 k-mers and verify their locations.



FastHASH Mechanisms [Xin+, BMC Genomics 2013]

 Adjacency Filtering (AF): Rejects obviously invalid 
mapping locations at early stage to avoid unnecessary 
verifications

 Cheap K-mer Selection (CKS): Reduces the absolute 
number of potential mapping locations to verify

90

Notas del ponente
Notas de la presentación
In our work, FastHASH, we have two mechanisms to leverage the two observations respectively.

Mechanism 1: Adjacency Filtering, which ….
Mechanism 2: Cheap k-mer Selection, which ….

Let us first take a look at Adjacency Filtering.



Adjacency Filtering (AF)
 Goal: detect and filter out invalid mappings at early stage
 Key Insight: For a valid mapping, adjacent k-mers in the 

read are also adjacent in the reference genome

 Key Idea: search for adjacent locations in the k-mers’ 
location lists (in the index)
 If more than e k-mers fail  there must be more than e 

errors  invalid mapping
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AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read

Reference genomeValid mapping Invalid mapping

Notas del ponente
Notas de la presentación
The goal of AF is to detect invalid mappings at early stage.

This is based on the insight that, for a valid mapping, adjacent k-mers in the read are also adjacent in the reference genome.
Let’s take a look at the previous example. The read is divided into 3 k-mers and they occur at different locations in the reference genome

From the figure, we can see that, only the location in the blue box is a valid mapping, as the three adjacent k-mers of the read are adjacent in the reference genome. Other locations are all invalid mappings because they only map to a single isolated k-mers from the read.

The key idea is instead of performing the expensive verification calculation, we can search for adjacent locations in the k-mers’ location lists and if more than e k-mers fail this process, we know there must be more than e errors present, concluding that the mapping is invalid



12

Adjacency Filtering (AF)

12 324 557 940

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

CCCCCCCCCCCCTTTTTTTTTTTT

Reference 
GenomeHash Table 

(HT)

read

k-mers

AAAAAAAAAAAA
CCCCCCCCCCCC

TTTTTTTTTTTT

24 459 744 988 989

36 535 123

…AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT…

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT

AAAAAAAAAAAA

324

24?36?336?

***

+12 +24

557

569?

940

952?

✗
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Notas del ponente
Notas de la presentación
Let us look back to the previous example. With Adjacency Filtering, we still traverse the location lists but with each location, before the verification, we check if adjacent locations are in adjacent k-mers’ location lists.

In this case, with location 12 from the first k-mer, and the k-mer length being 12, we will be looking for location 24 in the second k-mer’s location lists, which is there and the third k-mer’s location list, which is also there. Because all adjacent locations are found in adjacent k-mers, we pass location 12 towards the verification process.

For the next location, 324, we search for adjacent location 336 in 2nd k-mer and it’s not there. We conclude there must be at least an error and skip the verification process and move on to the next location 577. We search for adjacent location 589, which is also not there. Then we move to the next 940 and search for 952, which is also not there. So on and so forth for all locations. In this way, we only do verification once and that is for the single valid mapping of this read.




 Adjacency Filtering (AF): Rejects obviously invalid 
mapping locations at early stage to avoid unnecessary 
verifications

 Cheap K-mer Selection (CKS): Reduces the absolute 
number of potential mapping locations to verify
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FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Notas del ponente
Notas de la presentación
In our work, FastHASH, we have two mechanisms to leverage the two observations respectively.

Mechanism 1: Adjacency Filtering, which ….
Mechanism 2: Cheap k-mer Selection, which ….

Let us first take a look at Adjacency Filtering.



Cheap K-mer Selection (CKS)
 Goal: Reduce the number of potential mappings to examine

 Key insight:
 K-mers have different cost to examine: Some k-mers are 

cheaper as they have fewer locations than others (occur less 
frequently in reference genome)

 Key idea:
 Sort the k-mers based on their number of locations
 Select the k-mers with the fewest number locations to verify
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Notas del ponente
Notas de la presentación
The goal of Cheap K-mer Selection is to reduce the number of potential mappings

The key insight is that the k-mers have different cost to examine. Some k-mers are cheaper as they have fewer locations in their location lists than others, which also means they occur less frequently in the reference genome.

The key idea is to sort the k-mers based on their number of locations and select the k-mers with fewest locations to verify.



Cheap K-mer Selection
 e=2 (examine 3 k-mers)
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AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read

314
1231
4414
9219
4 loc.

338

…

…

…

…

1K loc.

376

…

…

…

…

2K loc.

326

1451

2 loc.

326

1451

2 loc.

388

…

…

…

…

1K loc.

Previous work needs 
to verify:

3004 locations

FastHASH verifies only:

8 locations

Locations

Number of Locations

Cheapest 3 k-mersExpensive 3 k-mers

Notas del ponente
Notas de la presentación
In this example, we have a longer read which can be divided into 6 k-mers. The error tolerance threshold e is set to 2, which means we need to select at least 3 k-mers to verify their locations. 

Here is the location list of a k-mer. The first several entries here are locations while the last entry summarizes the number of locations of this k-mer.

We can see that for this read, some of the k-mers are cheap, having fewer than 10 locations, whereas some of them are expensive, having morethan thousands of locations.

Previous work selects k-mers at uniform locations, hence verifying 3004 locations. FastHASH however, selects only the cheap k-mers and verifies only 6 locations.



Methodology
 Implemented FastHASH on top of state-of-the-art mapper: mrFAST

 New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

 Tested with real read sets generated from Illumina platform
 1M reads of a human (160 base pairs)
 500K reads of a chimpanzee (101 base pairs)
 500K reads of a orangutan (70 base pairs)

 Tested with simulated reads generated from reference genome
 1M simulated reads of human (180 base pairs)

 Evaluation system
 Intel Core i7 Sandy Bridge machine
 16 GB of main memory
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Notas del ponente
Notas de la presentación
We implemented FastHASH on top of state-of-the-art mapper mrFAST, updating it to a new version 2.5

We evaluated the algorithm on two data sets.

Data set one are real read sets generated from illumina platform.

Data set two are simulated read sets generated from the reference genome.

All the evaluations were obtained from an Intel Core i7 Sandy Bridge machine with 16GB of main memory



FastHASH Speedup: Entire Read Mapper
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orangutan
simulated 

human
chimpanzee19x

With FastHASH, new mrFAST obtains up to 19x speedup 
over previous version, without losing valid mappings

Notas del ponente
Notas de la presentación
Here we present the performance result of FastHASH, which is the speedup verses the old mrFAST.

We run the program with different error threshold e.
And the x axis shows the error threshold e.
The y axis shows the times of speedup.
The data is obtained with different read sets as well.

From this graph, we can see that With FastHASH, mrFAST obtains up to 19x speedup over previous version.



Analysis
 Reduction of potential mappings with FastHASH

98

99% 99% 99% 99% 99%

FastHASH filters out over 99% of the potential 
mappings without sacrificing any valid mappings

Notas del ponente
Notas de la presentación
This graph shows where the speedup comes from.

In this graph, we show the reduction of potential mappings with FastHASH. The x axis shows the error threshold e and the y axis shows the number of potential mappings. Notice that y axis is log10 scaled.

With FastHASH, we observe that over 99% of the potential mappings are filtered out at low cost, reducing a large amount of verification calculation.



FastHASH Summary & Conclusion
 Problem: Existing read mappers perform poorly, especially 

in the presence of errors

 Observation: Most of the verification (edit distance) 
calculations are unnecessary  filter them out

 Key Idea: Exploit the structure of the genome to
 Reject invalid mappings early (Adjacency Filtering)
 Reduce the number of possible mappings to examine (Cheap 

K-mer Selection)

 Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings
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Notas del ponente
Notas de la presentación
In this work, we talked about the problem, which is poor performance of existing read mappers to map billion of short reads to the reference genome, in the presence of errors.

We made the observation that most of the verification calculations are unnecessary.

The key idea of FastHASH is to reduce the cost of unnecessary verification calculations.
We have 2 mechanisms:
The first one rejects invalid mappings early, which is AF.
The second one Reduces the number of possible mappings to examine, which is Cheap K-mer Selection

As a result, we achieved up to 19x speedup over previous state-of-the-art mapper




More on FastHASH
 Download source code and try for yourself

 Download link to FastHASH

100Xin+, "Accelerating Read Mapping with FastHASH", BMC Genomics 2013.

http://mrfast.sourceforge.net/
http://www.biomedcentral.com/1471-2164/14/S1/S13/


Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
101



Shifted Hamming Distance: SIMD Acceleration
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Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter 
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


Shifted Hamming Distance
 Key observation:

 If two strings differ by E edits, then every bp match can be 
aligned in at most 2E shifts (of one of the strings).
 Insight: Shifting a string by one “corrects” for one “error” 

 Key idea:
 Compute “Shifted Hamming Distance”: AND of 2E Hamming 

Distances of two strings, to filter out invalid mappings 
 Uses bit-parallel operations that nicely map to SIMD instructions

 Key result:
 SHD is 3x faster than SeqAn (the best implementation of Gene 

Myers’ bit-vector algorithm), with only a 7% false positive rate
 The fastest CPU-based filtering (pre-alignment) mechanism
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Notas del ponente
Notas de la presentación
To the best of our knowledge, SHD is the fastest CPU-based filter. It depends on the fact the a deleted character causes all trailing characters to be shifted to the left direction. To correctly pairwise compare this sequence, we need to shift it back to the right direction then compare. Generally we need 2E shifts to compare any two sequences regardless the edit is insertion or deletion. 

GateKeeper is another recent filter that uses FPGA to improve the speed and the read length support of SHD.




Hamming Distance (∑⊕)
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I S T A N B U L

I S T A N B U L

8 matches 0 mismatches3 matches 5 mismatches

To cancel the effect of a 
deletion, we need to shift in 
the right direction

Edit = 1 Deletion

Notas del ponente
Notas de la presentación
Our second proposed method to accelerate read mappers is to parallelize the matrix computation.

To explain our new matrix, here is an example of exact match sequences. Now imagine there is a base deletion for any reason.





Insight: Shifting a String Helps Similarity Search
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I S T A N B U L

I S T N B U L

3 matches      5 mismatches

To cancel the effect of the 
deletion, we need to shift in 
the right direction

Notas del ponente
Notas de la presentación
After deletion, the trailing bases will be shifted to left to form a single sequence.

But when we align it back, we get too many mismatches though the number of edits is only ONE.

To cancel the effect of deletion and correctly align the sequences, we have to shift the sequence to right and align again.



Insight: Shifting a String Helps Similarity Search
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I S T A N B U L

I S T N B U L

7 matches      1 mismatch

I S T N B U L

Notas del ponente
Notas de la presentación
With the help of another right-shifted copy of the original sequence, we can have more similarities between the two sequences. Think about other scenarios where you have an insertion? Or a combination of deletion and insertion?



I S T N B U L

Shifted Hamming Distance 
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7 matches 1 mismatch

XOR

XOR
AND

Edit = 1 Deletion

I S T N B U L0 0 0 1

1 1 1 0 0 0 0

1 1 1

0   0   0   1   0   0   0   
0

Count 
1’s

I S T A N B U L

Notas del ponente
Notas de la presentación
With the help of another right-shifted copy of the original sequence, we can have more similarities between the two sequences. Think about other scenarios where you have an insertion? Or a combination of deletion and insertion?



Highly Parallel Matrix Computation
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A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

We need to compute 2E+1 
vectors, E=edit distance 
threshold

dp[i][j]= 0 if X[i]=Y[j]
1 if X[i]≠Y[j]

No data dependencies!

2 Deletion Hamming masks

2 Insertion Hamming 
masks

Reference

Qu
er

y

Notas del ponente
Notas de la presentación
So this is how we compute the filter matrix. We pairwise compare each character from a sequence to its corresponding character from the other sequence. Match =0, Mismatch=1

The yellow diagonal vector represents XOR between the two sequences. The pink diagonal vectors represent right-shifted copies of the query sequence then compared to the reference. The blue vectors represent left-shifted copies of the query. By this we can guarantee that we can correctly examine any two sequences regardless the type of edits they have. AND NO DATA DEPENDENCIES between the cells.



Key Idea of SHD Filtering
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Generate 2E+1 
masks

Amend random zeros: 
101  111 &  1001  1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

--- Masks after amendment ---

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000AND Mask :

 Alignment :
Needleman-Wunsch

Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.



Alignment vs. Pre-alignment (Filtering)
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal is to track the diagonally consecutive matches 
in the neighborhood map

Notas del ponente
Notas de la presentación
How to achieve a filter that is even much faster than the banded alignment algorithm?

1- Removing the data dependencies between the cells of the dynamic programming matrix.
In NW algorithm, each cell depends on three pre-computed cells (top, diagonal, and left cells). This restricts the way we computed the entire matrix (left to right, or top to bottom, or anti-diagonal), which limits the parallelism effort. In GateKeeper, we just perform a pairwise comparison (ZERO means a match and ONE means a mismatch). NO data dependencies in GateKeeper!!
2- Generating a binary matrix and backtrack the solution using only bitwise operations.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.

Independent vectors can be processed in parallel using 
hardware technologies

DRAM Layers

Logic Layer

Notas del ponente
Notas de la presentación
How to achieve a filter that is even much faster than the banded alignment algorithm?

1- Removing the data dependencies between the cells of the dynamic programming matrix.
In NW algorithm, each cell depends on three pre-computed cells (top, diagonal, and left cells). This restricts the way we computed the entire matrix (left to right, or top to bottom, or anti-diagonal), which limits the parallelism effort. In GateKeeper, we just perform a pairwise comparison (ZERO means a match and ONE means a mismatch). NO data dependencies in GateKeeper!!
2- Generating a binary matrix and backtrack the solution using only bitwise operations.



New Bottleneck: Filtering (Pre-Alignment) 
Sequencing generates many reads, each of which 

potentially mapping to many locations


Filtering (Pre-alignment) eliminates the need to verify/align 
read to invalid mapping locations


Alignment/verification (costly edit distance computation) is 
performed only on reads that pass the filter

 New bottleneck in read mapping becomes the “filtering 
(pre-alignment)” step
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More on Shifted Hamming Distance
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Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter 
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
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Location Filtering (Pre-alignment)
 Alignment is expensive

 We need to align millions to billions of reads 

 Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly 

 Both methods are used by mappers today, but filtering has 
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]
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Notas del ponente
Notas de la presentación
[CLICK]
Alignment is the algorithm for determining a match between a read and a reference substring. This is very expensive and requires the use of an O(n2) dynamic programming algorithm. 
[CLICK]
To give the scale of required computation, a single human can generate millions to billions of reads, and each read results in multiple locations
[CLICK]
Modern read mappers reduce the time spent on alignment for increased performance. This can be done in two ways:
[CLICK]
By further optimizing the alignment algorithm, which many prior works have done.. OR 
[CLICK]
By reducing the number of alignments necessary by quickly discarding mismatches. We refer to this as filtering.
[CLICK]
Both methods are used by mappers today, but now filtering has replaced alignment as the bottleneck.
[CLICK]
Our goal is to improve the filtering step in read mappers
[END-CLICK]



Location Filtering (Pre-alignment)
 Alignment is expensive

 We need to align millions to billions of reads 

 Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly 

 Both methods are used by mappers today, but filtering has 
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]
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Our goal is to accelerate read mapping
by improving the filtering step 

Notas del ponente
Notas de la presentación
[CLICK]
Alignment is the algorithm for determining a match between a read and a reference substring. This is very expensive and requires the use of an O(n2) dynamic programming algorithm. 
[CLICK]
To give the scale of required computation, a single human can generate millions to billions of reads, and each read results in multiple locations
[CLICK]
Modern read mappers reduce the time spent on alignment for increased performance. This can be done in two ways:
[CLICK]
By further optimizing the alignment algorithm, which many prior works have done.. OR 
[CLICK]
By reducing the number of alignments necessary by quickly discarding mismatches. We refer to this as filtering.
[CLICK]
Both methods are used by mappers today, but now filtering has replaced alignment as the bottleneck.
[CLICK]
Our goal is to improve the filtering step in read mappers
[END-CLICK]



1. Filters out most of the incorrect mappings
2. Preserves all correct mappings
3. Does this quickly

Ideal Location Filtering Algorithm 
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Step 2

Query 
the 

Index

Step 3

Read 
Alignment

Notas del ponente
Notas de la presentación
Ideal pre-alignment filter should be both accurate and fast:
1- Faster than typical aligners to compensate the computation overhead introduced by its filtering technique (as we added an extra filtering stage).
2- We define the accuracy of pre-alignment filtering as follows: It’s the ability of the filter to reject most of the incorrect mappings (i.e., maximizing the true reject rate and minimizing the false accept rate) while keeping all the correct ones (i.e., zero false reject rate). 




Filter

8943715641401203

1564
894 1203
37 140

Location Filtering Example
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Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203 

1564

Aligning .. .Match! Aligning .. .M ismatch

✘✘✘

False 
Accept

✘

Notas del ponente
Notas de la presentación
[CLICK]
Again, we split the read into k-mers of length 5 and query the hash table for their location lists 
[CLICK]
We then pass the locations through the filter and attempt to efficiently discard as many locations as possible before having to run alignment. Here we see that locations that are obviously mismatches get discarded, before needing alignment.  
[CLICK]
The read must then be aligned against the strings that pass the filter to determine location matches
[CLICK]
Any location that passes through the filter, but then fails the alignment is called a false negative. False negative rates and filtering speed are important metrics for analyzing a filter.

note that when the filter was added, we were able to forego 3 instances of alignment thus saving us execution time.
[END-CLICK]




Alignment vs. Pre-alignment (Filtering)
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A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] // Inser.
dp[i][j]=1+max|dp[i-1][j]  // Del.

|dp[i-1][j-1]// Subs.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch SHD

Independent vectors can be processed in parallel using 
hardware technologies

DRAM Layers

Logic Layer

Notas del ponente
Notas de la presentación
How to achieve a filter that is even much faster than the banded alignment algorithm?

1- Removing the data dependencies between the cells of the dynamic programming matrix.
In NW algorithm, each cell depends on three pre-computed cells (top, diagonal, and left cells). This restricts the way we computed the entire matrix (left to right, or top to bottom, or anti-diagonal), which limits the parallelism effort. In GateKeeper, we just perform a pairwise comparison (ZERO means a match and ONE means a mismatch). NO data dependencies in GateKeeper!!
2- Generating a binary matrix and backtrack the solution using only bitwise operations.
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A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate1 2

Read Alignment
Slow & Zero False Positives3

Billions of Short Reads

Hardware Acceleratorx1012
mappings

x103
mappings

Low Speed & High Accuracy
Medium Speed, Medium Accuracy

High Speed, Low Accuracy

GateKeeper: FPGA-Based Alignment Filtering

Alignment 
Filter

st1
FPGA-based 

Alignment Filter.

Notas del ponente
Notas de la presentación
To bridge the widening gap between the sequencer & the mapper, we propose the concept of pre-alignment filtering. We added a new examination step before the accurate alignment step. The main objective of this step is to detect the incorrect mappings accurately and rapidly. Only the mappings that pass our filter are examined by the alignment step. We also explore exploiting todays’ hardware accelerators to further boost the filtering speed of such filters.




GateKeeper: FPGA-Based Alignment Filtering
 Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur 

Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for 
Accelerating Pre-Alignment in DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342


GateKeeper Walkthrough
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Generate 2E+1 
masks

Amend random zeros: 
101  111 &  1001  1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
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--- Masks after amendment ---

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.
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--- Masks after amendment ---

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :
1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :
1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d)
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Generate 2E+1 
masks

Amend random zeros: 
101  111 &  1001  1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

• (2E+1)*(ReadLength) 5-input LUT. 

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0
Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input
LUT

• E right-shift registers (length=ReadLength)
• E left-shift registers (length=ReadLength)
• (2E+1) * (ReadLength) 2-XOR operations.

• (2E)*(ReadLength) 2-AND 
operations.

• (ReadLength/4) 5-input LUT.
• 𝑙𝑙𝑙𝑙𝑙𝑙2ReadLength-bit counter.

Notas del ponente
Notas de la presentación
So basically we have three main steps in GateKeeper:
Step 1: Building the matrix that involves 2E shift registers (each diagonal bit-vector is generated by shifting the read then pairwise compare the shifted read with the reference), each of length =ReadLength. 

Step 2: Cancelling the meaningless short zeros by changing them to ones (101 is changed to 111 and 1001 to 1111) using 5-input LUT of the VC709 FPGA. 

Step 3: AND all vectors and count the number of zeros in the AND mask.

Alignment filters do not replace the alignment verification.
Alignment filters eliminate most of incorrect mappings.
Alignment filters keep the correct (or nearly correct) mappings.



GateKeeper Accelerator Architecture
 Maximum data throughput =~13.3 billion bases/sec
 Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

 Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers
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Preprocessing Host (CPU)

input reads 
(.fastq)

reference 
genome (.fasta)

Read 
Encoder

read pairs 
(mrFAST 
output)

GateKeeper 
Processing 

Core #1

GateKeeper 
Processing 

Core #N. . .  .
. . .  .

Read Controller

Mapping ControllerFIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments
(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 
(CPU/FPGA)GateKeeper

PCIe

PCIe

Input stream 
of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

A

Notas del ponente
Notas de la presentación
Here, we present the architecture of GateKeeper. Each processing core is able to examine a single mapping in a single clock cycle. We integrate many hardware processing cores in the architecture of GateKeeper for examining many mappings in a parallel fashion. The input read-reference pairs are transferred from the host to the FPGA via PCIe third generation 4-lane at the rate of 13.3 billion bases/sec. With this data throughput, we can have 16 processing cores work concurrently to examine 16 read-reference pairs. Our architecture occupies only 50% of the FPGA resource for a read length of 100 bp and 91% for a read length of 300 bp.  




FPGA Chip Layout
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GateKeeper: 17.6%, PCIe Controller, RIFFA, and IO: 5%

GateKeeper 
Logic Cells

PCIe 
Controller, 

RIFFA, and IO

Read length: 
300 bp

Error threshold:
E=15



GateKeeper vs. SHD

 FPGA (Xilinx VC709)
 Multi-core (parallel)
 Examines a single 

mapping @ 125 MHz
 Limited to PCIe Gen3(4x) 

transfer rate (128 bits @ 
250MHz)

 Amending requires:
 (2E+1) 5-input LUT. 

 Intel SIMD
 Single-core (sequential)
 Examines a single 

mapping @ ~2MHz
 Limited to a read length 

of 128 bp (SSE register 
size)

 Amending requires:
 4(2E+1) bitwise OR.
 4(2E+1) packed shuffle.
 3(2E+1) shift.
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GateKeeper SHD



GateKeeper: Speed & Accuracy Results
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90x-130x faster filter 
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate
than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online 
github.com/BilkentCompGen/GateKeeper

https://github.com/BilkentCompGen/GateKeeper


GateKeeper Conclusions

 FPGA-based pre-alignment greatly speeds up read mapping
 10x speedup of a state-of-the-art mapper (mrFAST)

 FPGA-based pre-alignment can be integrated with the 
sequencer
 It can help to hide the complexity and details of the FPGA
 Enables real-time filtering while sequencing
 Paves the way to on-device genome analysis
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More on GateKeeper
 Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur 

Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for 
Accelerating Pre-Alignment in DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342


MAGNET Accelerator [Alser+, TIR 2017]
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Notas del ponente
Notas de la presentación
We implement our algorithm in Verilog and design a hardware accelerator for it. Each processing core is able to examine a single mapping. We integrate many hardware processing cores in the architecture of MAGNET for examining many mappings in a parallel fashion.�



Can We Do Better?

Faster, More Accurate,
More Scalable 

Pre-Alignment Filtering
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Algorithm-Arch-Device Co-Design is Critical
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Computer Architecture 
(expanded view)



Shouji (障子) [Alser+, Bioinformatics 2019]
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Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment"
Bioinformatics, [published online, March 28], 2019.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/shouji-genome-prealignment-filter_bionformatics19.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Shouji
https://doi.org/10.1093/bioinformatics/btz234


Shouji
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 Key observation:
 Correct alignment always includes long identical subsequences
 Processing the entire sequence at once is ineffective for hardware 

design
 Key idea:

 Use an overlapping sliding window approach to quickly and 
accurately find all long identical subsequences (consecutive zeros) 

 Key result:
 Shouji accelerates the best-performing CPU read aligner Edlib 

(Bioinformatics 2017) by up to 18.8x using 16 filtering units that 
work in parallel

 Shouji on FPGA is up to 10,000x faster than on CPU
 Shouji is 2.4x to 467x more accurate than GateKeeper 

(Bioinformatics 2017) and SHD (Bioinformatics 2015)



Shouji

135

 Key observation:
 Correct alignment always includes long identical subsequences

Dot plot, dot matrix 
(Lipman and Pearson, 1985)
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

1
1
1
4
1
2
1

      

0
0

0
0

Build the Neighborhood 
Map

Store longest subsequence
in Shouji Bit-vector

1
1

3
1

0
2

0
0

0
1

0

0 0 0 0 1 0 0 0 0 1 0 1

Find all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences

ACCEPT iff number of ‘1’s ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
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Effect of Sliding Window Size
 Large enough window to accurately capture longer streaks 

of matches  lower false positives
 Small enough window to perform fast computation
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Hardware Implementation
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More on Shouji (障子) [Alser+, Bioinformatics 2019]
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Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan,
"Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment"
Bioinformatics, [published online, March 28], 2019.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/shouji-genome-prealignment-filter_bionformatics19.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Shouji
https://doi.org/10.1093/bioinformatics/btz234


SneakySnake [Alser+, Bioinformatics 2020]
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Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment 
Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, to appear in 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


SneakySnake
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 Key observation:
 Correct alignment is a sequence of non-overlapping long matches 

Dot plot, dot matrix 
(Lipman and Pearson, 1985)



SneakySnake
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 Key observation:
 Correct alignment is a sequence of non-overlapping long matches 

 Key idea:
 Reduce the approximate string matching problem to the Single 

Net Routing problem in VLSI chip layout

VLSI chip layout



SneakySnake
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 Key observation:
 Correct alignment is a sequence of non-overlapping long matches 

 Key idea:
 Reduce the approximate string matching problem to the Single 

Net Routing problem in VLSI chip layout

 Key result:
 SneakySnake is up to four orders of magnitude more accurate 

than Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17)
 SneakySnake greatly accelerates state-of-the-art CPU sequence 

aligners, Edlib (Bioinformatics’17) and Parasail (BMC Bioinformatics’16)
 by up to 37.7× and 43.9× (>12× on average), on CPUs 
 by up to 413× and 689× (>400× on average) with FPGAs/GPUs



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.



SneakySnake Walkthrough

145

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build
and it can be done on-the-fly!
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Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.



FPGA Resource Analysis

 FPGA resource usage for a single filtering unit of GateKeeper, 
Shouji, and Snake-on-Chip for a sequence length of 100 and 
under different edit distance thresholds (E).
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Key Results of SneakySnake
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 SneakySnake is up to four orders of magnitude more accurate 
than Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17)

 Short reads: 
 SneakySnake accelerates Edlib (Bioinformatics’17) and Parasail (BMC 

Bioinformatics’16) by
 up to 37.7× and 43.9× (>12× on average), on CPUs 
 up to 413× and 689× (>400× on average) using FPGAs/GPUs

 Long reads: 
 SneakySnake accelerates Parasail and KSW2 by 140.1× and 17.1× on 

average, respectively, on CPUs



Long Read Mapping (SneakySnake vs Parasail)
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10K bp reads                      100K bp reads



Long Read Mapping (SneakySnake vs KSW2)
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10K bp reads                      100K bp reads



More on SneakySnake [Alser+, Bioinformatics 2020]
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Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment 
Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, to appear in 2020.
[Source Code]
[Online link at Bioinformatics Journal]

https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015


GenASM Framework [MICRO 2020]
 Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Damla Senol Cali

Problem & Our Goal
Multiple steps of read mapping require approximate string matching
o ASM enables read mapping to account for sequencing errors and 

genetic variations in the reads

 ASM makes up a significant portion of read mapping (more than 70%)

 One of the major bottlenecks of genome sequence analysis

Our Goal:
Accelerate approximate string matching by 

designing a fast and flexible framework, 
which can be used to accelerate multiple steps of 

the genome sequence analysis pipeline

154

Notas del ponente
Notas de la presentación
As a result, read mapping must perform approximate string matching (ASM). Several algorithms exist for ASM, but state-of-the-art read mapping tools typically make use of an expensive dynamic programming based algorithm that scales quadratically in both execution time and required storage. This ASM algorithm is the major bottleneck for many steps of the genome sequence analysis pipeline.

Thus, our goal in this work is to design a fast and flexible framework for both short and long reads, which can be used to accelerate multiple steps of the genome sequence analysis pipeline. 





Damla Senol Cali

GenASM: ASM Framework for GSA

 GenASM: First ASM acceleration framework for GSA

o Based on the Bitap algorithm 
 Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
 Highly-parallel Bitap with long read support
 Bitvector-based novel algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching 

by designing a fast and flexible framework, 
which can accelerate multiple steps of genome sequence analysis

155

Notas del ponente
Notas de la presentación
[CLICK] Our goal in this work is to design a fast and flexible framework for both short and long reads, which can accelerate multiple steps of genome sequence analysis (GSA). 
[CLICK] To this end, we propose GenASM
[CLICK] We base GenASM on Bitap, an ASM algorithm that uses only fast and simple bitwise operations, making it amenable to efficient hardware acceleration. To our knowledge, GenASM is the first work that enhances and accelerates Bitap, and also it is the first ASM acceleration framework for genome sequence analysis.
[CLICK] We modify Bitap to support long reads and to enable parallelization. 
We also develop a novel Bitap-compatible algorithm for traceback, which uses information collected during ASM about the different types of errors to identify the optimal alignment of reads. 
[CLICK] And, we co-design specialized, low-power and area-efficient hardware for both algorithms.







Damla Senol Cali

GenASM-DC GenASM-TB

GenASM: Hardware Design
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GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 
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Notas del ponente
Notas de la presentación
Our co-designed hardware consists of two components: 
(1) GenASM-DC, which provides hardware support to efficiently execute our modified Bitap algorithm to perform distance calculation; and 
(2) GenASM-TB, which provides hardware support to efficiently execute our novel traceback algorithm to find the optimal alignment.
GenASM also has two types of SRAM buffers:
DC-SRAM, and
TB-SRAMs
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GenASM-DC GenASM-TB

GenASM: Hardware Design
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GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
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Our specialized compute units and on-chip SRAMs help us to: 
 Match the rate of computation with memory capacity and bandwidth 

 Achieve high performance and power efficiency
 Scale linearly in performance with                                                                    

the number of parallel compute units that we add to the system

Notas del ponente
Notas de la presentación
Our specialized compute units and on-chip SRAMs help us to: 
[CLICK] (1) Match the rate of computation with memory capacity and bandwidth 
[CLICK] (2) Achieve high performance and power efficiency
[CLICK] (3) Scale linearly in performance with the number of parallel compute units that we add to the system 









Damla Senol Cali

GenASM-DC: Hardware Design
 Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

158

Processing Block (PB)

Processing Core (PC)

Notas del ponente
Notas de la presentación
[CLICK] We implement GenASM-DC as a linear cyclic systolic array based accelerator, using small and very simple logic components. 
[CLICK] This design helps us to maximize parallelism and minimize memory BW and footprint.

[CLICK] Processing Core is the basic compute component which computes the intermediate bitvectors
[CLICK] and when we add the flip-flop-based storage logic around Processing Core, we define a Processing Element (PE)
[CLICK] Multiple PEs are concatenated to define a Processing Block
[CLICK]  We also have DC-SRAM, which stores the reference text, the pattern bitmasks for the query read, and the intermediate data generated from PEs, and we also have
[CLICK] TB-SRAMs, which store the intermediate bitvectors generated by each PE of GenASM-DC for later use by GenASM-TB. 
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Bitwise 
Comparisons

CIGAR string
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GenASM-TB

GenASM-TB: Hardware Design

 Very simple logic: 
❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors
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Bitwise 
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CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

to main 
memory

1

2

Next Rd 
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3

Notas del ponente
Notas de la presentación
[CLICK] We implement GenASM-TB hardware using very simple logic, which 
[CLICK] 1) reads the bitvectors from one of the TB-SRAMs using the computed address, 
[CLICK] 2) performs the required bitwise comparisons to find the traceback output for the current position, and 
[CLICK] 3) computes the next TB-SRAM address to read the new set of bitvectors. 
After GenASM-TB finds the complete traceback output, [CLICK] it writes this output to main memory and completes its execution. 



Damla Senol Cali

Key Results – Area and Power
 Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

160

Notas del ponente
Notas de la presentación
[CLICK] We synthesize our DC and TB accelerator datapaths with a typical 28nm low-power process:
[CLICK] Both accelerators operates at 1GHz.

[CLICK] We find that for 32 GenASM accelerator (one for each HMC vault), total area overhead is ten point sixty nine millimeter square and total power consumption is three point twenty-three watts.
We observe that both area and power consumption of GenASM (at 1 vault) is around 1% of the area and power consumption of a single Xeon CPU core.



Damla Senol Cali

Key Results – Area and Power
 Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz
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GenASM has low area and power overheads

Notas del ponente
Notas de la presentación
Thus, GenASM has low area and power overheads.
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Use Cases of GenASM
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Indexing

Seeding

Pre-Alignment Filtering

Read Alignment

Reference 
genome

Hash table based index

Candidate mapping locations

Optimal alignment

Reads from 
sequenced 

genome

Remaining candidate mapping locations

Indexing

Seeding

Notas del ponente
Notas de la presentación
GenASM is flexible and can be used for a number of use cases. 
In this work, we evaluate three of them in detail and two of them are from the read mapping pipeline: 
Pre-alignment filtering and read alignment



Damla Senol Cali

Use Cases of GenASM (cont’d.)
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

 We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search

163

Notas del ponente
Notas de la presentación
[CLICK] (1) read alignment
is the most time consuming step of read mapping that we align each read to all of its candidate reference regions and then find the optimal alignment.
[CLICK] (2) in pre-alignment filtering for short reads, 
we aim to quickly identify and filter out the unlikely candidate reference regions of each read by approximating the edit distance between them and filter out if it is above a threshold.
[CLICK] And our third use case is edit distance calculation 
Which is one of the fundamental operations in genomics that measures the similarity or distance btw two sequences

In our paper, we also briefly discuss several other use cases such as generic text search
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Key Results

164

(1) Read Alignment
 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering
 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)

Notas del ponente
Notas de la presentación
We find that, for all the three use cases, GenASM is significantly more efficient in terms of both speed and power consumption than state-of-the-art software and hardware baselines



More on GenASM Framework [MICRO 2020]

 Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
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Hello, I am Damla Senol Cali. Today, I'll be presenting our work “SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping ". 
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Sequence-to-Sequence (S2S) Mapping Sequence-to-Graph (S2G) Mapping

Genome Sequence Analysis
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Sequence-to-graph mapping results in notable quality improvements.
However, it is a more difficult computational problem, 

with no prior hardware design.

 Mapping the reads to a reference genome (i.e., read mapping) is a 
critical step in genome sequence analysis

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG‒ACGT

Graph-based Reference:

Read: ACGG

Notas del ponente
Notas de la presentación
Read mapping, which is the process of mapping the reads to a reference genome is a critical step in genome sequence analysis
Traditionally, we perform seq2seq mapping, where we
Map reads collected from an individual to a known linear reference genome sequence
Emphasizes the genetic variations that are present in the single reference genome
Ignores other variations that are not represented in the single linear reference sequence
Introduces reference bias
However, s2s mapping is a well studied problem with many available tools and accelerators

Recent works replace the linear reference sequence with a graph-based representation of  the reference genome (genome graph). Thus, we can perform seq2graph mapping.
Captures the genetic variations and diversity across many individuals in a population
[CLICK] Results in notable quality improvements in GSA
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SeGraM: First universal algorithm/hardware co-designed genomic 
mapping accelerator that can effectively and efficiently support: 

 Sequence-to-graph mapping 

 Sequence-to-sequence mapping

 Both short and long reads

SeGraM: First Graph Mapping Accelerator
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Our Goal:

Specialized, high-performance, scalable, and low-cost 
algorithm/hardware co-design that alleviates bottlenecks in

multiple steps of sequence-to-graph mapping

Notas del ponente
Notas de la presentación
[CLICK] Thus, our goal is to come up with a specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in both the seeding and alignment steps of sequence-to-graph mapping. 
[CLICK] To this end, we propose SeGraM, a universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads. To our knowledge, SeGraM is the first algorithm/hardware co-design for accelerating
sequence-to-graph mapping.
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Use Cases & Key Results

170

(1) Sequence-to-Graph (S2G) Mapping
 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner

for long and short reads, respectively (state-of-the-art SW)

 3.9×/742× speedup, 4.4×/3.2× less power than vg 
for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment
 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment
 1.2×/4.8× higher throughput than GenASM and GACT of Darwin 

for long reads (state-of-the-art HW)

 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX
for short reads (state-of-the-art HW)

Notas del ponente
Notas de la presentación
[CLICK] [CLICK] [CLICK] We demonstrate that SeGraM provides significant improvements for multiple steps of the sequence-to-graph (i.e., S2G) and sequence-to-sequence (i.e., S2S) mapping pipelines.
==================================================================================================================
[CLICK] We show that (1) SeGraM provides greatly higher throughput and lower power consumption on both short and long reads compared to state-of-the-art software tools for sequence-to-graph mapping, and
[CLICK] (2) BitAlign significantly outperforms a state-of-the-art sequence-to-graph alignment tool and [CLICK] three state-of-the-art hardware solutions that are specifically designed for sequence-to-sequence alignment.
===========================================================================================================
We also show that MinSeed can be employed for the seeding step of both sequence-to-graph and sequence-to-sequence mapping pipelines.
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Sequence-to-Graph Mapping Pipeline
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Pre-Processing 
Steps (Offline)

Seed-and-Extend 
Steps (Online)

Indexing
(index the nodes of the graph)

Seeding
(query the index & find the seed matches)

Filtering/Chaining/Clustering
(filter out dissimilar query read and subgraph pairs)

S2G Alignment
(perform distance/score calculation & traceback)

Linear reference 
genome

Known genetic 
variations

Reads from 
sequenced 

genome

0.2

1

2

3

Genome Graph Construction
(construct the graph using a linear reference genome and variations)

0.1

Genome graph

Hash-table-based index (of graph nodes)

Candidate mapping locations (subgraphs)

Remaining candidate mapping locations (subgraphs)

Optimal alignment between read & subgraph

Notas del ponente
Notas de la presentación
Which brings us to seq2graph mapping. 
Sequence-to-graph mapping pipeline has [CLICK] two pre-processing and [CLICK] three main steps.
[CLICK] The first pre-processing step constructs the genome graph using a linear reference genome and the associated variations for that genome. 
[CLICK] The second pre-processing step indexes the nodes of the graph. The resulting index is used in the first main step of the pipeline, [CLICK] seeding, which aims to find seed matches between the query read and a region of the graph. 
[CLICK] After optionally filtering these seed matches with a filtering, chaining, or clustering step, [CLICK] alignment is performed between all of the non-filtered seed locations within the graph and the query read to find the optimal alignment. Alignment is the most expensive step of the pipeline, so let’s look at it in detail.
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S2S vs. S2G Alignment
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Notas del ponente
Notas de la presentación
[CLICK] Traditional sequence-to-sequence (S2S) alignment typically employs DP-based algorithms with quadratic time and space complexity.
A DP-based algorithm operates on a table, where each column of the table corresponds to a reference character, and each row of the table corresponds to a query read character.
[HIGHLIGHT] In S2S alignment, a new cell in the table is determined with simple rules from 3 of its neighbor cells.
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S2S vs. S2G Alignment
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In contrast to S2S alignment, 
S2G alignment must incorporate non-neighboring characters 

as well whenever there is an edge (i.e., hop) 
from the non-neighboring character to the current character

Notas del ponente
Notas de la presentación
[CLICK] In contrast to S2S alignment, S2G alignment must incorporate non-neighboring characters as well whenever there is an edge (i.e., hop) from the non-neighboring character to the current character. [HIGHLIGHT] For example, when computing the green-shaded cell, we need information from all of the light green-shaded cells.
=======================================================================================================
Even though sequence-to-sequence mapping is a well-studied problem, given the additional complexities and overheads of processing a genome graph instead of a linear reference genome, sequence-to-graph mapping is a more difficult computational problem with a smaller number of practical software tools currently available.
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Based on our analysis with GraphAligner and vg:

Observation 1: Alignment step is the bottleneck

Observation 2: Alignment suffers from high cache miss rates

Observation 3: Seeding suffers from the DRAM latency bottleneck

Observation 4: Baseline tools scale sublinearly

Observation 5: Existing S2S mapping accelerators are unsuitable 
for the S2G mapping problem

Observation 6: Existing graph accelerators are unable to handle 
S2G alignment

Analysis of State-of-the-Art Tools
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SW

HW

Notas del ponente
Notas de la presentación
In order to further understand the performance bottlenecks of the state-of-the-art sequence-to-graph mapping tools, we rigorously analyze two such tools, GraphAligner [61] and vg [36], and we make four key observations.
[CLICK] (1) Among the three online steps of the read mapping pipeline alignment i) constitutes majority of the end-to-end execution of sequence-to-graph mapping, and ii) is even more expensive than its counterpart in the traditional read mapping pipeline.
[CLICK] (2) Alignment suffers from high cache miss rates, due to the high amount of internal data that is generated and reused during this step. 
[CLICK} (3) Seeding suffers from the main memory (DRAM) latency bottleneck, due to the high number of irregular memory accesses. 
[CLICK] (4) Both state-of-the-art tools scale sublinearly as thread count increases, wasting available thread-level parallelism in hardware. 
[CLICK] We also investigate the existing HW accelerators. It is important to note that there is no existing hardware accelerator for sequence-to-graph mapping or alignment problems.
[CLICK] Even though there are several hardware accelerators designed to alleviate bottlenecks in several steps of traditional sequence-to-sequence (S2S) mapping, none of these
designs can be directly employed for the sequence-to-graph (S2G) mapping problem. This is because S2S mapping is a special case of S2G mapping, where all nodes have only one incoming edge. Existing accelerators are limited to only this special case, and are unsuitable for the more general S2G mapping problem, where we also need to consider multiple edges (i.e., hops) that a node can have.
[CLICK] We also look at the possibility of exploiting existing several graph accelerators. While existing graph accelerators could potentially be customized to help the seeding step of the sequence-to-graph mapping pipeline, they are unable to handle the major bottleneck of sequence-to-graph mapping, which is alignment. Alignment is not a graph traversal workload, and instead is an expensive bitvector-based or DP-based computational problem.

Thus, we need to have a specialized, balanced, and scalable design for compute units, on-chip memory, and main memory accesses for both the seeding and alignment steps of sequence-to-graph mapping.
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SW

HW

SeGraM: Universal Genomic Mapping Accelerator

 First universal genomic mapping accelerator that can support both
sequence-to-graph mapping and sequence-to-sequence mapping, 
for both short and long reads

 First algorithm/hardware co-design for accelerating 
sequence-to-graph mapping

We base SeGraM upon a minimizer-based seeding algorithm

We propose a novel bitvector-based alignment algorithm to   
perform approximate string matching between a read and                     
a graph-based reference genome

We co-design both algorithms with high-performance, scalable,    
and efficient hardware accelerators
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Notas del ponente
Notas de la presentación
[CLICK] the first universal genomic mapping accelerator that can support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and
long reads. 
[CLICK] To our knowledge, SeGraM is the first algorithm/hardware co-design for accelerating sequence-to-graph mapping.
[CLICK] We base SeGraM upon a minimizer-based seeding algorithm and we propose a novel bitvector-based alignment algorithm for sequence-to-graph alignment. 
[CLICK] these cover the algorithmic contributions of SeGraM
[CLICK] We co-design both algorithms with high-performance, scalable, and efficient hardware accelerators.
[CLICK] and this covers the hardware-level contributions of SeGraM
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SeGraM Hardware Design
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SeGraM Accelerator

MinSeed (MS)

Host 
CPU

Main Memory (graph-based reference & index)

Find 
Minimizers

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Frequencies 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

MinSeed (MS)

Find 
Minimizers

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Minimizers 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

BitAlign (BA)

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-
based) sequence-to-graph 

Alignment

Notas del ponente
Notas de la presentación
A SeGraM accelerator consists of two main components:
[CLICK] MinSeed (MS), which is responsible for the seeding step and it is the first hardware accelerator for minimizer-based seeding, and second component is
[CLICK] (2) BitAlign (BA), which is responsible for the alignment step and it is the first hardware accelerator for sequence-to-graph alignment.
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Host 
CPU

Main Memory (graph-based reference & index)Main Memory (graph-based reference & index)

SeGraM Hardware Design
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SeGraM Accelerator

MinSeed (MS)

Host 
CPU

Find 
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Minimizers 

by Frequency

Seed 
Scratchpad

Find 
Candidate

Seed Regions

Input Scratchpad

Generate 
Bitvectors

Perform
Traceback

Bitvector Scratchpad

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

12 optimal alignment information

MinSeed: first hardware 
accelerator for 

Minimizer-based Seeding

BitAlign: first hardware 
accelerator for (Bitvector-
based) sequence-to-graph 

Alignment

Notas del ponente
Notas de la presentación
Let’s look at the overview of our hardware design.
[CLICK] Before SeGraM execution starts, as pre-processing steps, we (1) generate each chromosome’s graph structure, (2) index each graph’s nodes, and (3) pre-load both the resulting graph and hash table index into the main memory. Both the graph and its index are static data structures that can be generated only once and reused for multiple mapping executions.
[CLICK] SeGraM execution starts when the query read is streamed from the host and MinSeed writes it to the read scratchpad ( 1 ). 
[CLICK] Using all of the k-length subsequences (i.e., k-mers) of the query read, [CLICK] MinSeed finds the minimum representative set of these k-mers (i.e., minimizers) according to a scoring mechanism and [CLICK] writes them to the minimizer scratchpad ( 2 ). 
[CLICK] For each minimizer, MinSeed fetches its occurrence frequency from the hash table in main memory ( 3 ) and [CLICK] filters out each minimizer whose occurrence frequency is above a user-defined threshold ( 4 ). We aim to select the least frequent minimizers and filter out the most frequent minimizers such that we minimize the number of seed locations to be considered for the expensive alignment step. 
[CLICK] Next, MinSeed fetches the seed locations of the remaining minimizers from main memory, and writes them to the seed scratchpad ( 5 ). 
[CLICK] Finally, MinSeed calculates the candidate reference region (i.e., subgraph surrounding the seed) for each seed ( 6 ), [CLICK] fetches the graph nodes from memory for each candidate region in the reference and writes the nodes to the input scratchpad of BitAlign. ( 7 ). 
[CLICK] BitAlign starts by reading the subgraph and the query read from the input scratchpad, and generates the bitvectors ( 8 ) required for performing approximate string matching and edit distance calculation. 
While generating these bitvectors, [CLICK] BitAlign writes them to the hop queues ( 9 ) in order to handle the hops required for graph-based alignment, and also, [CLICK] to the bitvector scratchpad ( 10 ) to be later used as part of the traceback operation.
Once BitAlign finishes generating and writing all the bitvectors, [CLICK] it starts reading them back from the bitvector scratchpad, performs the traceback operation ( 11 ), finds the optimal alignment between the subgraph and the query read, and [CLICK] streams the optimal alignment information back to the host ( 12 ).
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Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad
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Minimizer 
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Seed 
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Seed 

Region
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MinSeed HW
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 MinSeed = 3 computation modules + 3 scratchpads + memory interface

o Computation modules: Implemented with simple logic

o Scratchpads: 50kB in total; employ double buffering technique to 
hide the latency of MinSeed

o High-Bandwidth Memory (HBM): Enables low-latency and     
highly-parallel memory access

Main Memory (High Bandwidth Memory)

Minimizer
Finder

Read
Scratchpad

(6 kB)

Minimizer 
Scratchpad

(40 kB)

Minimizer 
Filter

by
Frequency

(<?)

Seed 
Scratchpad

(4 kB)

Candidate
Seed 

Region
Calculator
(+/−/×)

frequency 
threshold
(INPUT)

error rate, 
read length

(INPUT)

query read 
(INPUT)

candidate 
subgraph
(OUTPUT)

Notas del ponente
Notas de la presentación
Let’s look at the HW design of MinSeed.
MinSeed accelerator consists of three computation modules, three scratchpads, and the memory interface
Computation modules are implemented with simple logic, since we require only basic operations (e.g., comparisons, simple arithmetic operations, scratchpad R/W operations)
For all three scratchpads, we employ a double buffering technique to hide the latency of the MinSeed accelerator.
We couple MinSeed with High-Bandwidth Memory (HBM) to enable low-latency and highly-parallel memory access.
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BitAlign HW
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 Linear cyclic systolic array-based accelerator

 Based on the GenASM hardware design*

 Incorporates hop queue registers to feed the bitvectors of               
non-neighboring characters/nodes (i.e., hops)

Bitvector 
Scratchpadx

PC

PEx

Bitvector 
Scratchpadx+1

PC

PEx+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]
R[d]

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for 
Genome Sequence Analysis” (MICRO’20)

Notas del ponente
Notas de la presentación
Let’s look at the HW design of BitAlign.
[CLICK] We implement BitAlign as a linear cyclic systolic array based accelerator. 
[CLICK] While this design is based on the GenASM hardware, where bitvectors are written to Bitvector Scratchpads during bitvector generation step for later use in traceback, [CLICK] our new design incorporates hop queue registers in order to feed the bitvectors of non-neighboring characters/nodes.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
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SeGraM Module (1 x per HBM2E stack)SeGraM Module (1 x per HBM2E stack)

High Bandwidth Memory (HBM2E) Stack

Host

. . .

Overall System Design of SeGraM
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. . .

High Bandwidth Memory (HBM2E) Stack

SeGraM
Acc.

SeGraM
Acc.

SeGraM
Acc.

SeGraM
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SeGraM
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. . .Host

MS

BA

MS

BA

MS

BA

MS

BA

MS

BA

X 4

CH0 CH1 CH2 CH6 CH7

Notas del ponente
Notas de la presentación
[CLICK] SeGraM is connected to a host system that is responsible for the pre-processing steps and for transferring the query read to the accelerator.
[CLICK] Next to each HBM2E channel, we place one SeGraM accelerator, such that it will have exclusive access without any interference from other SeGraM accelerators.
[CLICK] Each SeGraM accelerator is a combination of one MinSeed accelerator and one BitAlign accelerator. 
[CLICK] Each HBM2E stack has eight memory channels, thus connected to 8 SeGraM accelerators, which define one SeGraM module.
[CLICK] Our hardware platform includes four off-chip HBM2E stacks, thus 4 SeGraM modules, thus 32 SeGraM accelerators in total. ====================================================================================================================
Each SeGraM accelerator has exclusive access to one HBM2E channel to ensure low-latency memory access, without any interference from other SeGraM accelerators in each module. 
There is no communication required between different SeGraM accelerators in a single SeGraM module, and each SeGraM accelerator communicates with the host independently of other SeGraM accelerators.
[CLICK] We replicate the graph-based reference and hash-table-based index across all 4 independent HBM2E stacks, which enables us to have 32 independent SeGraM accelerators running in parallel.
[CLICK] Within each stack, to balance the memory footprint across all channels, we distribute the graph and index structures of all chromosomes (1–22, X, Y) based on their sizes across the eight independent channels
[CLICK] We design each SeGraM accelerator (MinSeed + BitAlign) to operate in a pipelined fashion and we employ double buffering technique for all MS scratchpads, such that we can hide the latency of the MinSeed accelerator.
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Use Cases of SeGraM
(1) Sequence-to-Graph 

Mapping

(2) Sequence-to-Graph
Alignment

(3) Sequence-to-Sequence 
Alignment

(4) Seeding
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MS BA

MS or
Other BA

BA

MS

MS or
Other

BA or
Other

Notas del ponente
Notas de la presentación
As a result of the flexibility and modularity of the SeGraM framework, we can run each accelerator together or separately. Thus, we describe four use cases of SeGraM: [CLICK] (1) end-to-end mapping w/ SeGraM, [CLICK] (2) standalone s2g alignment w/ BitAlign and can be coupled with any seeding tool or accelerator, [CLICK] (3) similarly, standalone s2s alignment w/ BitAlign, and [CLICK] (4) standalone seeding for both s2g and s2s w/ MinSeed and can be coupled with any alignment tool or accelerator.
=========================================================================================================
[CLICK] For sequence-to-graph mapping, the whole SeGraM design (MinSeed + BitAlign) should be employed, since both seeding and alignment steps are required. With the help of the divide-and-conquer approach inherited from the GenASM algorithm, we can use SeGraM to perform sequence-to-graph mapping for both short reads and long reads. 
[CLICK] Since BitAlign takes in a graph-based reference and a query read as its inputs, it can be used as a standalone sequence-to-graph aligner, without MinSeed. BitAlign is orthogonal to and can be coupled with any seeding (or filtering) tool/accelerator.
[CLICK] BitAlign can also be used for sequence-to-sequence alignment, as sequence-to-sequence alignment is a special and simpler variant of sequence-to-graph alignment. [CLICK] Similarly, MinSeed can be used without BitAlign as a standalone seeding accelerator for both graph-based mapping and traditional linear mapping. MinSeed is orthogonal to and can be coupled with any alignment tool or accelerator.
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Key Results – Area & Power
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 Based on our synthesis of MinSeed and BitAlign accelerator datapaths 
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Notas del ponente
Notas de la presentación
Based on our synthesis of MinSeed and BitAlign accelerator datapaths, [CLICK] total area overhead of SeGraM attached to all 32 channels is around 28mm2 and the total power consumption is around 28 W, including the HBM power. 
[CLICK] We find that the main contributors for the area overhead and power consumption are (1) hopQueueRegisters since they constitute more than 60% of the area and power of BitAlign logic, and (2) the bitvector scratchpads. 
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Key Results – SeGraM with Long Reads
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SeGraM provides 5.9× and 3.9× throughput improvement
over GraphAligner and vg, 

while reducing the power consumption by 4.1× and 4.4×

Notas del ponente
Notas de la presentación
Let’s look at our long read analysis for s2g mapping with SeGraM. Here we only show our throughput numbers in the plot, not the power numbers.
Compared to two state-of-the-art s2g mapping software tools, GraphAligner and vg, we find that [CLICK]
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Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement
over GraphAligner and vg, 

while reducing the power consumption by 3.0× and 3.2×

Notas del ponente
Notas de la presentación
and when we look at our short read analysis, we find that [CLICK][CLICK]
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BitAlign provides 41×-539× speedup over PaSGAL

Key Results – BitAlign (S2G Alignment)

Notas del ponente
Notas de la presentación
Let’s look at the key results for the sequence-to-graph alignment module of SeGraM, which is BitAlign.



Damla Senol Cali

Conclusion
 SeGraM: First universal algorithm/hardware co-designed genomic 

mapping accelerator that supports:
 Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
 Short & long reads

o MinSeed: First minimizer-based seeding accelerator

o BitAlign: First (bitvector-based) S2G alignment accelerator

 SeGraM supports multiple use cases:

o End-to-end S2G mapping

o S2G alignment

o S2S alignment

o Seeding

 SeGraM outperforms state-of-the-art software & hardware solutions
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Notas del ponente
Notas de la presentación
[CLICK] To conclude, in this work, we propose SeGraM, the first universal… To our knowledge, SeGraM is also the first alg/hw co-design for accelerating S2G mapping. 
[CLICK] SeGraM consists of 2 components: MinSeed … and BitAlign …
[CLICK] SeGraM supports multiple steps of S2G and S2S mapping pipelines, and
[CLICK] Based on our extensive analysis, we show that SeGraM outperforms state-of-the-art SW and HW solutions




Accelerating Sequence-to-Graph Mapping
 Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]
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Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
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Read Mapping & Filtering

 Problem: Heavily bottlenecked by Data Movement

 GateKeeper, Shouji, SneakySnake performance limited by 
DRAM bandwidth [Alser+, Bioinformatics 2017,2019,2020]

 Ditto for SHD [Xin+, Bioinformatics 2015]

 Solution: Processing-in-memory can alleviate the bottleneck

 We need to design mapping & filtering algorithms to fit 
processing-in-memory
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Read Mapping & Filtering in Memory

We need to design 
mapping & filtering algorithms 
that fit processing-in-memory
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Near-Memory Pre-Alignment Filtering
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


Near-Memory SneakySnake
 Problem: Read mapping is heavily bottlenecked by data 

movement from main memory

 Solution: Perform read mapping near where data resides 
using specialized logic

 We carefully redesign the accelerator logic of SneakySnake to 
exploit near-memory computation capability on real FPGA 
boards that use HBM (high-bandwidth memory)

 Near-memory SneakySnake improves performance and 
energy efficiency by 27.4× and 133×, respectively, over a 
16-core (64-thread) IBM POWER9 CPU
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Near-Memory Acceleration using FPGAs

IBM POWER9 CPU HBM-based FPGA board 

OCAPI

Source: AlphaData
Source: IBM

Near-HBM FPGA-based accelerator
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Two communication technologies: CAPI2 and OCAPI
Two memory technologies: DDR4 and HBM

Two workloads: Weather Modeling and Genome Analysis

Notas del ponente
Notas de la presentación
To this end we build a  [CLICK] near-HBM FPGA based accelerator which is connected to a server-grade IBM POWER9-based CPU system



Performance & Energy Greatly Improve
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5-27× performance vs. a 16-core (64-thread) IBM POWER9 CPU

HBM alleviates memory bandwidth contention vs. DDR4

12-133× energy efficiency vs. a 16-core (64-thread) IBM POWER9 CPU

Notas del ponente
Notas de la presentación
[CLICK]



More On Near-Memory SneakySnake
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Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM


Location Filtering in 3D-Stacked PIM
 Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, 

Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January 
2018.
[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]
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https://arxiv.org/pdf/1711.01177.pdf
http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
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GRIM-Filter
 Key observation: FPGA and GPU accelerators are heavily bottlenecked 

by data movement

 Key idea: exploit the high memory bandwidth and the logic layer of 3D-
stacked memory to perform highly-parallel filtering in the DRAM chip itself

 GRIM-Filter, an algorithm-hardware co-designed PIM system for 
pre-alignment filtering

 Key results: 
 GRIM-Filter is 1.8x-3.7x (2.1x on average) faster than the FastHASH

filter (BMC Genomics’13) across real data sets
 GRIM-Filter has 5.6x-6.4x (6.0x on average) lower false accept rate 

than the FastHASH filter (BMC Genomics’13) across real data sets
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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GRIM-Filter: Bins
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 We partition the genome into large sequences (bins). 

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector
AAAAA
AAAAC
AAAAT

…
CCCCC
CCCCT
CCCCG

…
GGGGG

AAAAA
exists in 
bin x

CCCCT
doesn’t 
exist in 
bin x

 Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) in 
the bin

 To account for matches that straddle 
bins, we employ overlapping bins
 A read will now always completely fall within 

a single bin

Notas del ponente
Notas de la presentación


[CLICK]
We first partition the genome in large sequences that we refer to as bins 
[CLICK]
[CLICK]

We show the genome with an arbitrary bin highlighted
[CLICK]
We then generate a bitvector that represents the bin and holds the occurrence of all permutations of a small string called a token in the bin
we see in the figure that tokens that exist in the bin are represented with a 1, and those not in the bin are a 0.
[CLICK]
so AAAAA exists in Bin x 
and CCCCT does not exist in bin x 
[CLICK]
to account for matches straddling two bins, we employ overlapping bins so that a read will now always fall within a single bin


[END-CLICK]



GRIM-Filter: Bitvectors
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… C     G     T     G     A     G     T     C …

Bin x
0
…

…

…

…

…

Bi
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x 
Bi
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AAAAA
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CGTGA
…

TGAGT
…

GAGTC
…

GTGAG
…
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GRIM-Filter: Bitvectors
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Storing all bitvectors
requires 4𝑛𝑛 ∗ 𝑡𝑡 bits
in memory, 
where t = number 
of bins.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 

AAAAA
AAAAC
AAAAG
AAAAT

.
CCCCT

.

.

.

.
GCATG

.
TTGCA

.
TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

  

b1 b2

tokens

Notas del ponente
Notas de la presentación
We use bitvectors to quickly figure out existence within a bin 



We see here a list of bit vectors that are associated with a particular bin. The memory required to store all bit vectors is found by multiplying the number of bins by 4^q bits (which is the size of the bit vectors)

For a bin size of 200 and a q of 5, the memory footprint comes to around 3.8 GB 

[END-CLICK]



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter: Checking a Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare

Notas del ponente
Notas de la presentación
Talk about why GRIM-Filter is faster than alignment. This is obviously faster than dynamic programming. 

This threshold value changes error tolerance


In this example, we will use a token size of 5 
We show how GRIM-Filter determines the need for alignment in a bin X. We use the read to generate a mask to selectively sum bit vectors. 
[CLICK]
For the given read sequence in red, we find all indices corresponding to the q-grams found in the read. 
[CLICK]
We then query and [CLICK] sum the bits of bin X’s pre-computed bit vector of the reference genome.
This final value is then compared to a threshold to determine the likelihood of this read’s existence in Bin X
These are all very simple operations and can be run in parallel across different bins
[END-CLICK]




Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors

2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper
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Integrating GRIM-Filter into a Read Mapper

GRIM-Filter:
Seed Location Checker

0001010     011010... ......

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010     011010... ......

020128 020131 414415... ... ... ...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131

reference 
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3

Notas del ponente
Notas de la presentación
REWRITE 

In this example, we will use a token size of 5 
We show how GRIM-Filter determines the need for alignment in a bin X. We use the read to generate a mask to selectively sum bit vectors. 
[CLICK]
For the given read sequence in red, we find all indices corresponding to the q-grams found in the read. 
[CLICK]
We then query and [CLICK] sum the bits of bin X’s pre-computed bit vector of the reference genome.
This final value is then compared to a threshold to determine the likelihood of this read’s existence in Bin X
These are all very simple operations and can be run in parallel across different bins
[END-CLICK]




Key Properties of GRIM-Filter
1. Simple Operations:
 To check a given bin, find the sum of all bits corresponding to 

each token in the read
 Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM
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Notas del ponente
Notas de la presentación
As a recap,
[CLICK]
GRIM-Filter is comprised of very simple addition/comparison operations 
[CLICK]
To check a given bin, we sum the bits corresponding to each token in the read
[CLICK]
and then we compare the sum against a threshold to determine whether we need to align
[CLICK]
It is also highly parallel
each bin is operated on independently and there are many many bins 
[CLICK]
These three properties together make it a suitable algorithm to be run in 3D stacked DRAM
[END-CLICK]



Opportunity: 3D-Stacked Logic+Memory
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Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

210
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



3D-Stacked Memory

 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
 Logic Layer enables Processing-in-Memory, via high-

bandwidth low-latency access to DRAM layers
 Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory

211

DRAM Layers

Logic Layer

TSVs

Notas del ponente
Notas de la presentación
THICKEN TSV lines

[CLICK]
3D stacked memory stacks a logic layer and DRAM layers with vertical connections called TSVs. This vertical structure allows for a much higher number of connections increasing the available bandwidth. The customizable logic layer enables processing-in-memory, which avoids overloading the memory bus by offloading computation to this layer in the 3D stacked module. 
We can design the simple operations required for GRIM-Filter into the customizable logic layer and appropriately distribute the bitvectors to enable an efficient filter
[CLICK]
Real 3D-stacked DRAM technologies are commercially available now such as high bandwidth memory
[CLICK]
And micron’s hybrid memory cube, among others 
[END-CLICK]




3D-Stacked Memory

 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
 Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
 Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

Notas del ponente
Notas de la presentación
[CLICK]
3D stacked memory stacks a logic layer and DRAM layers with vertical connections called TSVs. This vertical structure allows for a much higher number of connections increasing the available bandwidth. The customizable logic layer allows for processing-in-memory, which avoids overloading the memory bus by offloading computation to this layer in the 3D stacked module. 
We can design the simple operations required for GRIM-Filter into the customizable logic layer and appropriately distribute the bit vectors to enable an efficient filter
[CLICK]
Real 3D-stacked DRAM technologies are commercially available now such as high bandwidth memory
[CLICK]
And micron’s hybrid memory cube, among others 
[END-CLICK]




3D-Stacked Memory

 3D-stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
 Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
 Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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Notas del ponente
Notas de la presentación
[CLICK]
3D stacked memory stacks a logic layer and DRAM layers with vertical connections called TSVs. This vertical structure allows for a much higher number of connections increasing the available bandwidth. The customizable logic layer allows for processing-in-memory, which avoids overloading the memory bus by offloading computation to this layer in the 3D stacked module. 
We can design the simple operations required for GRIM-Filter into the customizable logic layer and appropriately distribute the bit vectors to enable an efficient filter
[CLICK]
Real 3D-stacked DRAM technologies are commercially available now such as high bandwidth memory
[CLICK]
And micron’s hybrid memory cube, among others 
[END-CLICK]




GRIM-Filter in 3D-Stacked DRAM

 Each DRAM layer is organized as an array of banks
 A bank is an array of cells with a row buffer to transfer data

 The layout of bitvectors in a bank enables filtering many 
bins in parallel

214

Notas del ponente
Notas de la presentación
[CLICK]
Each DRAM layer is organized as an array of Banks
[CLICK]
and a bank is an array of cells with a row buffer. The row buffer holds one row at a time and uses this structure to transfer data with high bandwidth into the logic layer via TSVs
[CLICK]
We now show the distribution of bit vectors across the DRAM arrays to enable parallel processing of many bins. 
[CLICK]
Each row represents a token's occurrence across many sequential bins. and the row of the appropriate token gets queried to find a vector showing the occurrence of the token across many bins.
These are the vectors are brought down into the logic layer to be operated on.
[CLICK]

[END-CLICK]



GRIM-Filter in 3D-Stacked DRAM

 Customized logic for accumulation and comparison 
per genome segment
 Low area overhead, simple implementation
 For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and 

comparators in logic layer

215Details are in [Kim+, BMC Genomics 2018]

Notas del ponente
Notas de la presentación
[CLICK]
We now look at the implementation of logic in the logic layer 
[CLICK]
GRIM-Filter only requires a very simple design for enabling the bitvector sum and threshold compare across many bins simultaneously. One comparator, incrementer, accumulator, and buffer for each bin that we are checking in parallel
[CLICK]
This results in a very low area overhead and ease of implementation
[END-CLICK]



Methodology
 Performance simulated using an in-house 3D-Stacked DRAM 

simulator

 Evaluate 10 real read data sets (From the 1000 Genomes 
Project)
 Each data set consists of 4 million reads of length 100

 Evaluate two key metrics
 Performance
 False negative rate
 The fraction of locations that pass the filter but result in a mismatch

 Compare against a state-of-the-art filter, FastHASH [Xin+, BMC 
Genomics 2013] when using mrFAST, but GRIM-Filter can be 
used with ANY read mapper
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GRIM-Filter Performance
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2.1x average performance benefit
1.8x-3.7x performance benefit across real data sets
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Benchmarks and their Execution Times

GRIM-Filter gets performance due to its hardware-software co-design

Notas del ponente
Notas de la presentación
We ran 10 separate experiments with real read data sets, consisting of approximately 4 million reads each, and got the following results. Compared to the previous best filter, our filter enjoys a 2x average end-to-end read mapper performance gain across the data sets, and a 6x average lower false negative rate. Again, these are the locations that were not discarded by the filter, but were then later discarded after alignment 



GRIM-Filter False Negative Rate
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6.0x average reduction in False Negative Rate
5.6x-6.4x False Negative reduction across real data sets
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Sequence Alignment
Error Tolerance (e)

GRIM-Filter utilizes more information available in the read to filter

Notas del ponente
Notas de la presentación
We ran 10 separate experiments with real read data sets, consisting of approximately 4 million reads each, and got the following results. Compared to the previous best filter, our filter enjoys a 2x average end-to-end read mapper performance gain across the data sets, and a 6x average lower false negative rate. Again, these are the locations that were not discarded by the filter, but were then later discarded after alignment 



More on GRIM-Filter
 Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, 

Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-
Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January 
2018.
[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]
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https://arxiv.org/pdf/1711.01177.pdf
http://www.biomedcentral.com/bmcgenomics/
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Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
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In-Storage Genome Filtering [ASPLOS 2022]

 Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
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Genome Sequence Analysis

Computation overhead

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

Notas del ponente
Notas de la presentación
Read mapping performs alignment on large genomic datasets, containing millions of reads. [CLICK]
Therefore, read mapping is both computationally expensive [CLICK]
And incurs high data movement overhead [CLICK]
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Heuristics Accelerators Filters

Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis

Notas del ponente
Notas de la presentación
There has been significant effort into improving read mapping performance [CLICK]
Through efficient heuristics [CLICK]
hardware accelerators [CLICK]
 and various filters that prune reads that do not require expensive computation [CLICK]. 
While these approaches address the computation overhead in read mapping [CLICK]
[While Reads Move] None of them alleviate the data movement overhead from storage, whose impact becomes even larger when the computation overhead gets alleviated [CLICK]
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Notas del ponente
Notas de la presentación
Our key idea is to filter reads that do not require the expensive alignment computation in the storage system [CLICK] …
[While Reads Move] To fundamentally reduce the data movement overhead of read mapping

Examples of the reads that not require the costlt alignment step

Exactly-matching reads to the reference genome that do not need approximate string matching performed during alignment

Non-matching reads that have no potential matching locations in the reference genome hence skip the alignemt step
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Filtering Opportunities

• Sequencing machines produce one of two kinds of reads 
- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:

Notas del ponente
Notas de la presentación
Let’s take a look at filtering opportunities based on the input reads.
Sequencing machines produce one of two kinds of reads 
Short reads: highly accurate (99.9%)  and short (e.g., up to a few hundreds of DNA characters)
Long reads: less accurate (85-90%)  and long (e.g., from hundreds to millions of DNA characters)

Based on these, We leverage two filtering opportunities

First, we can filter exactly matching reads, which are reads that match exactly to one or more subsequences of the reference genome and do not require approximate string matching during alignment. Exact matches can frequently occur in short read sets with low sequencing errors and low genetic variations

Second, we can filter non-matching reads. Such reads do not have any potential matching locations in the reference genome can skip the expensive alignment step. Non-matching reads can frequently occur in long read sets with high sequencing errors and short or long read sets with high genetic variations
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Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System

Notas del ponente
Notas de la presentación
However, filtering reads in a modern SSD can be challenging [CLICK]
Due to different behavior across read mapping workloads. [CLICK]
And the limited hardware resources in the SSD. By addressing these challenges [CLICK]
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GenStore

Computation overhead

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓

Notas del ponente
Notas de la presentación
We propose GenStore, the first in-storage processing system designed for genome sequence analysis. [CLICK]
To reduce both the computation [CLICK]
And the data movement overhead [CLICK]
GenStore provides high-performance and energy benefits compared to state-of-the-art HW and SW baselines [CLICK]





In-Storage Genome Filtering [ASPLOS 2022]

 Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Energy-Efficient In-Storage Computing 
System for Genome Sequence Analysis"
Proceedings of the 27th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March 
2022.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8


PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


More on Processing-in-Memory
 Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices 
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

231https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures


A Tutorial on PIM
 Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices 
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE


Processing-in-Memory Landscape Today
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[UPMEM 2019][Samsung 2021][SK Hynix 2022]

[Samsung 2021]

This does not include many experimental chips and startups

[Alibaba 2022]



UPMEM Processing-in-DRAM Engine (2019)
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 Processing in DRAM Engine 
 Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

 Replaces standard DIMMs
 DDR4 R-DIMM modules

 8GB+128 DPUs (16 PIM chips)
 Standard 2x-nm DRAM process

 Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM Memory Modules
• E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
• P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz

www.upmem.com

http://www.upmem.com/


2,560-DPU Processing-in-Memory System

236https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf


More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=26


Experimental Analysis of the UPMEM PIM Engine

https://arxiv.org/pdf/2105.03814.pdf

https://arxiv.org/pdf/2105.03814.pdf


Upcoming TECHCON Presentation
 Dr. Juan Gomez-Luna

 Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware

 Based on two major works
 https://arxiv.org/pdf/2105.03814.pdf
 https://arxiv.org/pdf/2207.07886.pdf

239https://www.youtube.com/watch?v=nphV36SrysA

https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/pdf/2207.07886.pdf
https://www.youtube.com/watch?v=nphV36SrysA


UPMEM PIM System Summary & Analysis
 Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo 

F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional 
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152
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PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS
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PrIM Benchmarks are Open Source
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks


243

Understanding a Modern PIM Architecture

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks


Understanding a Modern PIM Architecture

244https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9


More on Analysis of the UPMEM PIM Engine

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159


More on PRIM Benchmarks
 Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina 

Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
"Benchmarking a New Paradigm: An Experimental 
Analysis of a Real Processing-in-Memory 
Architecture"
Preprint in arXiv, 9 May 2021.
[arXiv preprint]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Long Talk Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[SAFARI Live Seminar Slides (pptx) (pdf)]
[SAFARI Live Seminar Video (2 hrs 57 mins)]
[Lightning Talk Video (3 minutes)]
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https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-1hour-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-3min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152


UPMEM PIM System Summary & Analysis
 Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo 

F. Oliveira, and Onur Mutlu,
"Benchmarking Memory-Centric Computing Systems: Analysis of Real 
Processing-in-Memory Hardware"
Invited Paper at Workshop on Computing with Unconventional 
Technologies (CUT), Virtual, October 2021.
[arXiv version]
[PrIM Benchmarks Source Code]
[Slides (pptx) (pdf)]
[Talk Video (37 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21.pdf
https://sites.google.com/umn.edu/cut-2021/home
https://arxiv.org/abs/2110.01709
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Benchmarking-Memory-Centric-Computing-Systems_cut21-talk.pdf
https://www.youtube.com/watch?v=nphV36SrysA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=65
https://www.youtube.com/watch?v=SrFD_u46EDA&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=152
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ML Training on a Real PIM System

Short version: https://arxiv.org/pdf/2206.06022.pdf
Long version: https://arxiv.org/pdf/2207.07886.pdf

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s

https://arxiv.org/pdf/2206.06022.pdf
https://arxiv.org/pdf/2206.06022.pdf


AIM (PIM Sequence Alignment Framework)
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Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez-Luna, 
Onur Mutlu, Izzat El Hajj 
“A Framework for High-throughput Sequence Alignment using Real 
Processing-in-Memory Systems“
arXiv, 2022
[Source code]

https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim


Connecting Basecalling and Read Mapping in PIM
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 Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha 
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur 
Mutlu,
”GenPIP: In-Memory Acceleration of Genome Analysis via Tight 
Integration of Basecalling and Read Mapping"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), 
Chicago, Illinois, October 2022.

To appear at MICRO 2022



Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
252



Newer Genome Sequencing Technologies

253

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

Oxford Nanopore MinION

https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo


New Applications: Graph Genomes
 Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. 

Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, 
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, 
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph 
and Sequence-to-Sequence Mapping"
Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New 
York, June 2022.
[arXiv version]

254https://arxiv.org/pdf/2205.05883.pdf

https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf


New Applications: Ref Genome Updates 
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https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf

https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf


Remapping Reads Between References 
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 Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,
"AirLift: A Fast and Comprehensive Technique for Remapping 
Alignments between Reference Genomes"
Preprint in arXiv and bioRxiv, 2021.
[bioRxiv preprint]
[arXiv preprint]
[AirLift Source Code and Data]

https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf
https://arxiv.org/abs/1912.08735
https://doi.org/10.1101/2021.02.16.431517
https://doi.org/10.1101/2021.02.16.431517
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift


Mapping Constant Regions Between References 
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 Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Can Alkan, 
and Onur Mutlu,
"FastRemap: A Tool for Quickly Remapping Reads between Genome 
Assemblies"
Bioinformatics, btac554.
[FastRemap Source Code]

https://doi.org/10.1093/bioinformatics/btac554
https://github.com/CMU-SAFARI/FastRemap


Newer Genome Sequencing Technologies
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Open arxiv.org version] [Slides (pptx) (pdf)] [Talk Video at AACBB 2019]

Oxford Nanopore MinION

https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://www.ncbi.nlm.nih.gov/pubmed/29617724
https://arxiv.org/pdf/1711.08774.pdf
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/nanopore-sequencing-technology-and-tools-for-genome-assembly-AACBB18-talk.pdf
https://www.youtube.com/watch?v=Zug8FonO8Vo


Recall: High-Throughput Sequencing

259

 Massively parallel sequencing technology
 Illumina, Roche 454, Ion Torrent, SOLID…

 Small DNA fragments are first amplified and then 
sequenced in parallel, leading to
 High throughput
 High speed
 Low cost 
 Short reads

 Amplification step limits the read length since too short or too long 
fragments are not amplified well.

 Sequencing is done by either reading optical signals as each base is 
added, or by detecting hydrogen ions instead of light, leading to:
 Low error rates (relatively)
 Reads lack information about their order and which part of genome 

they are originated from



Nanopore Sequencing Technology
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 Nanopore sequencing is an emerging and a promising 
single-molecule DNA sequencing technology

 First nanopore sequencing device, MinION, made 
commercially available by Oxford Nanopore 
Technologies (ONT) in May 2014. 
 Inexpensive 
 Long read length (> 882K bp)
 Portable: Pocket-sized
 Produces data in real-time

Notas del ponente
Notas de la presentación
MinION is an inexpensive, pocket-sized, portable, high-throughput sequencing apparatus that produces data in real-time. These properties enable new potential applications of genome sequencing, such as rapid surveillance of Ebola, Zika or other epidemics, near-patient testing, and other applications that require real- time data analysis.
In addition, the MinION technology has two major advantages. First, it is capable of generating ultra-long reads (e.g., 882 kilobase pairs or longer). MinION’s long reads greatly simplify the genome assembly process by decreasing the computational requirements. Second, it is small and portable. MinION is named as the first DNA sequencing device used in outer space to help the detection of life elsewhere in the universe with the help of its size and portability. 
With the help of continuous updates to the MinION device and the nanopore chemistry, the first nanopore human reference genome was generated by using only MinION devices. 



Nanopore Sequencing Technology
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 Nanopore sequencing is an emerging and a promising 
single-molecule DNA sequencing technology
 No amplification → Less limit on read length → Longer read length

 First nanopore sequencing device, MinION, made 
commercially available by Oxford Nanopore 
Technologies (ONT) in May 2014. 
 Inexpensive 
 Long read length (> 882K bp)
 Portable: Pocket-sized
 Produces data in real-time

Notas del ponente
Notas de la presentación
MinION is an inexpensive, pocket-sized, portable, high-throughput sequencing apparatus that produces data in real-time. These properties enable new potential applications of genome sequencing, such as rapid surveillance of Ebola, Zika or other epidemics, near-patient testing, and other applications that require real- time data analysis.
In addition, the MinION technology has two major advantages. First, it is capable of generating ultra-long reads (e.g., 882 kilobase pairs or longer). MinION’s long reads greatly simplify the genome assembly process by decreasing the computational requirements. Second, it is small and portable. MinION is named as the first DNA sequencing device used in outer space to help the detection of life elsewhere in the universe with the help of its size and portability. 
With the help of continuous updates to the MinION device and the nanopore chemistry, the first nanopore human reference genome was generated by using only MinION devices. 



Oxford Nanopore Sequencers

262https://nanoporetech.com/products/comparison

MinION
Mk1B

MinION 
Mk1C GridION Mk1 PromethION 

24
PromethION

48

Read length > 2Mb > 2Mb > 2Mb > 2Mb > 2Mb

Yield per flow cell 50 Gb 50 Gb 50 Gb 220 Gb 220 Gb

Number of flow 
cells per device 1 1 5 24 48

Yield per device <50 Gb <50 Gb <250 Gb <5.2 Tb <10.5 Tb

Starting price $1,000 $4,990 $49,995 $195,455 $327,455

https://nanoporetech.com/products/comparison


Illumina Sequencers
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Run time 9.5–19 hrs 4–24 hrs 4–55 hrs 12–30 hrs 24-48 hrs 13-44 hrs

Max. reads 
per run 4 million 25 million 25 million 400 million 1 billion 20 billion

Max. read 
length 2 × 150 bp 2 × 150 bp 2 × 300 bp 2 × 150 bp 2 × 150 bp 2 x 250

Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb

Estimated 
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000

https://www.illumina.com/systems/sequencing-platforms.html

https://www.illumina.com/systems/sequencing-platforms.html


How Does Nanopore Sequencing Work?
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 Nanopore is a nano-scale hole (<20nm).
 In nanopore sequencers, an ionic current passes through the nanopores
 When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
 This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

https://phys.org/news/2013-12-gene-sequencing-future.html


Advantages of Nanopore Sequencing
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Nanopores: 

 Do not require any labeling of the DNA or nucleotide for 
detection during sequencing

 Rely on the electronic or chemical structure of the different 
nucleotides for identification 

 Allow sequencing very long reads, and 

 Provide portability, low cost, and high throughput. 



Challenges of Nanopore Sequencing
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 One major drawback: high error rates 

 Nanopore sequence analysis tools have a critical role to:
 overcome high error rates 
 take better advantage of the technology 

 Faster tools are critically needed to: 
 Take better advantage of the real-time data production

capability of nanopore sequencing
 Enable fast, real-time data analysis



Nanopore Genome Assembly Pipeline

267
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly” Briefings in Bioinformatics, 2018.



Nanopore Genome Assembly Tools (I)
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly” Briefings in Bioinformatics, 2018.



Nanopore Genome Assembly Tools (II)
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly” Briefings in Bioinformatics, 2018.



Nanopore Genome Assembly Tools (III)
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Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly”  to appear in Briefings in Bioinformatics, 2018.



More on Nanopore Sequencing & Tools

271

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

BiB arXiv

https://arxiv.org/pdf/1711.08774.pdf


Why Do We Care? An Example from 2020

272
Source: https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample

https://nanoporetech.com/about-us/news/200-oxford-nanopore-sequencers-have-left-uk-china-support-rapid-near-sample


Sequencing of COVID-19
 Whole genome sequencing (WGS) and sequence 

data analysis are important
 To detect the virus from a human sample such as saliva, 

Bronchoalveolar fluid etc.
 To understand the sources and modes of transmission of the virus
 To discover the genomic characteristics of the virus, and compare 

with better-known viruses (e.g., 02-03 SARS epidemic)
 To design and evaluate the diagnostic tests and deep-dive studies

 Two key areas of COVID-19 genomic research
 To sequence the genome of the virus itself, COVID-19, in order to 

track the mutations in the virus. 
 To explore the genes of infected patients. This analysis can be used 

to understand why some people get more severe symptoms than 
others, as well as, help with the development of new treatments in 
the future.
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COVID-19 Nanopore Sequencing (I)

• From ONT (https://nanoporetech.com/covid-19/overview)
274

https://nanoporetech.com/covid-19/overview


COVID-19 Nanopore Sequencing (II)

• From ONT (https://nanoporetech.com/covid-19/overview)
275

https://nanoporetech.com/covid-19/overview


A Bright Future for Intelligent Genome Analysis

276
SmidgION from ONT

MinION from ONT

276

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


Agenda

 The Problem: DNA Read Mapping
 State-of-the-art Read Mapper Design

 Algorithmic Acceleration 
 Exploiting Structure of the Genome
 Exploiting SIMD Instructions

 Hardware Acceleration
 Specialized Architectures
 Processing in Memory & Storage

 Future Opportunities: New Technologies & Applications
277



Conclusion



Things Are Happening In Industry



Illumina DRAGEN Bio-IT Platform (2018)
 Processes whole genome at 30x coverage in ~25 minutes 

with hardware support for data compression

280

FPGA board(s)

emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html

https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html


NVIDIA Clara Parabricks (2020)

281https://developer.nvidia.com/clara-parabricks

GPU board(s) A University of Michigan startup in 
2018 joined NVIDIA in 2020

https://developer.nvidia.com/clara-parabricks


NVIDIA Hopper DPX Instructions (2022)

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/

https://blogs.nvidia.com/blog/2022/03/22/nvidia-hopper-accelerates-dynamic-programming-using-dpx-instructions/


Recall Our Dream (from 2007)

 An embedded device that can perform comprehensive 
genome analysis in real time (within a minute)

 Still a long ways to go
 Energy efficiency
 Performance (latency)
 Security & privacy
 Huge memory bottleneck
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Conclusion
 System design for bioinformatics is a critical problem

 It has large scientific, medical, societal, personal implications

 This talk is about accelerating a key step in bioinformatics: 
genome sequence analysis
 In particular, read mapping

 We covered various recent ideas to accelerate read mapping
 My personal journey since September 2006

 Many future opportunities exist
 Especially with new sequencing technologies
 Especially with new applications and use cases
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A Bright Future for Intelligent Genome Analysis
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SmidgION from ONT

MinION from ONT

285

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu
“Accelerating Genome Analysis: A Primer on an Ongoing Journey” IEEE Micro, August 2020.

https://arxiv.org/pdf/2008.00961.pdf


Resources & Acknowledgments



Accelerating Genome Analysis: Overview
 Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can 

Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020.
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
http://www.computer.org/micro/
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-AcceleratingGenomeAnalysis-AACBB-Keynote-Feb-16-2019-FINAL.pdf
https://www.youtube.com/watch?v=hPnSmfwu2-A


PIM Review and Open Problems

288

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/2012.03112.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/2012.03112.pdf


PIM Review and Open Problems (II)

289

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


More on Memory-Centric System Design
 Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices 
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

290https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures


A Tutorial on PIM
 Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices 
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=H3sEaINPBOE


Special Research Sessions & Courses
 Special Session at ISVLSI 2022: 9 cutting-edge talks

292https://www.youtube.com/watch?v=qeukNs5XI3g

https://www.youtube.com/watch?v=qeukNs5XI3g


Overview Readings (II)

293

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, 
Juan Gomez-Luna, Henk Corporaal, Onur Mutlu,
“FPGA-Based Near-Memory Acceleration of Modern Data-Intensive 
Applications“
IEEE Micro, 2021.
[Source Code]

https://arxiv.org/pdf/2106.06433.pdf

https://arxiv.org/pdf/2106.06433.pdf
https://github.com/CMU-SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM
https://arxiv.org/pdf/2106.06433.pdf


Overview Readings (III)

294

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations: Intelligent Algorithms and 
Architectures for Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/pdf/2205.07957.pdf

https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations
https://arxiv.org/pdf/2205.07957.pdf


Detailed Lectures on Genome Analysis
 Computer Architecture, Fall 2020, Lecture 3a

 Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=5

 Computer Architecture, Fall 2020, Lecture 8
 Intelligent Genome Analysis (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxU

z7xRPS-wisBN&index=14

 Computer Architecture, Fall 2020, Lecture 9a
 GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=XoLpzmN-

Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 

 Accelerating Genomics Project Course, Fall 2020, Lecture 1
 Accelerating Genomics (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL

gwiDRQDTyId

295https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5
https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
https://www.youtube.com/onurmutlulectures


Genomics (Spring 2022)

 Spring 2022 Edition: 
 https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=bioinforma
tics

 Youtube Livestream:
 https://www.youtube.com/watch?v=DEL

_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR
1yRU_Cxxjw-u18

 Project course
 Taken by Bachelor’s/Master’s students
 Genomics lectures
 Hands-on research exploration
 Many research readings
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https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18
https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18


Genomics (Fall 2021)

 Fall 2021 Edition: 
 https://safari.ethz.ch/projects_and_semi

nars/fall2021/doku.php?id=bioinformatic
s

 Youtube Livestream:
 https://www.youtube.com/watch?v=Mno

gTeMjY8k&list=PL5Q2soXY2Zi8sngH-
TrNZnDhDkPq55J9J

 Project course
 Taken by Bachelor’s/Master’s students
 Genomics lectures
 Hands-on research exploration
 Many research readings
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https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=bioinformatics
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=MnogTeMjY8k&list=PL5Q2soXY2Zi8sngH-TrNZnDhDkPq55J9J


Comp Arch (Fall’21)
 Fall 2021 Edition: 

 https://safari.ethz.ch/architecture/fall2021/doku.
php?id=schedule

 Fall 2020 Edition: 
 https://safari.ethz.ch/architecture/fall2020/doku.

php?id=schedule

 Youtube Livestream (2021):
 https://www.youtube.com/watch?v=4yfkM_5EFg

o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
 Youtube Livestream (2020):

 https://www.youtube.com/watch?v=c3mPdZA-
Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

 Master’s level course
 Taken by Bachelor’s/Masters/PhD students
 Cutting-edge research topics + fundamentals in 

Computer Architecture
 5 Simulator-based Lab Assignments
 Potential research exploration
 Many research readings
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https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2020/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN
https://www.youtube.com/onurmutlulectures


DDCA (Spring 2022)
 Spring 2022 Edition: 

 https://safari.ethz.ch/digitaltechnik/spring2022/do
ku.php?id=schedule

 Spring 2021 Edition: 
 https://safari.ethz.ch/digitaltechnik/spring2021/do

ku.php?id=schedule

 Youtube Livestream (Spring 2022):
 https://www.youtube.com/watch?v=cpXdE3HwvK

0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
 Youtube Livestream (Spring 2021):

 https://www.youtube.com/watch?v=LbC0EZY8yw
4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN

 Bachelor’s course
 2nd semester at ETH Zurich
 Rigorous introduction into “How Computers Work”
 Digital Design/Logic
 Computer Architecture
 10 FPGA Lab Assignments
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https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=cpXdE3HwvK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN
https://www.youtube.com/onurmutlulectures


Seminar in Comp Arch (Spring & Fall)
 Spring 2022 Edition: 

 https://safari.ethz.ch/architecture_seminar/spring20
22/doku.php?id=schedule

 Fall 2021 Edition: 
 https://safari.ethz.ch/architecture_seminar/fall2021

/doku.php?id=schedule

 Youtube Livestream (Spring 2022):
 https://www.youtube.com/watch?v=rS9UPk509AQ&

list=PL5Q2soXY2Zi_hxizriwKmFHgcoe2Q8-m0
 Youtube Livestream (Fall 2021):

 https://www.youtube.com/watch?v=4TcP297mdsI&
list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4

 Critical analysis course
 Taken by Bachelor’s/Masters/PhD students
 Cutting-edge research topics + fundamentals in 

Computer Architecture
 20+ research papers, presentations, analyses
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PIM Course (Spring 2022)

 Spring 2022 Edition: 
 https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=processing
_in_memory

 Youtube Livestream:
 https://www.youtube.com/watch?v=9e4

Chnwdovo&list=PL5Q2soXY2Zi-
841fUYYUK9EsXKhQKRPyX

 Project course
 Taken by Bachelor’s/Master’s students
 Processing-in-Memory lectures
 Hands-on research exploration
 Many research readings
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Hetero. Systems (Spring’22)

 Spring 2022 Edition: 
 https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=heterogen
eous_systems

 Youtube Livestream:
 https://www.youtube.com/watch?v=oFO

5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM
_FTjmY6h7Gzm

 Project course
 Taken by Bachelor’s/Master’s students
 GPU and Parallelism lectures
 Hands-on research exploration
 Many research readings
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HW/SW Co-Design (Spring 2022)

 Spring 2022 Edition: 
 https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=hw_sw_co
design

 Youtube Livestream:
 https://youtube.com/playlist?list=PL5Q2s

oXY2Zi8nH7un3ghD2nutKWWDk-NK

 Project course
 Taken by Bachelor’s/Master’s students
 HW/SW co-design lectures
 Hands-on research exploration
 Many research readings
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https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=hw_sw_codesign
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://youtube.com/playlist?list=PL5Q2soXY2Zi8nH7un3ghD2nutKWWDk-NK


SSD Course (Spring 2022)

 Spring 2022 Edition: 
 https://safari.ethz.ch/projects_and_semi

nars/spring2022/doku.php?id=modern_s
sds

 Youtube Livestream:
 https://www.youtube.com/watch?v=_q4r

m71DsY4&list=PL5Q2soXY2Zi8vabcse1kL
22DEcgMl2RAq

 Project course
 Taken by Bachelor’s/Master’s students
 SSD Basics and Advanced Topics
 Hands-on research exploration
 Many research readings
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Some Recent Papers



Connecting Basecalling and Read Mapping in PIM

315

 Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha 
Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur
Mutlu,
”GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of 
Basecalling and Read Mapping"
Proceedings of the 55th International Symposium on Microarchitecture
(MICRO), Chicago, Illinois, October 2022.

Coming up at MICRO 2022



Finding Approximate Seed Matches

316

 Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, 
Taha Shahroodi, Nika Mansouri-Ghiasi, Gagandeep Singh, Konstantinos 
Kanellopoulos, Can Alkan, and Onur Mutlu,
"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed 
Matches"
Preprint in arXiv, 2021.
[arXiv preprint]
[BLEND Source Code and Data]

https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/abs/2112.08687
https://arxiv.org/pdf/2112.08687.pdf
https://github.com/CMU-SAFARI/BLEND


Hardware Acceleration for pHMMs

317

 Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol
Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joel Lindegger, 
Mohammed Alser, Juan Gómez-Luna, Sreenivas Subramoney, and Onur Mutlu,
"ApHMM: A Profile Hidden Markov Model Acceleration Framework for Genome 
Analysis"
Preprint in arXiv, 2022.
[Source Code]

https://arxiv.org/pdf/2207.09765.pdf
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU


Remapping Reads Between References 

318

 Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,
"AirLift: A Fast and Comprehensive Technique for Remapping Alignments 
between Reference Genomes"
Preprint in arXiv and bioRxiv, 2021.
[bioRxiv preprint]
[arXiv preprint]
[AirLift Source Code and Data]

https://people.inf.ethz.ch/omutlu/pub/AirLift_genome-remapper_arxiv21.pdf
https://arxiv.org/abs/1912.08735
https://doi.org/10.1101/2021.02.16.431517
https://doi.org/10.1101/2021.02.16.431517
https://arxiv.org/abs/1912.08735
https://github.com/CMU-SAFARI/AirLift


Mapping Constant Regions Between References 

319

 Jeremie S. Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Can Alkan, 
and Onur Mutlu,
"FastRemap: A Tool for Quickly Remapping Reads between Genome 
Assemblies"
Bioinformatics, btac554.
[FastRemap Source Code]

https://doi.org/10.1093/bioinformatics/btac554
https://github.com/CMU-SAFARI/FastRemap


COVIDHunter

320

Mohammed Alser, Jeremie S. Kim, Nour Almadhoun Alserr, Stefan W. Tell, 
Onur Mutlu
“COVIDHunter: COVID-19 Pandemic Wave Prediction and Mitigation via Seasonality 
Aware Modeling” 
Frontiers in Public Health 2022
[Source Code]

https://arxiv.org/pdf/2102.03667.pdf
https://github.com/CMU-SAFARI/COVIDHunter


Packaging Omics Methods

321

Mohammed Alser, Sharon Waymost, Ram Ayyala, Brendan Lawlor, Richard J. Abdill, 
Neha Rajkumar, Nathan LaPierre, Jaqueline Brito, Andre M. Ribeiro-dos-Santos, Can 
Firtina, Nour Almadhoun, Varuni Sarwal, Eleazar Eskin, Qiyang Hu, Derek Strong, 
Byoung-Do (BD)Kim, Malak S. Abedalthagafi, Onur Mutlu, Serghei Mangul
“Packaging, containerization, and virtualization of computational omics methods: 
Advances, challenges, and opportunities” 
arrXiv 2022

https://arxiv.org/pdf/2203.16261.pdf


Demeter (HD Food Microbiome Profiling)

322

Taha Shahroodi, Mahdi Zahedi, Can Firtina, Mohammed Alser, Stephan Wong,
Onur Mutlu, Said Hamdioui
“Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional
Computing in Memory”
IEEE Access, 2022

https://arxiv.org/pdf/2206.01932.pdf


AIM (PIM Sequence Alignment Framework)

323

Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez-Luna, 
Onur Mutlu, Izzat El Hajj 
“A Framework for High-throughput Sequence Alignment using Real Processing-in-
Memory Systems“
arXiv, 2022
[Source code]

https://arxiv.org/abs/2208.01243
https://github.com/safaad/aim


Scrooge

324

Joël Lindegger, Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna, 
Nika Mansouri Ghiasi, Onur Mutlu
“Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and 
ASICs“
arXiv, 2022
[Source code]

https://arxiv.org/abs/2208.09985
https://github.com/CMU-SAFARI/Scrooge


Intelligent Genome Analysis

325

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, 
Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu
“From Molecules to Genomic Variations: Intelligent Algorithms and Architectures for 
Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022
[Source code]

https://arxiv.org/abs/2205.07957
https://github.com/CMU-SAFARI/Molecules2Variations


Pairwise Sequence Alignment using PIM

326

 Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur
Mutlu, and Izzat El Hajj,
"High-throughput Pairwise Alignment with the Wavefront Algorithm using 
Processing-in-Memory"
Preprint in arXiv, 2022.

https://arxiv.org/pdf/2204.02085.pdf
https://arxiv.org/abs/2204.02085


Backup Slides for Further Info



Detailed Lectures on PIM (I)
 Computer Architecture, Fall 2020, Lecture 6

 Computation in Memory (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz

7xRPS-wisBN&index=12

 Computer Architecture, Fall 2020, Lecture 7
 Near-Data Processing (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=13

 Computer Architecture, Fall 2020, Lecture 11a
 Memory Controllers (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz

7xRPS-wisBN&index=20 

 Computer Architecture, Fall 2020, Lecture 12d
 Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7

xRPS-wisBN&index=25
328https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=12
https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25
https://www.youtube.com/onurmutlulectures


Detailed Lectures on PIM (II)
 Computer Architecture, Fall 2020, Lecture 15

 Emerging Memory Technologies (ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz

7xRPS-wisBN&index=28

 Computer Architecture, Fall 2020, Lecture 16a
 Opportunities & Challenges of Emerging Memory Technologies 

(ETH Zürich, Fall 2020)
 https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBx

Uz7xRPS-wisBN&index=29

 Computer Architecture, Fall 2020, Guest Lecture
 In-Memory Computing: Memory Devices & Applications (ETH 

Zürich, Fall 2020)
 https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9xidyIgBxU

z7xRPS-wisBN&index=41
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https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=12
https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13
https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10
https://www.youtube.com/onurmutlulectures


Genome Analysis

330

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine can read the 
entire content of a genomeNO

Notas del ponente
Notas de la presentación
Why we can not do that?
Challenges: 1- supercoiled structure, small cell’s size, sensitivity to 1 base, DNA length.



Genome Analysis
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>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine can read the 
entire content of a genomeNO

Why?

Notas del ponente
Notas de la presentación
Why we can not do that?
Challenges: 1- supercoiled structure, small cell’s size, sensitivity to 1 base, DNA length.



Genome Sequencer is a Chopper
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Genome 
Analysis

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

44 hours

1x1012 bases

* NovaSeq 6000

*

*

GATK

<1000 $

Notas del ponente
Notas de la presentación
Reads lack information about their order and location (which part of genome they are originated from) 

PICO bases/44 hours



Oxford Nanopore Sequencers

333https://nanoporetech.com/products/comparison

MinION
Mk1B

MinION 
Mk1C GridION Mk1 PromethION 

24
PromethION

48

Read length > 2Mb > 2Mb > 2Mb > 2Mb > 2Mb

Yield per flow cell 50 Gb 50 Gb 50 Gb 220 Gb 220 Gb

Number of flow 
cells per device 1 1 5 24 48

Yield per device <50 Gb <50 Gb <250 Gb <5.2 Tb <10.5 Tb

Starting price $1,000 $4,990 $49,995 $195,455 $327,455

https://nanoporetech.com/products/comparison


Illumina Sequencers

334

Run time 9.5–19 hrs 4–24 hrs 4–55 hrs 12–30 hrs 24-48 hrs 13-44 hrs

Max. reads 
per run 4 million 25 million 25 million 400 million 1 billion 20 billion

Max. read 
length 2 × 150 bp 2 × 150 bp 2 × 300 bp 2 × 150 bp 2 × 150 bp 2 x 250

Max. output 1.2 Gb 7.5 Gb 15 Gb 120 Gb 300 Gb 6000 Gb

Estimated 
price $19,900 $49,500 $128,000 $275,000 $335,000 $985,000

https://www.illumina.com/systems/sequencing-platforms.html

https://www.illumina.com/systems/sequencing-platforms.html


How Does Illumina Machine Work?
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Glass flow 
cell surface

T
C
A
G
T
A
C
AT

Optical 
Sensor

A

Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�



How Does Illumina Machine Work?
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Glass flow 
cell surface

A

T
C
A
G
T
A
C
AT

Optical 
Sensor

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read

Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�



How Does Illumina Machine Work?
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Glass flow 
cell surface

A

T
C
A
G
T
A
C
AT

Optical 
Sensor

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

DNA fragment = Read

Check Illumina virtual tour:
https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html

Notas del ponente
Notas de la presentación
Until today, there is no machine takes genomic sample and produces the full sequence of the donor. I
nstead, HTS technology is used to sequence/read random short DNA fragments of copies of the original molecule. 
The sequencer adds the molecule “T” to all bases near the flow cell surface and observes the chemical reaction by a CMOS sensor. If a reaction happens then the base is “A” (A reacts with T, C with G and vice versa). 
This step is repeated for A, C, and G molecules for each base of the fragments. 
Bases are sequenced concurrently, hence the name “high throughput”.
�

https://emea.illumina.com/systems/sequencing-platforms/iseq/tour.html


How Does Nanopore Machine Work?
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 Nanopore is a nano-scale hole (<20nm).
 In nanopore sequencers, an ionic current passes through the nanopores
 When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
 This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

https://phys.org/news/2013-12-gene-sequencing-future.html


How Does Nanopore Machine Work?
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 Nanopore is a nano-scale hole (<20nm).
 In nanopore sequencers, an ionic current passes through the nanopores
 When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
 This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases

graphene 
nanopore DNA 

strand

Figure is adapted from: https://phys.org/news/2013-12-gene-sequencing-future.html

Check Nanopore virtual tour:
https://nanoporetech.com/resource-centre/minion-video

https://phys.org/news/2013-12-gene-sequencing-future.html
https://nanoporetech.com/resource-centre/minion-video


Solving the Puzzle

340
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

Notas del ponente
Notas de la presentación
Rhinoceros

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HTS Sequencing Output
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 500-2M bp
 high error rate (~15%)

 100-300 bp
 low error rate (~0.1%)

Large pieces of a puzzle 
long reads (ONT & PacBio)

Small pieces of a puzzle
short reads (Illumina)

Which sequencing technology is the best?

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HiFi Reads (PacBio)
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Wenger+, "Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome", Nature Biotechnology, 2019

But still very 
expensive!

https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

Long: 10-20 kb
Accurate: 99.8%

Notas del ponente
Notas de la presentación
By sequencing the same DNA segment many times (10 to 30 times),  we can have accurate more longer reads.

https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/


How Long is DNA?
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Notas del ponente
Notas de la presentación
Phi x174 is a virus that Infects E. Coli bacteria

You may be exposed to E. coli from contaminated water or food — especially raw vegetables and undercooked ground beef.

Paris Japonica : A rare Japanese flower 
============================
Phi is 600K time smaller than the genome of human	
E coli is ~600 time smaller than the human genome
Onion has a genome that is 5x larger than that of human
Paris japonica’s genome is 46x larger than the human genome




Cracking the 1st Human Genome Sequence
 1990-2003: The Human Genome Project (HGP) provides a 

complete and accurate sequence of all DNA base pairs that make 
up the human genome and finds 20,000 to 25,000 human genes.

344

13 years

3.2 x109 

bases

>3x109 $

Notas del ponente
Notas de la presentación
The 13-year long human project is the starting of the genomic era! It opened the door to remarkable biomedical discoveries by providing the first complete human genome sequence. It cost 3 billion dollars to read the entire sequence.�



Obtaining the Human Reference Genome
 GRCh38.p13
 Description: Genome Reference Consortium Human Build 38 

patch release 13 (GRCh38.p13)
 Organism name: Homo sapiens (human)
 Date: 2019/02/28
 3,099,706,404 bases
 Compressed .fna file (964.9 MB)
 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
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>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39


Challenges in Read Mapping
 Need to find many mappings of each read

 Need to tolerate variances/sequencing errors in each read

 Need to map each read very fast (i.e., performance is 
important, life critical in some cases)

 Need to map reads to both forward and reverse strands

346https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1

Notas del ponente
Notas de la presentación
There are three main challenges.

First. The mapper needs to find many mappings for each read. Because the read is so short, they can map to multiple locations in the reference genome. How can we efficiently find all mappings of a read?

Second. The mapper needs to tolerate small variance or errors in each read. Since individuals are different, the subject’s DNA might slightly differs from the reference DNA, which can be mismatches, insertions or deletions of base pairs. How can we efficiently map each read with up to a number of e errors present?

Third. The mapper needs to map each read very fast. In another word, performance is important. Because the human DNA is 3.2 billion base-pairs long and each read is only hundreds of base-pairs long, there can be billions of reads subjected to mapping for an individual human. Current state of the art mappers take weeks to map a human’s DNA. So the question is, how can we design a much higher performance read mapper?



Revisiting the Puzzle
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https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Reference Genome Bias

348Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humans of 
African descent” Nature genetics, 2019.

“African pan-genome contains ~10% more DNA 
bases than the current human reference genome”

https://www.nature.com/articles/s41588-018-0273-y


Time to Change the Reference Genome

349

“Switching to a consensus reference would offer important 
advantages over the continued use of the current reference with 

few disadvantages”
Ballouz+, "Is it time to change the reference genome?", Genome Biology, 2019

Notas del ponente
Notas de la presentación
a consensus reference represents the most common nucleotide at each position.

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4


MAGNET (AACBB 2018, TIR 2017)
 Key observation: the use of AND operation to check if a zero 

(match) exists in a column introduces filtering inaccuracy.
 Key Idea: count the consecutive zeros in each mask and 

select the longest in a divide-and-conquer approach.
 MAGNET is 17x to 105x more accurate than GateKeeper 

and SHD. 

350

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Query : 
 :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000000111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001100110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111110100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

  : 
 k :
 k :
 k :
 sk :
 sk :
 sk :

0000000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000000 vector :

-Wunsch 
:

12 34

Notas del ponente
Notas de la presentación
MAGNET will be presented in the next talk.



MAGNET Walkthrough

351

Build Neighborhood Map Track the Diagonally Consecutive 
Matches ACCEPT iff number of ‘1’ ≤ Threshold

Read : TTTTACTGTTCTCCCTTTGAATACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAATTACGTTTTAAAA 
Reference : TTTTACTGTTCTCCCTTTGAAATGACAATATATCTATATTTCCCTCTGGCTACATTTAAAATTTCCCCTTTATCTGTAATAATCAGTAAATTACCGTTTT

Upper Diagonal-4 : ----110111111100111111110101100001010001011010011111101101100110110011010101011101111111101011000000
Upper Diagonal-3 : ---0110110101011111111111110111111111110010011110111111001000100100010011111110110111111000000110001
Upper Diagonal-2 : --00111101100101101110110000000000000000000000000000000000000000000000000000000000000000010111110011
Upper Diagonal-1 : -000111110111001001100011101111111111100100111101111110010001001000100111111101101111110111111110111

Main Diagonal : 0000000000000000000001110110000101000101101001111110110110011011001101010101110111111111101111111111
Lower Diagonal-1 : 000111110111001001101011010111111111011111011111101111111011111101111011111100001011010101101111111-
Lower Diagonal-2 : 00111101100101101111011111100100010101110011100111011011111111111111010101111011010101001100111111--
Lower Diagonal-3 : 0110110101011111111010110101111111011110111111111101101101111110111110111101111111111111110011111---
Lower Diagonal-4 : 110111111100111110110001111100000101110101100111110010100111110011100100111101011011111111000111----

MAGNET bit-vector : 0000000000000000000001010000000000000000000000000000000000000000000000000000000000000000010001000000

12 345

Exclude the errors from the search space

Divide the problem into two subproblems and repeat

Find the longest segment of consecutive zeros

"MAGNET: understanding and improving the accuracy of genome 
pre-alignment filtering", arXiv preprint 2017

Notas del ponente
Notas de la presentación
After computing the binary matrix of GateKeeper, we need to backtrack all matches (consecutive zeros highlighted in green) between the two sequences. In GateKeeper, we AND all diagonal bit-vectors of the matrix together and produce a single bit-vector that represents the largest possible number of matches between the two sequences. Due to the use of AND operation, we need to ignore the meaningless short zeros (one or two zeros). Final step is to count the number of zeros in the AND mask and if exceeds the threshold then the filter passes the two sequences.

https://arxiv.org/abs/1707.01631


352

What if we got a new version 
of the reference genome?



AirLift
 Key observation: Reference genomes are updated frequently. 

Repeating read mapping is a computationally expensive workload.

 Key idea: Update the mapping results of only affected reads 
depending on how a region in the old reference relates to another 
region in the new reference. 

 Key results: 
 reduces number of reads that needs to be re-mapped to new 

reference by up to 99%
 reduces overall runtime to re-map reads by 6.94x, 208x, and 

16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes

353



Clustering the Reference Genome Regions

354



More Details on AirLift

355

GitHub: https://github.com/CMU-SAFARI/AirLift

Kim+, "AirLift: A Fast and Comprehensive Technique for Translating Alignments 
between Reference Genomes", arXiv, 2020

https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/abs/1912.08735


Nanopore Sequencing
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 Nanopore is a nano-scale hole
 In nanopore sequencers, an ionic current passes through the nanopores
 When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current
 This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases
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Pre-alignment rejected mapping percentage and speed compared to alignment step

Total processing time without pre-alignment (sec)

The Effect of Pre-Alignment (Theoretically)
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Pre-alignment rejected mapping percentage and speed compared to alignment step

Total processing time without pre-alignment (sec)
Total processing time with pre-alignment (sec)
Ideal processing time for 90% pre-alignment rejection percentage

assuming alignment processes 100 Mappings/sec

Filter+
Alignment

Target

Pre-alignment saves more than 

40% to 80% 
of the total processing time

Notas del ponente
Notas de la presentación
What effect pre-alignment has on overall execution time? Well, that depends on how much and how fast it can remove incorrect mappings 


We make
two key observations. (1) The reduction in the end-to-end processing time of the
alignment step largely depends on the accuracy and the speed of the pre-alignment
lter. (2) Pre-alignment ltering can provide unsatisfactory performance (as
highlighted in red) if it can not reject more than about 30% of the potential
mappings while it's only 2x-4x faster than read alignment step.



Aside: In-Memory Graph Processing
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 Large graphs are everywhere (circa 2015)

 Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Communications In Tesseract (I)
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Communications In Tesseract (II)
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Communications In Tesseract (III)

364



Remote Function Call (Non-Blocking)
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Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching



Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32 
Tesseract 

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0
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16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

du
p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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+56% +25%
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Effect of Bandwidth & Programming Model
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2.3x
3.0x

6.5x
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HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract
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du
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HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)



Tesseract Graph Processing System Energy

0

0,2

0,4

0,6

0,8

1

1,2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract
 Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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http://users.ece.cmu.edu/%7Eomutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/%7Eomutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf
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