The Universe of Neurotoxic Proteins

A Study of the Conformational Space of Polyglutamine

Àngel Gómez-Sicilia

Cajal Institute - Spanish Research Council (CSIC)

September 23rd, 2015

Preface Methods Results Summary

Diseases of the old

Alois Alzheimer

James Parkinson

George Huntington

Hans G. Creutzfeldt Alfons M. Jakob

Table of contents

Preface

- Intrinsically disordered proteins
- Force in biology

2 Methods

• Molecular Dynamics

3 Results

• Conformational polymorfism

Table of contents

Preface

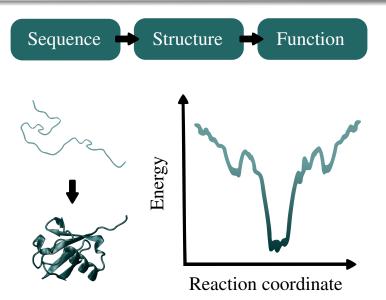
- Intrinsically disordered proteins
- Force in biology

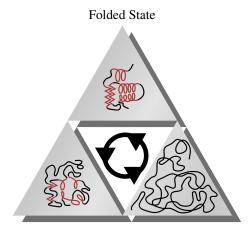
Methods

• Molecular Dynamics

Results

• Conformational polymorfism



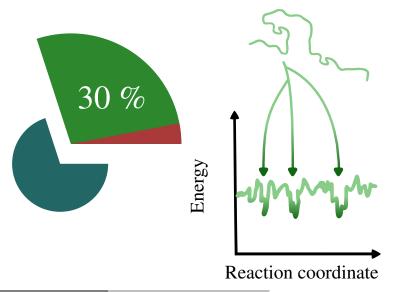

BiochemMx3 (matthewmccarthy32.wordpress.com)

The folding paradigm

The protein trinity

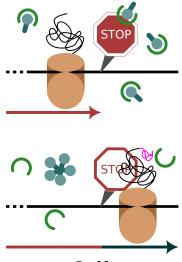
Molten globule

Random coil

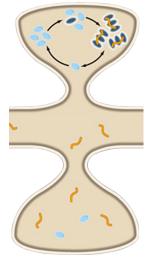


À. Gómez-Sicilia (I. Cajal - CSIC)

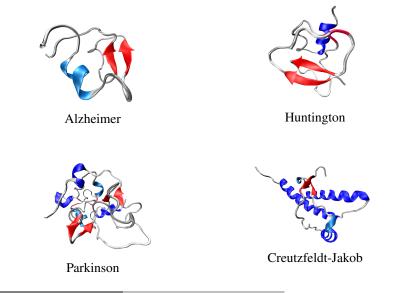
The Universe of Neurotoxic Proteins


September 23rd, 2015

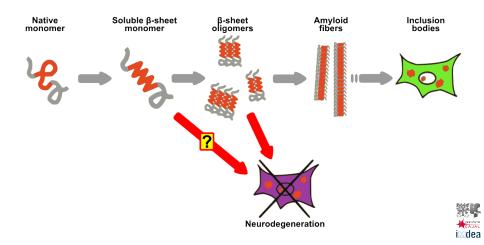
Intrinsically disordered proteins

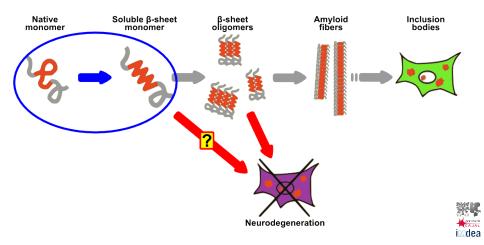


Intrinsically disordered proteins Functional IDPs


Sup35 (Modified from Partridge & Barton 2000)

CPEB (Modified from Si et al. 2010)

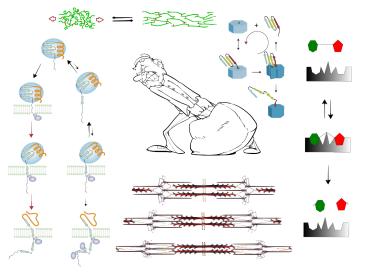

Intrinsically disordered proteins Toxic IDPs

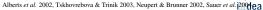

Intrinsically disordered proteins

Relation to disease: Neurodegeneration cascade

Intrinsically disordered proteins

Relation to disease: Neurodegeneration cascade




Force in biology

Force in biology

Table of contents

Preface

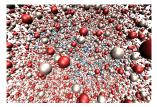
- Intrinsically disordered proteins
- Force in biology

Methods Molecular Dynamics

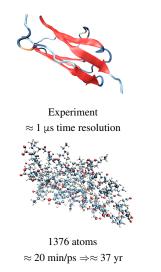
Results

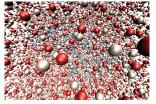
• Conformational polymorfism

Simulating movement


Experiment $\approx 1 \ \mu s$ time resolution

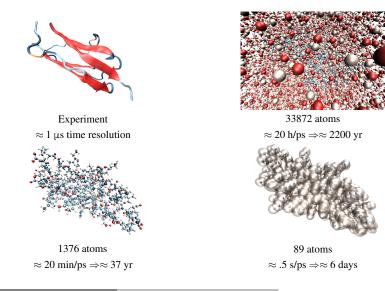
Simulating movement


Experiment $\approx 1 \ \mu s$ time resolution



33872 atoms $\approx 20 \text{ h/ps} \Rightarrow \approx 2200 \text{ yr}$

Simulating movement

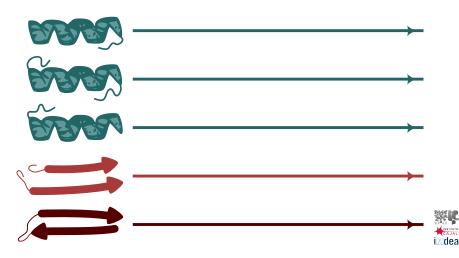


33872 atoms $\approx 20 \text{ h/ps} \Rightarrow \approx 2200 \text{ yr}$

Simulating movement

À. Gómez-Sicilia (I. Cajal - CSIC)

The Universe of Neurotoxic Proteins



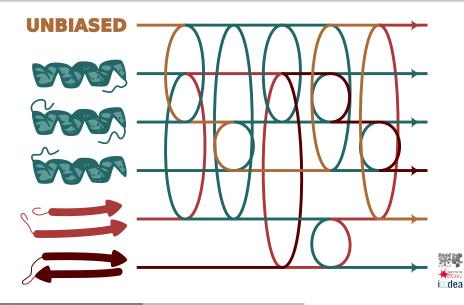


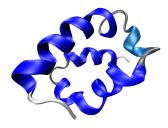
Table of contents

) Preface

- Intrinsically disordered proteins
- Force in biology
- MethodsMolecular Dynamics

3 Results

• Conformational polymorfism

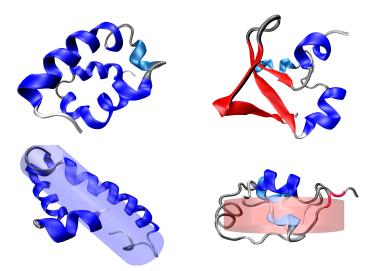

Polymorfism

Generated structures Independent conformers

246 conformations in 2 μ s

R & K & K & K & K & K - E & Z & A a E 50 500 a 200 See 82 - 🖧 🥵 🌮 🚱 🏠 Se 32 18 ್ಷ £2, £ 4 % & # 3 % & # % % % % % % % % % % % % - **X** - E 5 en ma na da da 🐎 🐎 🍕 🌋 en da 😂 🗫 🍊 🔅 N 1 5 22 - Carlor ************ 1800 S. -23 \$£ ÷\$ 38 23 *≸*`}i⊠dea À. Gómez-Sicilia (I. Caial - CSIC) The Universe of Neurotoxic Proteins September 23rd, 2015

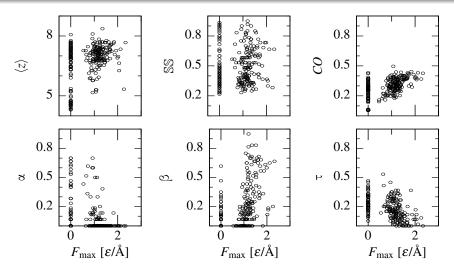
Generated structures Structure and shape


Generated structures Structure and shape

Generated structures Structure and shape

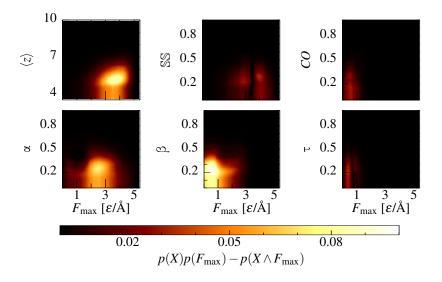
Descriptors of the structures

Structural descriptors

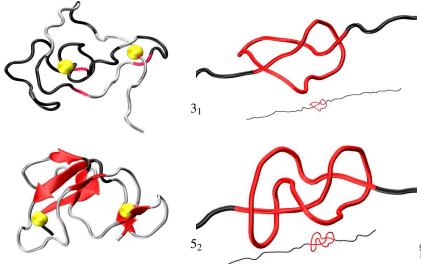

$$\langle z \rangle = \frac{2\left(\mathcal{K} + N - 1\right)}{N}$$
$$CO = \frac{1}{\mathcal{K} \cdot N} \sum_{k} \Delta_{k}$$
$$\mathbb{SS} = \alpha + \beta + \tau$$

Dynamic descriptor

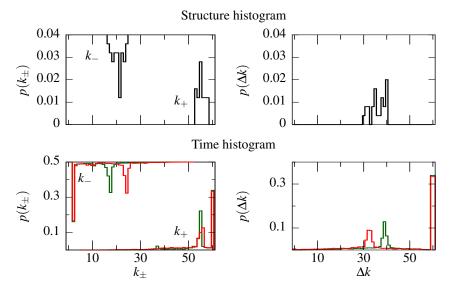
Mechanical stability, F_{max}



Descriptors of the structures



Descriptors of the structures



Knotted structures

Knotted structures

- We have successfully used bias exchange molecular dynamics to explore the conformational space of a 60-residue polyglutamine.
- We have identified a wide variety of structured conformations that present several different shapes, number of contacts, secondary structural elements and mechanical stabilities, among other descriptors, in agreement with experiments.
- We have discovered knotted conformations with an average width of 35 residues, close to the pathological threshold of many glutamine-related diseases, including Huntington.
- We propose knotting of the conformations as one of the possible toxicity mechanisms related to polyglutamine.

- We have successfully used bias exchange molecular dynamics to explore the conformational space of a 60-residue polyglutamine.
- We have identified a wide variety of structured conformations that present several different shapes, number of contacts, secondary structural elements and mechanical stabilities, among other descriptors, in agreement with experiments.
- We have discovered knotted conformations with an average width of 35 residues, close to the pathological threshold of many glutamine-related diseases, including Huntington.
- We propose knotting of the conformations as one of the possible toxicity mechanisms related to polyglutamine.

- We have successfully used bias exchange molecular dynamics to explore the conformational space of a 60-residue polyglutamine.
- We have identified a wide variety of structured conformations that present several different shapes, number of contacts, secondary structural elements and mechanical stabilities, among other descriptors, in agreement with experiments.
- We have discovered knotted conformations with an average width of 35 residues, close to the pathological threshold of many glutamine-related diseases, including Huntington.
- We propose knotting of the conformations as one of the possible toxicity mechanisms related to polyglutamine.

- We have successfully used bias exchange molecular dynamics to explore the conformational space of a 60-residue polyglutamine.
- We have identified a wide variety of structured conformations that present several different shapes, number of contacts, secondary structural elements and mechanical stabilities, among other descriptors, in agreement with experiments.
- We have discovered knotted conformations with an average width of 35 residues, close to the pathological threshold of many glutamine-related diseases, including Huntington.
- We propose knotting of the conformations as one of the possible toxicity mechanisms related to polyglutamine.

Acknowledgements

Group Leader:

M. Carrión-Vázquez

Lab Manager:

L. Vay

PostDoc Students:

R. Hervás A. M. Vera

PhD Students:

A. Galera-PratM. C. FernándezR. Carro

Lab Technician:

E. Tejera

Collaborators:

M. Cieplak (Institute of Physics, Polish Academy of Science) M. Sikora (Institute of Science and Technology, Austria)

Funding & Resources:

The Universe of Neurotoxic Proteins

A Study of the Conformational Space of Polyglutamine

Àngel Gómez-Sicilia

Cajal Institute - Spanish Research Council (CSIC)

September 23rd, 2015

