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● SME from Terrassa (Barcelona)

● Spin-off of the CTTC center from the Technical University of Catalonia

● We provide CFD consulting services at leading edge HPC level using 
advanced multi-physic models

● Our studies are based on simulations performed with our in-house 
unstructured CFD code

●  Working for different industrial areas such as renewable power 
generation, thermal  equipments or HVAC and refrigeration 

● Network:

TERMO FLUIDS



  

● TermoFluids currently not available as a standalone product, but is shared with 
different academic partners: 

● CTTC – Technical University of Catalonia (UPC)
●  Aerodynamics and Flight Mechanics Group - University of Southampton  
● Computational aeroacoustic laboratory - Russian Academy of Sciences

● General purpose unstructured CFD code in C++

● Finite volume symmetry-preserving discretizations on unstructured meshes

● Several LES and Regularization models for turbulent flows

● Expansion to multi-physics simulations: reactive flows, combustion, multi-phase 
flows, particles propagation, fluid structure interactions, radiation effects, dynamic 
meshes...

 

TermoFluids CODE



  

● HPC is an essential tool for CFD (high demand of computing and memory resources)

● TermoFluids code:

✔ C++ object oriented

✔ Mostly based on the distributed memory model (MPI) – recently developed hybrid model with 
GPU-coprocessors (MPI/CUDA)

✔ Performance barriers:

● Parallelism: inter CPU communications (point-to-point, all-reduce) → not so critical now
● Flops: low flop per byte ratio → critical (low percentage of peak performance achievable)

Curie TGCC MareNostrum BSC JFF CTTC Lomonosov MSU Mira ALCF

HPC in Termo Fluids



  

● TermoFluids code recently used in PRACE Tier0 project by CTTC (23M hours)

● Project ran in BSC MareNostrum II supercomputer

● DRAGON - Understanding the DRAG crisis: ON the flow past a circular cylinder from 
critical to trans-critical Reynolds numbers

✔ Largest simulation with 4096 CPU-cores

✔ Mesh 320M CV, Re=4e6

✔ Around 10 TB of data outputs

Recent HPC projects: DRAGON



  

PRACE Preparatory Access Project

● PRACE Preparatory access is intended for testing 
and developing codes in order to prepare applications 
for PRACE Tier-0 systems

● TermoFluids was recently ported to the hybrid 
CPU/GPU model in the context of the PRACE 
preparatory access project: 

      “Acceleration of TermoFluids code by means of GPU 
co-processors” 

● Tests  performed on the TGCC Curie hybrid nodes, 
based on:

● 2 Intel Xeon E5640 quad-core processors
● 2 Nvidia M2090



  

Accelerators in HPC

● Accelerators becoming increasingly popular in leading edge supercomputers

● Potential to significantly reduce space, power consumption, and cooling demands

● Context: Constrained power consumption target (~25MW for the entire system ) → power wall

 top500.org list June 2014 

● 13% of the Top500 list systems are 
based on hybrid nodes 

● Considering the first 15 positions of 
Top500 list 8 (53%)  are based in hybrid 
nodes 

● 100% of the fist 15 positions in the 
Green500 list are hybrid nodes with 
accelerators (NVIDIA)

● Those rankings are based on the High-
performance LINPACK benchmark for 
dense linear systems but...

      ...in general PDEs systems are sparse! 



  

CPU vs GPU 

Design goals for CPUs

● Make a single thread very fast

● Reduce latency through large caches 

● Predict, speculate

http://extremecomputingtraining.anl.gov/files/2014/01/Warburton-Accelerators14.pdf

Design goals for CPUs

● Throughput matters and single threads do not

● More transistors dedicated to computation

● Hide memory latency through parallelism

● Remove modules to make simple instruction fast                                                
  (out-of-order control logic, branch predictor logic, memory pre fetch unit)

● Share the cost of instruction stream across many ALUs  (SIMD model)

● Multiple context per stream multiprocessor (SM) → concurrency



  

PRACE Preparatory Access Project

● Target problem:

● Flow around Asmo car 

● Re = 7e5

● Mesh: 5.5 Milion CV, prismatic boundary layer and tetrahedral elements 

● Symmetry preserving finite volume discretization

● Fractional step pressure-velocity coupling

● Sub-grid scales: wall-adapting local-eddy viscosity (WALE)

● Poisson solver: CG with Jacobi diagonal scaling

Flow and turbulent structures around simplified car models. D.E. Aljure, O. Lehmkuhl,, I. Rodríguez, A. 
Oliva. Computers & Fluids 96 (2014) 122–135



  

Enabling work

● Code re-structuring: conversion of TermoFluids  
momentum solver into an algebraic kernel based code

● Loops around mesh elements assembled into sparse 
matrices (in a preprocessing stage)

● Time-step integration based on algebraic kernels

● Result: most of time is spent in only three basic algebraic 
kernels: 

● SpMV:  y ← A*x  (A sparse matrix, x and y vectors)

● AXPY:  y ← ax+y (a scalar)

● DOT:    a ← x*y                 

● Easier portability of the time integration code, which  
dominates the execution costs

SpMV is the dominant kernel
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SPMV kernel

● SpMV kernel: A*x=b (A Laplacian operator)
● Tetrahedral mesh, 5 entries per row
● N system size, 5N  matrix entries
● Storage format ELLPACK: 1 double (value) and 1 int (column index) per matrix entry
● A bytes  in ELLPACK: 2*(8*5*N) = 80N
● b bytes: 8N
● x bytes: 8N (max cache reuse),  8*(5N) (no cache reuse)
● SpMV bytes:  2*(8*5*N) +2*(8N) = 96N  – with max. cache reuse

                               2*(8*5*N)+(8*5*N) + 8N = 128N – with max. cache reuse
● SpMV flops: 2*5N = 10N ( a + and a *  per matrix entry)

No ordering Cuthill - Mckee orderingNo ordering



  

Performance Barrier CPU

● Intel Xeon E5640 (4 core,Turbo Freq. 2.93 GHz, Bandwidth 25.6 GB/s)

● Sequential run of ELLPACK SpmV

● Peak performance: 4 flop/cycle x 2.93 G cycle/s = 11.72 Gflop/s (flops: 2 FMA + 2 SIMD)

● Peak bandwidth 1 thread:  10.5 GB/s  (STREAM test TGCC support team)

● Time computations: 10N flop / 11.72 Gflop/s = 0.85N ns
● Time move data: 96N bytes / 10.5 GB/s = 9.14N ns
● Ratio: time_move / time_comp ≈ 10 !!
● Total time: total_time ≥ max(time_move, time_comp)= 9.14N ns

● Achievable performance:  
                         performance SpMV = 10N/ total_time ≤ 10N/9.14N = 1.09 Gflop/s

         NO MORE THAN 9.3% OF CPU CORE PERFORMANCE CAN BE ACHIEVED!!

                                        

                                               



  

Performance Barrier CPU

● Intel Xeon E5640 (4 core,Turbo Freq. 2.93 GHz, Bandwidth 25.6 GB/s)

● Sequential run of ELLPACK SpmV – REAL MEASURMENTS

● Maximal performance without cache reuse = 10 / 128 flops/byte * 10.5 Gbytes/s = 0.82 
Gflop/s

● Results are in agreement with the expected performance

                                        

                                               



  

Performance Barrier GPU

● NVIDIA M2090 (Tesla)

● ELLPACK SpmV on one GPU – implementation on CUDA 5.5 

● Peak performance: 666.1 Gflop/s

● Bandwidth:  0.8*177 = 141.6 GB/s  (20% reduction caused by ECC – NVIDIA best prac. guide)

● Time computations: 10N flop / 666.1 Gflops = 0.015N ns
● Time move data: 96N bytes / 141.6 GB/s = 0.68N ns
● Ratio: time_move / time_comp ≈ 45!!
● Total time: total_time ≥ max(time_move, time_comp)= 0.68N ns

● Achievable performance:  
                         performance SpMV = 10N/ total_time ≤ 10N/0.68N = 14.7 Gflop/s

         NO MORE THAN 2.2% OF GPU PERFORMANCE CAN BE ACHIEVED!!

                                        

                                               



  

Performance Barrier CPU

● NVIDIA M2090 (Tesla)

● ELLPACK SpmV on one GPU (CUDA) – REAL MEASURMENTS

● Reaching the peak bandwidth requires certain occupancy

● Results are in agreement with the expected performance

                                        

                                               



  

● Single core Intel Xeon E5640 vs NVIDIA M2090

● Corollary of previous measurements: speed up from 9x to 15x

                                        

                                               

GPU vs CPU sequential
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Multi-core CPU

● Intel Xeon E5640 

● Speedup form 1 to 4 CPU-cores (inter-core communication not included)

● Potential Speedup =  bandwidth increase (only bandwidth matters!!)

● Bandwidth 1-core: 10.5 GB/s; 4-core (a CPU): 25.6 GB/s; ratio= 2.44x (<4x!!)

● The achievable performance using  all 4 CPU cores reduces at ~ 6%

● Results are in agreement with the expected performance
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● ELLPACK SpMV Intel Xeon E5640 vs NVIDIA M2090

● Speedup considering all 4-cores ranges from 5x to 7x

● Ratio between peak bandwidth of both systems: 141,6 (gpu) /25.6 (cpu) = 5.5x

● GPU uses more effectively its bandwidth for higher sizes and CPU for lower ones

  MEMORY AWARE PROGRAMMING!!
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Multi GPU implementation
 

● MPI + CUDA implementation

● Parallelization based on a domain decomposition

● One MPI-thread per subdomain and one GPU per MPI-thread

● Local data partition: separate inner parts (do not require data form other subdomains) 
from interface parts (require external elements)

● Local data partition + two stream model -> overlapping computations on GPU with 
communications



  

Multi – GPU tests

● Comparison weak speedup multi-CPU vs multi-GPU (inter CPU/GPU comm included)

● Similar results despite muti-GPU implementation is from 5x to 7x faster!!       
causes:

● Number of MPI-threads is 4 times lower in multi-GPU implementation → less 
communications overhead

● Overlapping is more effective in multi-GPU implementation, since communication 
and computations are running on independent devices
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Multi – GPU tests

● Comparison of weak speedup, multi-CPU vs multi-GPU (inter CPU/GPU comm included)

● Local size with 32 GPUs / 128 CPUs: 50K, 100K and 200K respectively

● The local problem reduction decreases the bandwidth performance on GPU (less 
occupancy) 

● The bandwidth performance does not decrease on the CPUs and, additionally,  improves 
the cache reuse 
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● Flow around Asmo car, Re=7e5

● Mesh 5.5 million CV

● Prismatic boundary layer → JAGGED storage format (sliced ELLPACK)

● AXPY and DOT on mkblas 14.0.3.174 and cublas 5.0

● From 1 to 16 nodes used → from 2 to 32 GPUs - from 8 to 128 CPUs

Tests on TARGET CASE

80.77%

9.12%

8.79%1.32%

SpMV DOT AXPY OTHERS



  

Tests on TARGET CASE
● Strong speedup multi-GPU for the implementation of momentum solver

● 63% PE achieved (with 32 GPUs load per GPU < 172K cells)

● Performance can be estimated according: i) number of repetitions of each kernel per time 
step, ii) parallel performance of kernels (SpMV, AXPY, DOT)

● “Good” agreement  between estimation and real measurements  → performance could be 
estimated in any system by only studying it for the basic kernels
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● Speedup muti-GPU vs multi-CPU for the momentum solver

● Speedup ranges between 5x and 11x, depending on the workload 
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CONCLUDING REMARKS

● Initial goal was accelerating TermoFluids by means of GPUs but...

● We have developed a portable version of the code based on an algebraic 
operational approach

● We have seen that 98% is spent on three kernels: SpMV, AXPY, DOT
● SpMV dominates the execution with 81% in our target application
● The three algebraic kernels are memory bounded, performance depends 

exclusively on the bandwidth achieved
● Our SpMV implementation on single CPU-core and single GPU show the expected 

performance
● Similar parallel performance is achieved for both multi-CPU and multi-GPU 

implementations 
● Parallel performance of the overall time step execution is estimable from 

performance of the basic kernels 
● Speedup of multi-GPU vs multi-CPU implementation in our target problems ranges 

from 5x to 11x 

 

 

● Acknowledgments



  

CONCLUDING REMARCS

● Ongoing work:

● Porting other physics solvers to GPUs

● Overlapping GPU and CPU solvers in multi-physics applications

● Looking for the trade-off between code performance and programmers performance 
(our engineers are more used to mesh loops rather than algebraic kernels to implement 
discretizations) 
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