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Introduction (I)

@ Disorder may have dramatic effects in condensed matter
physics. For instance, adding a small amount of Strontium of
Lay CuQO4 turns an electrical insulator into a superconductor.
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Introduction (I)

@ Disorder may have dramatic effects in condensed matter
physics. For instance, adding a small amount of Strontium of
Lay CuQO4 turns an electrical insulator into a superconductor.

@ Basic approach in fundamental Physics: identify minimal
model for complex behavior (support: Universality and
Wilson's RG).

e The Random-Field Ising Model (RFIM) is a cherised but still
not completely understood model for the effects of disorder.
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Introduction (II): The standard Ising model
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Introduction (III): The Random-Field Ising model

H:—JZSXSy - thsx , Sx==1.
X,y X

e Two conflicting terms in the Hamiltonian.
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@ Two conflicting terms in the Hamiltonian.
@ Found useful in a wild variety of contexts:

Antiferromagnets in an externally applied magnetic field.
e Binary liquids in porous media

e Colossal magnetorresistence oxides.

o Ferroelectrics,. ..
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Introduction (III): The Random-Field Ising model

H:—JZSXSy - thsx , Sx==1.
X,y X

@ Two conflicting terms in the Hamiltonian.
@ Found useful in a wild variety of contexts:

Antiferromagnets in an externally applied magnetic field.

e Binary liquids in porous media

e Colossal magnetorresistence oxides.

o Ferroelectrics,. ..

@ In spite of innocent aspect, quintessential non-perturbative
problem (e.g. the lower critical dimension paradox).

@ Space dimension is an all-important variable.
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Introduction (IV): some open problems

@ The random-field Ising model (RFIM) is a long-standing
problem of Statistical Mechanics (= 1700 papers in the years
1970 - 2012: source ISI WEB).
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scenario (77 = 2n), have been recently questioned (Tissier and
Tarjus, PRL 107, 041601 (2011)).

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Introduction (IV): some open problems

@ The random-field Ising model (RFIM) is a long-standing
problem of Statistical Mechanics (= 1700 papers in the years
1970 - 2012: source ISI WEB).

e Unusual RG: fixed point at zero temperature (T = 0) leading
to hyper-scaling violations (exponent 6).

@ Some cherished concepts, i.e. the two-exponent scaling
scenario (77 = 2n), have been recently questioned (Tissier and
Tarjus, PRL 107, 041601 (2011)).

@ Universality in terms of different random-field distributions
has been severely questioned many times.

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Introduction (IV): some open problems

@ The random-field Ising model (RFIM) is a long-standing
problem of Statistical Mechanics (= 1700 papers in the years
1970 - 2012: source ISI WEB).

e Unusual RG: fixed point at zero temperature (T = 0) leading
to hyper-scaling violations (exponent 6).

@ Some cherished concepts, i.e. the two-exponent scaling
scenario (77 = 2n), have been recently questioned (Tissier and
Tarjus, PRL 107, 041601 (2011)).

@ Universality in terms of different random-field distributions
has been severely questioned many times.

@ We only have analytic control of the problem in very high
space dimensions (upper critical dimension: d = 6).

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Introduction (IV): some open problems

@ The random-field Ising model (RFIM) is a long-standing
problem of Statistical Mechanics (= 1700 papers in the years
1970 - 2012: source ISI WEB).

e Unusual RG: fixed point at zero temperature (T = 0) leading
to hyper-scaling violations (exponent 6).

@ Some cherished concepts, i.e. the two-exponent scaling
scenario (77 = 2n), have been recently questioned (Tissier and
Tarjus, PRL 107, 041601 (2011)).

@ Universality in terms of different random-field distributions
has been severely questioned many times.

@ We only have analytic control of the problem in very high
space dimensions (upper critical dimension: d = 6).
Understanding what happens upon varying d is a critical issue.
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Ingredients in our approach (Il): Simulated (continuous)
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@ double Gaussian (dG):
_(hx—hg)® (hx+hg)?

W(dG)(hX; hR7 O') = % 1 e 202 +e 22

e bimodal (b): =0
o Gaussian (G): hg =0
o dG=Y: bimodal - like continuous distribution

o dG(™=2)
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Ingredients in our approach (Il): Simulated (continuous)

field distributions

@ double Gaussian (dG):
_(hx—hg)® (hx+hg)?

W(dG)(hX;hR,J):% L sle 2?7 e 27

e bimodal (b): =0
o Gaussian (G): hg =0
o dG=Y: bimodal - like continuous distribution

o dG"=2)
o Poissonian (P): W()(h,; hg) = ﬁe*‘hxvhR

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Ingredients in our approach (lll): Computational scheme

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Ingredients in our approach (lll): Computational scheme

@ Use fluctuation-dissipation formalism to:

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Ingredients in our approach (lll): Computational scheme

@ Use fluctuation-dissipation formalism to:

o Compute connected correlation functions I',, = %.
y

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Ingredients in our approach (lll): Computational scheme

@ Use fluctuation-dissipation formalism to:

o Compute connected correlation functions I',, = %
Y

o Compute as well disconnected correlations Gy, = (5.5, ).

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Ingredients in our approach (lll): Computational scheme

@ Use fluctuation-dissipation formalism to:

o Compute connected correlation functions I',, = %.
Y

o Compute as well disconnected correlations Gy, = (5.5, ).

o For either correlator — second-moment correlation length.

V,M.-M., N.G.F., N.S., M.P. RES Users’ 2015: RFIM 4D and beyond



Ingredients in our approach (lll): Computational scheme

@ Use fluctuation-dissipation formalism to:

9(5¢)
oh,

o Compute connected correlation functions I',, =

o Compute as well disconnected correlations Gy, = (5.5, ).

For either correlator — second-moment correlation length.
Perform re-weighting extrapolation on hg.
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Ingredients in our approach (lll): Computational scheme

@ Use fluctuation-dissipation formalism to:

o Compute connected correlation functions I',, = %.
Y

o Compute as well disconnected correlations Gy, = (5.5, ).

For either correlator — second-moment correlation length.
Perform re-weighting extrapolation on hg.

Compute derivatives with respect to hg — estimation of the
critical exponent v.

@ Obtain size-dependent effective exponents — control scaling
corrections (make use of the quotient method).

@ Perform high statistics in both directions: L <192 in d =3

(L > 60 in d = 4), # disorder samples in the range
(10 — 50) x 10°.
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The computational challenge

@ Overall goal: obtain some 5 x 107 ground states.

@ Even with very efficient min-cut/max-flow algorithms it is
crucial to optimize application.
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The computational challenge

@ Overall goal: obtain some 5 x 107 ground states.
@ Even with very efficient min-cut/max-flow algorithms it is
crucial to optimize application.

@ Homemade code 10 times faster than library implementations:
2 minutes per Ground State on modern CPU: 2 million hours
of CPU.

@ Beyond capabilities of any local resource RES!!.

e Major logistic problems to be faced: disk storage, massive 1/0
flow, data base of results... The MareNostrum could handle it
all.
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Crossings of the universal ratio /L (from connected T',)
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Mind the very strong scaling corrections!

&/L at the crossing points: different models differ at fixed L.
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Mind the very strong scaling corrections!
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One needs extrapolation to large L.
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Universality in the d = 3 RFIM

A+ BL™ 4+ CL™2% + DL73% ; Lmin =24 ; w = 0.52 £ 0.11 ;
x?/dof =18.83/14, Q@ = 0.17 (full covariance-matrix!)
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The same approach can be carried out in d=4
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Extrapolation of v

vi=v+BL™ : Lhin=32;w=0.52;
x?/dof =12.52/10, Q = 0.25
Final estimate: v = 1.38 £0.10
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Extrapolation of n

nL=n+BL™; Lmin =32 ; w=0.52; x?/dof =10/9, Q =0.35
Final estimate: n = 0.5153 £ 0.0009
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Extrapolation of 2n — 7
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Conclusions

@ The phase diagram of the RFIM is seemingly ruled by a single
fixed point:
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Conclusions
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@ Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions 7, 7.
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Conclusions

@ The phase diagram of the RFIM is seemingly ruled by a single

fixed point:
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@ Existence of strong scaling corrections that need to be
carefully monitored. Very accurate computation of anomalous
dimensions 7, 7.

@ The two-exponent scaling scenario holds within an
accuracy of two parts in a thousand (2/1000) in d = 3.
Analysis for d = 4 on their way.
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