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ULTRACOLD GASES AND SOLIDS

The main goal is the study of the properties of quantum systems
at ultralow temperatures (absolute zero)

Microscopic ab initio simulation is performed starting directly
from the many-body Hamiltonian

N FLQ
H = [_Az -+ Vewt(ri)] + Z ‘/int(’ri i er

Describes a system of /V particle in an external field with a given
interaction potential between the particles.

Interaction potential can be of a realistic or model type:

- Helium interacton potential |[Aziz II|, Hydrogen, Coulomb,
Yukawa, dipoles, Rydberg, Van der Waals, etc.

- model potentials: hard sphere, soft sphere, square well,
delta-pseudopotentials, etc.



QUANTUM MONTE CARLO METHODS

0 Ground-state properties are found using quantum Monte Carlo
methods

O Is an efficient way of evaluating 3/V — dimensional integrals

- Variational Monte Carlo (VMC) method:
- the many-body wave function ¥ (ry,...,rn; @, 3, ...)is proposed
- variational principle applies (minimal energy when is YT exact)
- variational parameters @, (3, ... are optimized

- Diffusion Monte Carlo (DMC) method
- solves the Schrodinger equation in imaginary time
- provides the ground-state energy exactly

O Emergetic and structural properties are studied
- energy, equation of state, excitation spectrum, gap, etc.
- pair correlation function, density profile, static structure factor,
one-body density matrix, etc.



COMPLEXITY OF THE CALCULATION

A typical choice of the trial wave function contains a pair-product
of two body terms (Bijl J astrow wave function)

Yr(re, .. T Hfl r; Hf2 T —rgl)

1<k
Even for a short—range interaction potential the complexity scales

as /V? with the number of particles for bosons
N3 complexity for fermions (Slater determinants, etc)

Homogeneous system simulated in a box with periodic boundary
conditions (PBC) : typical convergence 1/NV

Typical number of particles in a simulation /N~ 100 - 1000



ADVANTAGES OF PARALLELIZATION

0 Generally QMC can parallelized efficiently

- on the level of single-particle updates (VMC)

- on the level of walkers

(quantum system is replicated many times) e e
0 e

O Speed-up factors of 40 - 140 can be achieved
(compared to an optimized code on a single CPU)
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QUANTUM LIQUID HELIUM

O Y. Lutsyshyn, "A coordinated wavefunction for the ground state of
liquid helium-4" arXiv:1506.03752; G. E. Astrakharchik and J.
Boronat, "Luttinger liquid behavior of one-dimensional 3He", Phys.
Rev. B 90, 235439 (2014)

O Progression of Markov chain during Metropolis sampling of a
system with NV = 1000 atoms. A droplet gets formed.



LIQUID HELIUM

O Y. Lutsyshyn, G. E. Astrakharchik, C. Cazorla, J. Boronat,
"Quantum phase transition with a simple variational ansatz", Phys.
Rev. B 90, 214512 (2014)

O Energy per particle in liquid-solid coexistence region,
O two separate local minima exist (liquid phase, solid phase)



COULOMB WIRE

0 G. Ferre, G. E. Astrakharchik, J. Boronat, "Phase diagram of a
quantum Coulomb wire", arXiv:1507.05496 (2015)
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1D BOSE GAS IN OPTICAL LATTICE

0 Grigory E. Astrakharchik, Konstantin V. Krutitsky, Maciej
Lewenstein, Ferran Mazzanti, 'One-dimensional Bose gas in optical
lattices of arbitrary strength", arXiv:1509.01424 (2015)
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B O Innsbruck experiment

6 8
Inverse Lieb-Liniger parameter, y'=|a,|/2a,

The T' = 0 phase diagram of the continuous model as a function of
the s-wave scattering length a1p/ag and the optical lattice intensity
Vo/Erec. Compared to sine-Gordon and Bose-Hubbard model.



BILAYER OF DIPOLES

O A. Macia, G. E. Astrakharchik, F. Mazzanti, S. Giorgini, J.
Boronat, "Single-particle versus pair superfluidity in a bilayer
system of dipolar bosons", Phys. Rev. A 90, 043623 (2014)

Phase diagram featuring the single-particle (upper region) and the pair
superfluid (lower region). The dots correspond to the transition points

as obtained from DMC simulations. The two arrows show the freezing

density of a single layer of particles (right) and of dimers (left).



OSCILLATIONS IN A TRAPPED 1D BOSE GAS

O A.Iu. Gudyma, G. E. Astrakharchik, Mikhail B. Zvonarev,
" Reentrant behavior of the breathing-mode-oscillation frequency in
a one-dimensional Bose gas', Phys. Rev. A 92, 021601(R) (2015)
0 7. D. Zhang, G. E. Astrakharchik, D. C. Aveline, S. Choi, H.
Perrin, T. H. Bergeman, M. Olshanii, " Breakdown of the scale

invariance in a near-1onks-Girardeau gas: some exact results and
beyond', Phys. Rev. A 89, 063616 (2014)
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O O

BOSE GASES

Solitons: G. E. Astrakharchik and B. A. Malomed, "Quantum
versus mean-field collapse in a many-body system",
arXiv:1508.05449 (2015)

1D trapped Bose gases:

M. A. Garcia-March, B. Julia-Diaz, G. E. Astrakharchik, J.
Boronat, A. Polls, "Distinguishability, degeneracy, and correlations
in three harmonically trapped bosons in one dimension", Phys.

Rev. A 90, 063605 (2014)

M. A. Garcia-March, B. Julia-Diaz, G. E. Astrakharchik, Th.
Busch, J. Boronat, A. Polls, "Quantum correlations and spatial
localization in one-dimensional ultracold bosonic mixtures", New J.

Phys. 16, 103004 (2014)

G. E. Astrakharchik and I. Brouzos, "Trapped one-dimensional ideal
Fermi gas with a single impurity", Phys. Rev. A 88, 021602(R)
(2013)
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AMDAHL'S LAW (CPUs ONLY) 18

Y. Lutsyshyn, "Fast quantum Monte Carlo on a GPU", Computer
Physics Communications 187, 162 (2015)

Amdahl's law: maximum speedup using multiple processors.

With increased parallelization, even a small serial fraction in-
evitably becomes a bottleneck. Given that S is the serial and
P the parallel fractions of the program (S + P = 1), and M
is the number of parallel threads or processes, the achievable
acceleration A is given by

.~ S+P | _ L
- S+P/M S+(1-8)/M "8




MODIFIED AMDAHL'S LAW (CPU+GPU) =

The load masking leads to a modified form of the Amdahl law.
Suppose that Rcpy is the code fraction that remains on the
CPU, and the serial and parallelizable parts that are moved to
the GPU are Sgpy and Pgpy. Thus Repy + Sepu + Popu = 1.
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If the parallel portion of
the GPU code may be ac-
celerated by a factor M,

the resulting speed-up is | 1060 80 100 120 140
Parallelization factor M

Amask (M) —



BLOCK DIAGRAM 20

GPU-side

CPU-side

Start block

(start block ¢

CPU-side generates raw random
numbers and sends them to the
GPU-side.

Once the GPU obtains the
starting configurations, it starts
the Markov chain.

Every m macroupdates

M (threadblocks), the GPU sends
the configurations back to the
CPU for processing.

Meanwhile, the GPU continues the
generation.

When the CPU-side is not
occupied, it generates new raw
random numbers to be used in the
next block.

The size of a block is limited by
the GPU global memory, typically
at 228=268 - 10% microupdates.



FAST QUANTUM MONTE CARLO ON GPU
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CPU and GPU synchronized —a—
CPU and GPU concurrent —s—
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Macroupdates between analyses m

Load masking in a calculation with N = 512 particles and eight
independent Markov chains on a GTX560Ti. The plots show the
total execution time in seconds vs the number of macroupdates
between analyses. The vertical axis shows the total execution
time in seconds. All lines are fits to the corresponding regions
in the form a + b/m.



ACCELERATION

Acceleration

M2090 —A—
560Ti —@— |

1 I 1 1 I 1 1
1000 1500 2000

Number of particles N

L1
500

Acceleration: ratio of execution times measured with or without GPU
acceleration.(optimized 1CPU code)
Blue bullets: 5607T1i; green triangles: M2090; red squares: K20.
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Table 1: Configuration of the computers used for benchmarking. The top
column shows the labels used to refer to the corresponding machine in the
text. M2090s were accessed on a BullX GPU cluster in the Barcelona Super-
computing Center. The 560Ti and K20 were installed on a workstation.

56071 M2090 K20

Architecture Workstation Cluster Workstation

CPU

make

Intel Intel Intel

type 15-2500 Xeon E5649 15-3570
clock frequency 3.3 GHz 2.5 GHz 3.4 GHz
memory 16 GB 24 GB 12 GB

L3 cache
GPU

series

6 MB 12 MB 6 MB

Tesla Tesla

GeForce

architecture Fermi Fermi Kepler
chipset GF114 T20A GK110
model GTX 560 Ti M2090 K20
compute capability 2.4 2.0 3.5

384 512 2496
SM(SMX ) count 8 16 13
cores per SM 48 32 192

clock frequency 1.8 GHz 1.3 GHz 0.71 GHz
global memory 1.0 Gb 6.0 Gb 5.0 Gb

number of cores




INNSBRUCK EXPERIMENT

Vol 466|29 July 2010 doi:10.1038/nature09259

Pinning quantum phase transition for a Luttinger
liquid of strongly interacting bosons

Elmar Haller!, Russell Hart!, Manfred J. Mark’', Johann G. Danzl', Lukas Reichséliner', Mattias Gustavsson’,
Marcello Dalmonte®**?, Guido Pupillo®® & Hanns-Christoph Nagerl’
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Figure 1| Comparing two types of superfluid-to-Mott-insulator phase
transition in one dimension. Schematic density distributions (grey) in the
presence of a periodic potential (red solid line).

Superltuid — Mott-Insulator phase transition observed in 1D system
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