
Using Machine Learning
to Manage Big Data …Securely

on the Cloud

Yale N. Patt

The University of Texas at Austin

Severo Ochoa Lecture

June 6, 2017

Just kidding!

Processor Paradigms: Evolution or Disruption
(and what does this have to do with Moore’s Law)

Yale N. Patt

The University of Texas at Austin

Severo Ochoa Lecture

June 6, 2017

What I want to do today

• Moore’s Law

• The VonNeumann Paradigm

• The Transformation Hierarchy

• Why paradigms

• Examples and their evolution

• What is needed moving forward

• How do we get there

Moore’s Law

• What it is
– A law of physics

– A law of microarchitecture

– A law of psychology

• What it enabled
– Smaller transistors  higher frequencies

– More transistors  more functions to go faster

• Why it can not go on forever

• And they often create new needs/problems

• So they give way to newer paradigms

What it enabled (starting in 1971)

• Pipelining

• Branch Prediction

• Speculative execution (and recovery)

• Special execution units (FP, Graphics, MMX)

• Out-of-order execution (and in-order retirement)

• Wide issue

• Trace cache

• SMT, SSMT

• Soft errors

• Handling LLC misses

What will Moore’s Law ending mean?

• No more faster transistors

• No more increase in the number of transistors

• We won’t even be able to have them all on at once

• So how can we stay on the performance curve?

The VonNeumann Paradigm

• A straightforward model of executing programs
– Fetch, Decode, Evaluate address, Fetch Data, …

• Many have suggested its demise
– I insist it will remain

– Our best mechanism for maintaining order, not chaos

• But it will be augmented with other structures.

The Transformation Hierarchy

• What it is
– Much more than just the “Software Stack”

• Why it will be useful moving forward

Algorithm

Program

ISA (Instruction Set Arch)

Microarchitecture

Circuits

Problem

Electrons

Why Paradigms?

• Paradigms are invented to satisfy needs/problems

• And they often create new needs/problems

• So they give way to newer paradigms

We could start with some very old Paradigms

• Approximate Computing

• Machine Learning

• Quantum Computing

With proper context…

• Floating point  Approximate computing

• Adaline/Perceptrn/Learn Matrix  Machine Learning

• Accelerator  Quantum

Some Paradigms

• Tomasulo (what was good, what was bad)

• Data Flow (what was good, what was bad)

• HPS

• CDC6600

• HEP (what was good, what was the problem)

• SMT (what was good, what was bad)

• SIMD

• GPU

• Systolic Array

• Spatial Computing

• Non-Von, BVM, Connection Machine

• Multi-core

• RISC

• User-writeable Control Store

…with some Assists: some good, some not

• In the microarchitecture
– Branch prediction

– Wider issue

– Predicated execution

– Extra memory pipes

– FPGAs (big increase in flexibility at small cost?)

• In the ISA
– Predicated execution

– Unaligned access

– Register windows

– Delayed branch

…so I must add: BE CAREFUL

• Add something to the microarchitecture: No problem
– If a bad idea, discard it on the next implementation

• Add something to the ISA
– You are stuck with it forever

Examples of Paradigm Evolution

• HPS

• SMT

• GPU

• VLIW

• Spatial Computing

• Many core

• Accelerators

HPS

• Tomasulo + Data Flow  HPS

• Tomasulo had out-of-order, NOT precise exceptions
– Also, ONLY the floating point unit

– Also, ONLY one operation per instruction

– Also, Stall on a branch (no steady supply of operations)

• Data Flow had micro-ops, but too unwieldly
– Hard to take interrupts

– Hard to debug

HPS took the good, added in-order retirement,

Restricted window, wide issue, aggressive br.predictor

The HPS Paradigm

• Processing micro-ops! (Restricted Data Flow)

• Incorporated the following:
– Aggressive branch prediction

– Speculative execution
– Wide issue

– Out-of-order execution

– In-order retirement

SMT

• HEP + ooo  SMT  SSMT

• HEP was brilliant, ahead of its time (SPIE 1977)
– But issued only one instruction each clock cycle

• Actually, CDC6600  HEP

• SMT (Hirata, ISCA 1992, Nemirovsky 1994, UW 1995)

• What if you only have one thread?

 SSMT (Chappell, ISCA 1999, Dubois, USC Report ’98)

GPU

• SIMD + SMT + Predicated Execution  GPU

• If the software can pay attention to branches

• If the software can organize memory accesses

VLIW

• Horizontal microcode  VLIW

• Not good for General Purpose Computing

• But good for domain specific stuff
– Microcode Emulation

– DSP chips

• i.e., when the software is known in advance

Spatial Computing

• Systolic Array + FPGAs  Spatial Computing

• HT Kung (1979): not enough transistors, too “asic”

• Today, stream data through a data flow graph

• If the software can produce the data flow graph

Multicore, Manycore

• Early days + Moore’s Law  Multicore, Manycore

• (Early days = Nonvon, BVM, Connection Machine)

• Not enough transistors in 1985 (one-bit data path)

• Still have the problem: how to program them!

Accelerators

• Many implementation mechanisms
– ASICs

– FPGAs

– EMT instruction (with writeable control store)

• Examples (Quantum computing, Machine learning)

• Requires the attention of
– The person writing the algorithm

– The programmer

– The compiler writer

– The microarchitect

In fact, as Moore’s Law finally ends

• We will have to think smarter

• That will mean bringing to the table
– Those working at all levels of the transformation hierarchy

Algorithm

Program

ISA (Instruction Set Arch)

Microarchitecture

Circuits

Problem

Electrons

Some Thoughts

• Each paradigm came because there was a need,

 and someone saw a way to accommodate that need
– It got replaced because the paradigm exposed

 subsequent needs due to new technology or new requirements

• Be careful what you put something into the ISA

• ILP is still important; MORE important as Moore’s Law fades

• We need to engage everyone (The transformation hierarchy)

• What must happen in order for us

 to be able to engage everyone

People need to understand

more than one layer

…which requires a fresh approach to
Education!

Thank you!

RISC

• What was it? (Depends on who you ask!)

• The soul: John Cocke – Open microcode.

 The compiler generates the control signals

• Then the young professors picked it up
– Patterson: Simple instructions needing single cycle execute

– Hennessy: The compiler and his pipeline reorganizer

• By 1989, Hennessy said: fast streamlined pipelines
– …which is actually consistent with John Cocke

• As a useful paradigm:
– Streamlined hardware

– Very sophisticated compiler

	Using Machine Learning to Manage Big Data …Securely on the Cloud
	PowerPoint Presentation
	Processor Paradigms: Evolution or Disruption (and what does this have to do with Moore’s Law)
	What I want to do today
	Moore’s Law
	What it enabled (starting in 1971)
	What will Moore’s Law ending mean?
	The VonNeumann Paradigm
	The Transformation Hierarchy
	Slide 10
	Why Paradigms?
	We could start with some very old Paradigms
	With proper context…
	Some Paradigms
	…with some Assists: some good, some not
	…so I must add: BE CAREFUL
	Examples of Paradigm Evolution
	HPS
	The HPS Paradigm
	SMT
	GPU
	VLIW
	Spatial Computing
	Multicore, Manycore
	Accelerators
	In fact, as Moore’s Law finally ends
	Slide 27
	Some Thoughts
	Slide 29
	Slide 30
	Slide 31
	RISC

