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What I want to do today

• Moore’s Law

• The VonNeumann Paradigm

• The Transformation Hierarchy

• Why paradigms

• Examples and their evolution

• What is needed moving forward

• How do we get there



Moore’s Law

• What it is
– A law of physics

– A law of microarchitecture

– A law of psychology

• What it enabled
– Smaller transistors  higher frequencies

– More transistors  more functions to go faster

• Why it can not go on forever

• And they often create new needs/problems

• So they give way to newer paradigms



What it enabled (starting in 1971)

• Pipelining

• Branch Prediction

• Speculative execution (and recovery)

• Special execution units (FP, Graphics, MMX)

• Out-of-order execution (and in-order retirement)

• Wide issue

• Trace cache

• SMT, SSMT

• Soft errors

• Handling LLC misses



What will Moore’s Law ending mean?

• No more faster transistors

• No more increase in the number of transistors

• We won’t even be able to have them all on at once

• So how can we stay on the performance curve?



The VonNeumann Paradigm

• A straightforward model of executing programs
– Fetch, Decode, Evaluate address, Fetch Data, …

• Many have suggested its demise
– I insist it will remain

– Our best mechanism for maintaining order, not chaos

• But it will be augmented with other structures. 



The Transformation Hierarchy

• What it is
– Much more than just the “Software Stack”

• Why it will be useful moving forward



Algorithm

Program

ISA (Instruction Set Arch)

Microarchitecture

Circuits

Problem

Electrons



Why Paradigms?

• Paradigms are invented to satisfy needs/problems

• And they often create new needs/problems

• So they give way to newer paradigms



We could start with some very old Paradigms

• Approximate Computing

• Machine Learning

• Quantum Computing



With proper context…

• Floating point  Approximate computing

• Adaline/Perceptrn/Learn Matrix  Machine Learning

• Accelerator  Quantum



Some Paradigms

• Tomasulo (what was good, what was bad)

• Data Flow (what was good, what was bad)

• HPS

• CDC6600

• HEP (what was good, what was the problem)

• SMT (what was good, what was bad)

• SIMD

• GPU

• Systolic Array

• Spatial Computing

• Non-Von, BVM, Connection Machine

• Multi-core

• RISC

• User-writeable Control Store



…with some Assists: some good, some not

• In the microarchitecture
– Branch prediction

– Wider issue

– Predicated execution

– Extra memory pipes

– FPGAs (big increase in flexibility at small cost?)

• In the ISA
– Predicated execution

– Unaligned access

– Register windows

– Delayed branch



…so I must add: BE CAREFUL

• Add something to the microarchitecture: No problem
– If a bad idea, discard it on the next implementation

• Add something to the ISA
– You are stuck with it forever



Examples of Paradigm Evolution

• HPS

• SMT

• GPU

• VLIW

• Spatial Computing

• Many core

• Accelerators



HPS

• Tomasulo + Data Flow  HPS

• Tomasulo had out-of-order, NOT precise exceptions
– Also, ONLY the floating point unit

– Also, ONLY one operation per instruction

– Also, Stall on a branch (no steady supply of operations)

• Data Flow had micro-ops, but too unwieldly
– Hard to take interrupts

– Hard to debug

HPS took the good, added in-order retirement,

Restricted window, wide issue, aggressive br.predictor



The HPS Paradigm

• Processing micro-ops! (Restricted Data Flow)

•  Incorporated the following:
– Aggressive branch prediction

– Speculative execution
– Wide issue

– Out-of-order execution

– In-order retirement



SMT

• HEP + ooo  SMT  SSMT

• HEP was brilliant, ahead of its time (SPIE 1977)
– But issued only one instruction each clock cycle

• Actually, CDC6600  HEP

• SMT (Hirata, ISCA 1992, Nemirovsky 1994, UW 1995)

• What if you only have one thread?

    SSMT (Chappell, ISCA 1999, Dubois, USC Report ’98)



GPU

• SIMD + SMT + Predicated Execution  GPU

• If the software can pay attention to branches

• If the software can organize memory accesses



VLIW

• Horizontal microcode  VLIW

• Not good for General Purpose Computing

• But good for domain specific stuff
– Microcode Emulation

– DSP chips

• i.e., when the software is known in advance



Spatial Computing

• Systolic Array + FPGAs  Spatial Computing

• HT Kung (1979): not enough transistors, too “asic”

• Today, stream data through a data flow graph

• If the software can produce the data flow graph



Multicore, Manycore

• Early days + Moore’s Law  Multicore, Manycore

•  (Early days = Nonvon, BVM, Connection Machine)

• Not enough transistors in 1985 (one-bit data path)

• Still have the problem: how to program them!



Accelerators

• Many implementation mechanisms
– ASICs

– FPGAs

– EMT instruction (with writeable control store)

• Examples (Quantum computing, Machine learning)

• Requires the attention of 
– The person writing the algorithm

– The programmer

– The compiler writer 

– The microarchitect



In fact, as Moore’s Law finally ends

• We will have to think smarter

• That will mean bringing to the table
– Those working at all levels of the transformation hierarchy



Algorithm

Program

ISA (Instruction Set Arch)

Microarchitecture
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Electrons



Some Thoughts

• Each paradigm came because there was a need,

      and someone saw a way to accommodate that need
– It got replaced because the paradigm exposed 

    subsequent needs due to new technology or new requirements

• Be careful what you put something into the ISA

• ILP is still important; MORE important as Moore’s Law fades

• We need to engage everyone (The transformation hierarchy)

• What must happen in order for us

     to be able to engage everyone



People need to understand 

more than one layer



…which requires a fresh approach to 
Education!



Thank you!



RISC

• What was it?  (Depends on who you ask!)

• The soul: John Cocke – Open microcode.

    The compiler generates the control signals

• Then the young professors picked it up
– Patterson: Simple instructions needing single cycle execute

– Hennessy: The compiler and his pipeline reorganizer

• By 1989, Hennessy said: fast streamlined pipelines
– …which is actually consistent with John Cocke

• As a useful paradigm:  
– Streamlined hardware

– Very sophisticated compiler                                      
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