
A short introduction
to the aims and status of

modern C++

Bjarne Stroustrup
Morgan Stanley

Columbia University
www.stroustrup.com

Overview

• C++ aims and means
• C++20

– Time to celebrate

• Concepts
• Modules
• Span
• Concurrency and parallelism

Stroustrup - C++20 - Barcelona 2020 3

The value of a
programming language
is in the quality of its
applications

Stroustrup - C++20 - Barcelona 2020 4

Presenter
Presentation Notes
Everywhere! It’s what keeps me going; it’s what I think might inspire you; science!

C++ community

• About 4.5 million developers (surveys)
– Seems to be growing by 100,000++ developers per year
– Worldwide

• North America, South America, Western Europe, Eastern Europe, Russia,
China, India, Australia, …

– Most industries
• Finance, games, Web applications, Web infrastructure, data bases,

telecommunications, aerospace, automotive, microelectronics, medical,
movies, graphics, imaging, scientific, embedded systems, …

Stroustrup - C++20 - Barcelona 2020 5

C++ in two lines

• Direct map to hardware
– of instructions and fundamental data types
– Future: use novel hardware better (caches, multicores, GPUs, FPGAs, SIMD, …)

• Zero-overhead abstraction
– Classes, inheritance, templates, concepts, aliases, …
– Future: Complete type- and resource-safety, concepts, modules, concurrency, …

Stroustrup - C++20 - Barcelona 2020 6

C++ ideals/aims

• Write type-safe and resource-safe C++
– No leaks
– No memory corruption
– No garbage collector
– No limitation of expressibility
– No performance degradation
– ISO C++
– Guaranteed: tool enforced (eventually)

• This cannot be done while allowing arbitrary code
– C++ Core Guidelines: https://github.com/isocpp/CppCoreGuidelines

Stroustrup - C++20 - Barcelona 2020 7

https://github.com/isocpp/CppCoreGuidelines

The onion principle

Stroustrup - C++20 - Barcelona 2020 8

• Management of complexity
• Make simple things simple!

• Layers of abstraction
• The more layers you peel off, the more you cry

Engineering

• Principled and pragmatic
• Progress gradually guided by feedback
• There are always many tradeoffs

– Choosing is hard

Stroustrup - C++20 - Barcelona 2020 9

C++: stability and evolution
• Evolution is necessary

– Newer features and techniques leads to simpler, safer, and faster code
• Stability/compatibility is a feature

– Old code will run
– But don’t repeat all the old mistakes

• Use C++ as a modern language
– Type safe

• Don’t mess with casts, raw pointers, void*, etc.
– Resource safe

• RAII
– Modular

• Avoid macros
• Avoid #include

Stroustrup - C++20 - Barcelona 2020 10

This will take time

Resource management: Constructors and destructors

template<Element T>
class Vector { // vector of Elements of type T
public:

Vector(initializer_list<T>); // acquire memory for list elements and initialize
~Vector(); // destroy elements; release memory
// …

private:
T* elem; // representation, e.g. pointer to elements plus #elements
int sz; // #elements

};

void fct()
{

Vector <double> v {1, 1.618, 3.14, 2.99e8}; // vector of 4 doubles
Vector<string> vs {"Strachey", "Richards", "Ritchie"}; // vector of strings
Vector<pair<string,jthread>> vp { {“t1”,t1}, {“t2”,t2}}; // vector of {name,value} pairs
// …

} // memory, strings, and threads released here
Stroustrup - C++20 - Barcelona 2020

Handle
(rep)

Value
(elements)

11

“the committee”

Stroustrup - C++20 - Barcelona 2020 12

2011

2014

1990

2017

Presenter
Presentation Notes
Too many cooks.Conventionality and risk adversity increase with numbers and time

C++20 is here

Stroustrup - C++20 - Barcelona 2020 13

C++20 trip reports

• “semi-official” on reddit
– https://www.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso

_c_committee_trip_report_c20_is/

• Herb Sutter
– https://herbsutter.com/

• Focused on the latest developments and features
– Not on C++20 as a whole
– Not on general principles

Stroustrup - C++20 - Barcelona 2020 14

https://www.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/
https://herbsutter.com/

C++20
• Major language features

– Modules
– Concepts
– Coroutines
– Improved compile-time programming support

• Major standard-library components
– Ranges
– Dates
– Formats
– Parallel algorithms
– Span

• Many minor language features and standard-library components
• A dense web of interrelated mutually-supporting features

Stroustrup - C++20 - Barcelona 2020 15

By “major”
I mean
“changes
how we think”

Generic programming:
The backbone of the C++ standard library

• Containers
– vector, list, stack, queue, priority_queue, ...

• Ranges
• Algorithms

– sort(), partial_sort(), is_sorted(), merge(), find(), find_if(),...
– Most with parallel and vectorized versions

• Concurrency support (type safe)
– Threads, locks, futures, ...

• Time
– time_points, durations, calendars, time_zones

• Random numbers
– distributions and engines (lots)

• Numeric types and algorithms
– complex
– accumulate(), inner_product(), iota(), ...

• Strings and Regular expressions
• Formats Stroustrup - C++20 - Barcelona 2020 16

Generic Programming

• Write code that works for all suitable argument types
– void sort(R); // pseudo declaration

• R can be any sequence with random access
• R’s elements can be compared using <

– E* find_if(R,P); // pseudo declaration
• R can be any sequence that you can read from sequentially
• P must be a predicate on R’s element type
• E* must point to the found element of R if any (or one beyond the end)

• That’s what the standard says
– “our job” is to tell this to the compiler
– C++20 enables that

Stroustrup - C++20 - Barcelona 2020 17

Generic Programming

• Write code that works for all suitable argument types

void sort(Sortable_range auto& r);

vector<string> vs;
// … fill vs …
sort(vs);

array<int,128> ai;
// … fill ai …
sort(ai);

Stroustrup - C++20 - Barcelona 2020 18

Implicit:
• Type of container
• Type of element
• Number of elements
• Comparison criteria

A concept:
• Specifies what is required r’s type

Generic Programming

• Write code that works for all suitable argument types
– Many/most algorithms have more than one template argument type
– We need to express relationships among template arguments

template<input_range R, indirect_unary_predicate<iterator_t<R> Pred>
Iterator_t<R> ranges::find_if(R&& r, Pred p);

list<int> lsti;
// … fill lsti …
auto p = find_if(lsti, greater_than{7});

vector<string> vs;
// … fill vs …
auto q = find_if(vs, [](const string& s) { return has_vowels(s); });

Stroustrup - C++20 - Barcelona 2020 19

<ranges>

Overloading

• Overloading based on concepts

void sort(Forward_sortable_range auto&);
void sort(Sortable_range auto&);

void some_code(vector<int> vec&,list<int> lst)
{

sort(lst); // sort(Forward_sortable_range auto&)
sort(vec) // sort(Sortable_range auto&)

}

• We don’t have to say
– “Sortable_range is stricter/better than Forward_sortable_range”
– we compute that from their definitions

Stroustrup - C++20 - Barcelona 2020 20

Design principles:
• Don’t force the user to do

what a machine does better
• Zero overhead compared

to unconstrained templates

Concepts

• A concept is a compile-time predicate
– A function run at compile time yielding a Boolean
– Often built from other concepts
template<typename R>
concept Sortable_range =

random_access_range<R> // has begin()/end(), ++, [], +, …
&& sortable<iterator_t<R>>; // can compare and swap elements

template<typename R>
concept Forward_sortable_range =

forward_range<R> // has begin()/end(), ++; no [] or +
&& sortable<iterator_t<R>>; // can compare and swap elements

Stroustrup - C++20 - Barcelona 2020 21

There are libraries of concepts
<ranges>: random_access_range and sortable

Concepts
• A concept is a compile-time predicate

– A function runs at compile time yielding a Boolean
– One or more arguments
– Can be built from fundamental language properties: use patterns

template<typename T, typename U = T>
concept equality_comparable = requires(T a, U b) {

{a==b} -> bool;
{a!=b} -> bool;
{b==a} -> bool;
{b!=a} -> bool;

}

Stroustrup - C++20 - Barcelona 2020 22

There are libraries of concepts
<concepts>: equality_comparable

Types and concepts

• A type
– Specifies the set of operations that can be applied to an object

• Implicitly and explicitly
• Relies on function declarations and language rules

– Specifies how an object is laid out in memory

• A single-argument concept
– Specifies the set of operations that can be applied to an object

• Implicitly and explicitly
• Relies on use patterns

– reflecting function declarations and language rules

– Says nothing about the layout of the object

Stroustrup - C++20 - Barcelona 2020 23

Ideal:
Use concepts where we now use types,
except for defining layout

Generic Programming is “just” programming

• Why?
– From 1988 to now “template programming” and “ordinary programming”

have been very different
• Different syntax
• Different look-up rules
• Different source code organization
• “Expert friendly” programming techniques

– We don’t need two different sets of techniques (and notations)
• Unnecessary complexity
• Make simple things simple!

– “ordinary programming” is expressive and familiar

Stroustrup - C++20 - Barcelona 2020 24

Generic Programming

Stroustrup - C++20 - Barcelona 2020 25

• will change the way we think about Programming

Presenter
Presentation Notes
Casey Carter, Eric Niebler, Gabriel Dos Reis, Andrew Sutton, Alexander Stepanov, Bjarne Stroustrup

Modules and transition

• Source organization
• Header file conversion

– Header and module coexistence

• Build systems
– Build2
– Cmake prototype

Stroustrup - C++20 - Barcelona 2020 26
Nathan Sidwell

Gabriel Dos Reis

Richard Smith

Modules

• Better code hygiene: modularity (especially protection from macros)

• Faster compile times (hopefully factors rather than percent)
export module map_printer; // we are defining a module

import iostream;
import containers;
using namespace std;

export
template<Sequence S>

requires Printable<Key_type<S>> && Printable<Value_type<S>>
void print_map(const S& m) {

for (const auto& [key,val] : m) // break out key and value
cout << key << " -> " << val << '\n';

} Stroustrup - C++20 - Barcelona 2020 27

Modularity and transition
import A;
import B;

Is the same as
import B;
import A;

Import is not transitive
module;
#include “xx.h” // to global module
export module C;
import “a.h” // “modular headers”
import “b.h”
import A;
export int f() { … }

Module partitions

Stroustrup - C++20 - Barcelona 2020 28

Compile speeds

Stroustrup - C++20 - Barcelona 2020 29

Coroutines
generator<int> fibonacci() // generate 0,1,1,2,3,5,8,13 …
{

int a = 0; // initial values
int b = 1;
while (true) {

int next = a+b;
co_yield a; // return next Fibonacci number
a = b; // update values
b = next;

}
}
f
int main()
{

for (auto v: fibonacci())
cout << v << '\n';

}

Stroustrup - C++20 - Barcelona 2020 30

Fast pipelines and generators
Simple asynchronous programming

Ranges library

• Think “STL 2.0 using concepts”
• Simplify use

vector<string> v;
// …
sort(v);

• Infinite sequences and pipes
std::vector<int> v(42);
std::span foo = v | view::take(3);

• And much more
• On GitHub

Stroustrup - C++20 - Barcelona 2020 33

Eric Niebler

Casey Carter

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj9lvmAyp3hAhXnUd8KHb71BqoQjRx6BAgBEAU&url=http://cppcast.com/2015/12/eric-niebler/&psig=AOvVaw3FbIdUqOKx_T333FrrZWAr&ust=1553613112639382

Span

• Non-owning potentially run-time checked reference to a
continuous sequence
int a[100];
span s {a}; // note: template argument deduction
for (auto x : s) cout << x << '\n';

• From the GSL
• On GitHub

Stroustrup - C++20 - Barcelona 2020 34

Neil Macintosh

Concurrency and parallelism
• C++20

– Atomics
– Lock-free programming
– Fences and barriers
– Type-safe Posix/windows tread, mutex, etc.
– Future and promise
– Parallel algorithms
– Coroutines (synchronous and asynchronous)

• C++23?
– Executor model (readers and writers, push and pull)

• We have consensus, but not in time for C++20
– Networking (now a TS)

• Depends on executors
– Standard library support for coroutines

• Implementation likely to depend on executors

Stroustrup - C++20 - Barcelona 2020 35

What we want

• Ease of programming
– Writing correct concurrent code is hard
– Modern hardware is concurrent in more ways than you imagine

• Uncompromising performance
– But for what?

• Portability
– Preferably portable performance

• System level interoperability
– C++ shares threads with other languages and with the OSs

Stroustrup - C++20 - Barcelona 2020 36

Threading
• A thread represents a system’s notion of executing a task concurrently with

other tasks

• You can
– start a task on a tread
– wait for a thread for a specified time
– control access to some data by mutual exclusion
– control access to some data using locks
– wait for an action of another task using a condition variable
– return a value from a thread through a future

Stroustrup - C++20 - Barcelona 2020 37

Future and promise

• future+promise provides a simple way of passing a
value from one thread to another
– No explicit synchronization
– Exceptions can be transmitted between threads

Stroustrup - C++20 - Barcelona 2020 38

future promise

result

get()
set_value()

set_exception()

Parallel algorithms
• algorithms giving the option of parallel and/or vectorised

execution of standard-library algorithms
– e.g, sort(par,b,e) and sort(unseq,b,e)

• All the traditional STL algorithms, e.g., find(seq,b,e,x),
– but no find_all(par,b,e,x) or find_any(unseq,b,e,x)

• parallel algorithms:
– For_each
– Reduce // parallel accumulate
– Exclusive scan
– Inclusive scan
– Transform reduce
– Transform exclusive scan
– Transform inclusive scan
– …

Stroustrup - C++20 - Barcelona 2020 39

SIMD vector (in parallelism TS)

• simd is a data-parallel type. The width of a given simd is a constant expression
template<class T, class Abi> // Abi is size, simd is single dimentional
class simd {
public:

simd() noexcept = default
template<class U> simd(U&& value) noexcept;
template<class U> simd(const simd<U, simd_abi::fixed_size<size()>>&) noexcept;
// no copy constructor or copy assignment
template<class G> explicit simd(G&& gen) noexcept;
template<class U, class Flags> simd(const U* mem, Flags f);
template<class U, class Flags> copy_from(const U* mem, Flags f);
template<class U, class Flags> copy_to(U* mem, Flags f);
reference operator[](size_t);value_type operator[](size_t) const;
// unary @, binary @, and @= for all @ where it makes sense

};

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4796.pdf

Stroustrup - C++20 - Barcelona 2020 40

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4796.pdf

C++23 – we have a plan

• Top priorities:
– Library support for coroutines
– A modular standard library
– Executors
– Networking

• Also make progress on
– Reflection
– Pattern matching
– Contracts

• After that
– Everything else

Stroustrup - C++20 - Barcelona 2020 41

C++

• C++20
– Competed February 15, 2020
– Most features shipping somewhere
– Expected: essentially all features shipping by all major vendors in 2020
– Is going to make a major difference to the way we think and program
– Compatible / stable

• Use C++ as a modern language
– Aim for complete type-safety and resource-safety
– Enforce coding guidelines

Stroustrup - C++20 - Barcelona 2020 42

Stroustrup - C++20 - Barcelona 2020 43

Notable features in C++20

Stroustrup - C++20 - Barcelona 2020 44

• Modules.
• Coroutines.
• Concepts.
• Ranges.
• Compile-time programming support:

– constinit, consteval
– is_constant_evaluated
– constexpr allocation, vector, string, union, try and catch, dynamic_cast and typeid

• format("For C++{}", 20).
• operator<=>.
• Feature test macros.
• std::span.
• Synchronized output.
• source_location.
• atomic_ref.
• atomic::wait, atomic::notify, latch, barrier, counting_semaphore, etc.
• jthread and stop_*.

https://en.cppreference.com/w/cpp/language/modules
https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/ranges
https://wg21.link/P1143
https://wg21.link/P1073
https://wg21.link/P0595
https://wg21.link/P0784
https://wg21.link/P1004
https://wg21.link/P0980
https://wg21.link/P1330
https://wg21.link/P1002
https://wg21.link/P1327
https://wg21.link/P0645
https://en.cppreference.com/w/cpp/utility#Relational_operators_and_comparison
https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/io#Synchronized_output
https://wg21.link/P1208
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://wg21.link/P1135
https://wg21.link/P0660

	�A short introduction�to the aims and status of�modern C++ �
	Overview
	Slide Number 4
	C++ community
	C++ in two lines
	C++ ideals/aims
	The onion principle
	Engineering
	C++: stability and evolution
	Resource management: Constructors and destructors
	“the committee”
	C++20 is here
	C++20 trip reports
	C++20
	Generic programming:� The backbone of the C++ standard library
	Generic Programming
	Generic Programming
	Generic Programming
	Overloading
	Concepts
	Concepts
	Types and concepts
	Generic Programming is “just” programming
	Generic Programming
	Modules and transition
	Modules
	Modularity and transition
	Compile speeds
	Coroutines
	Ranges library
	Span
	Concurrency and parallelism
	What we want
	Threading
	Future and promise
	Parallel algorithms
	SIMD vector (in parallelism TS)
	C++23 – we have a plan
	C++
	Slide Number 43
	Notable features in C++20

