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Overview

• C++ aims and means
• C++20

– Time to celebrate 

• Concepts
• Modules
• Span
• Concurrency and parallelism
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The value of a 
programming language 
is in the quality of its 
applications
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Everywhere! It’s what keeps me going; it’s what I think might inspire you; science!



C++ community

• About 4.5 million developers (surveys)
– Seems to be growing by 100,000++ developers per year
– Worldwide

• North America, South America, Western Europe, Eastern Europe, Russia, 
China, India, Australia, …

– Most industries
• Finance, games, Web applications, Web infrastructure, data bases, 

telecommunications, aerospace, automotive, microelectronics, medical, 
movies, graphics, imaging, scientific, embedded systems, …
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C++ in two lines

• Direct map to hardware
– of instructions and fundamental data types
– Future: use novel hardware better (caches, multicores, GPUs, FPGAs, SIMD, …)

• Zero-overhead abstraction
– Classes, inheritance, templates, concepts, aliases, …
– Future: Complete type- and resource-safety, concepts, modules, concurrency, …

Stroustrup - C++20 - Barcelona 2020 6



C++ ideals/aims

• Write type-safe and resource-safe C++
– No leaks
– No memory corruption
– No garbage collector
– No limitation of expressibility
– No performance degradation
– ISO C++
– Guaranteed: tool enforced (eventually)

• This cannot be done while allowing arbitrary code
– C++ Core Guidelines: https://github.com/isocpp/CppCoreGuidelines
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The onion principle
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• Management of complexity
• Make simple things simple!

• Layers of abstraction
• The more layers you peel off, the more you cry



Engineering

• Principled and pragmatic
• Progress gradually guided by feedback
• There are always many tradeoffs

– Choosing is hard
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C++: stability and evolution
• Evolution is necessary

– Newer features and techniques leads to simpler, safer, and faster code
• Stability/compatibility is a feature

– Old code will run
– But don’t repeat all the old mistakes

• Use C++ as a modern language
– Type safe

• Don’t mess with casts, raw pointers, void*, etc.
– Resource safe

• RAII
– Modular

• Avoid macros
• Avoid #include
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This will take time



Resource management: Constructors and destructors

template<Element T>
class Vector { // vector of Elements of type T
public:

Vector(initializer_list<T>); // acquire memory for list elements and initialize
~Vector(); // destroy elements; release memory
// …

private:
T* elem; // representation, e.g. pointer to elements plus #elements
int sz; // #elements

};

void fct()
{

Vector <double> v {1, 1.618, 3.14, 2.99e8}; // vector of 4 doubles
Vector<string> vs {"Strachey", "Richards", "Ritchie"}; // vector of strings
Vector<pair<string,jthread>> vp { {“t1”,t1}, {“t2”,t2}}; // vector of {name,value} pairs
// …

} // memory, strings, and threads released here
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“the committee”
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C++20 is here
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C++20 trip reports

• “semi-official” on reddit
– https://www.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso

_c_committee_trip_report_c20_is/

• Herb Sutter
– https://herbsutter.com/

• Focused on the latest developments and features
– Not on C++20 as a whole
– Not on general principles
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C++20
• Major language features

– Modules
– Concepts
– Coroutines
– Improved compile-time programming support

• Major standard-library components
– Ranges
– Dates
– Formats
– Parallel algorithms
– Span 

• Many minor language features and standard-library components
• A dense web of interrelated mutually-supporting features
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By “major”
I mean
“changes
how we think”



Generic programming:
The backbone of the C++ standard library

• Containers
– vector, list, stack, queue, priority_queue, ...

• Ranges
• Algorithms

– sort(), partial_sort(), is_sorted(), merge(), find(), find_if(),...
– Most with parallel and vectorized versions

• Concurrency support (type safe)
– Threads, locks, futures, ...

• Time
– time_points, durations, calendars, time_zones

• Random numbers
– distributions and engines (lots) 

• Numeric types and algorithms
– complex
– accumulate(), inner_product(), iota(), ...

• Strings and Regular expressions
• Formats Stroustrup - C++20 - Barcelona 2020 16



Generic Programming

• Write code that works for all suitable argument types
– void sort(R); // pseudo declaration

• R can be any sequence with random access
• R’s elements can be compared using <

– E* find_if(R,P); // pseudo declaration
• R can be any sequence that you can read from sequentially
• P must be a predicate on R’s element type
• E* must point to the found element of R if any (or one beyond the end)

• That’s what the standard says
– “our job” is to tell this to the compiler
– C++20 enables that
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Generic Programming

• Write code that works for all suitable argument types

void sort(Sortable_range auto& r);

vector<string> vs;
// … fill vs …
sort(vs);

array<int,128> ai;
// … fill ai …
sort(ai);
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Implicit:
• Type of container
• Type of element
• Number of elements
• Comparison criteria

A concept:
• Specifies what is required r’s type



Generic Programming

• Write code that works for all suitable argument types
– Many/most algorithms have more than one template argument type
– We need to express relationships among template arguments

template<input_range R, indirect_unary_predicate<iterator_t<R> Pred>
Iterator_t<R> ranges::find_if(R&& r, Pred p);

list<int> lsti;
// … fill lsti …
auto p = find_if(lsti, greater_than{7});

vector<string> vs;
// … fill vs …
auto q = find_if(vs, [](const string& s) { return has_vowels(s); });
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Overloading

• Overloading based on concepts

void sort(Forward_sortable_range auto&);
void sort(Sortable_range auto&);

void some_code(vector<int> vec&,list<int> lst)
{

sort(lst); // sort(Forward_sortable_range auto&)
sort(vec) // sort(Sortable_range auto&)

}

• We don’t have to say
– “Sortable_range is stricter/better than Forward_sortable_range”
– we compute that from their definitions
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Design principles:
• Don’t force the user to do

what a machine does better
• Zero overhead compared

to unconstrained templates



Concepts

• A concept is a compile-time predicate
– A function run at compile time yielding a Boolean
– Often built from other concepts
template<typename R>
concept Sortable_range =

random_access_range<R> // has begin()/end(), ++, [], +, …
&& sortable<iterator_t<R>>; // can compare and swap elements

template<typename R>
concept Forward_sortable_range =

forward_range<R> // has begin()/end(), ++; no [] or +
&& sortable<iterator_t<R>>; // can compare and swap elements
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There are libraries of concepts
<ranges>: random_access_range and sortable



Concepts
• A concept is a compile-time predicate

– A function runs at compile time yielding a Boolean
– One or more arguments
– Can be built from fundamental language properties: use patterns

template<typename T, typename U = T>
concept equality_comparable = requires(T a, U b) {

{a==b} -> bool;
{a!=b} -> bool;
{b==a} -> bool;
{b!=a} -> bool;

}
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There are libraries of concepts
<concepts>: equality_comparable



Types and concepts

• A type
– Specifies the set of operations that can be applied to an object

• Implicitly and explicitly
• Relies on function declarations and language rules

– Specifies how an object is laid out in memory

• A single-argument concept
– Specifies the set of operations that can be applied to an object

• Implicitly and explicitly
• Relies on use patterns

– reflecting function declarations and language rules

– Says nothing about the layout of the object
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Ideal:
Use concepts where we now use types,
except for defining layout



Generic Programming is “just” programming

• Why?
– From 1988 to now “template programming” and “ordinary programming” 

have been very different
• Different syntax
• Different look-up rules
• Different source code organization
• “Expert friendly” programming techniques

– We don’t need two different sets of techniques (and notations)
• Unnecessary complexity
• Make simple things simple!

– “ordinary programming” is expressive and familiar
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Generic Programming
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• will change the way we think about Programming
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Modules and transition

• Source organization
• Header file conversion

– Header and module coexistence

• Build systems
– Build2
– Cmake prototype
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Modules

• Better code hygiene: modularity (especially protection from macros)

• Faster compile times (hopefully factors rather than percent)
export module map_printer; // we are defining a module

import iostream;
import containers;
using namespace std;

export
template<Sequence S>

requires Printable<Key_type<S>> && Printable<Value_type<S>>
void print_map(const S& m) {

for (const auto& [key,val] : m) // break out key and value
cout << key << " -> " << val << '\n';
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Modularity and transition
import A;
import B;

Is the same as 
import B;
import A;

Import is not transitive
module;
#include “xx.h” // to global module
export module C;
import “a.h” // “modular headers”
import “b.h”
import A;
export int f() { … }

Module partitions
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Compile speeds
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Coroutines
generator<int> fibonacci() // generate 0,1,1,2,3,5,8,13 …
{

int a = 0; // initial values
int b = 1;
while (true) {

int next = a+b;
co_yield a; // return next Fibonacci number
a = b; // update values
b = next;

}
}
f
int main()
{

for (auto v: fibonacci())
cout << v << '\n';

}
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Fast pipelines and generators
Simple asynchronous programming



Ranges library

• Think “STL 2.0 using concepts”
• Simplify use

vector<string> v;
// …
sort(v);

• Infinite sequences and pipes
std::vector<int> v(42);
std::span foo = v | view::take(3); 

• And much more
• On GitHub
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Span

• Non-owning potentially run-time checked reference to a 
continuous sequence
int a[100];
span s {a}; // note: template argument deduction
for (auto x : s) cout << x << '\n';

• From the GSL
• On GitHub
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Concurrency and parallelism
• C++20

– Atomics
– Lock-free programming
– Fences and barriers
– Type-safe Posix/windows tread, mutex, etc.
– Future and promise
– Parallel algorithms
– Coroutines (synchronous and asynchronous)

• C++23?
– Executor model (readers and writers, push and pull)

• We have consensus, but not in time for C++20
– Networking (now a TS)

• Depends on executors
– Standard library support for coroutines

• Implementation likely to depend on executors 

Stroustrup - C++20 - Barcelona 2020 35



What we want

• Ease of programming
– Writing correct concurrent code is hard
– Modern hardware is concurrent in more ways than you imagine

• Uncompromising performance
– But for what?

• Portability 
– Preferably portable performance

• System level interoperability
– C++ shares threads with other languages and with the OSs
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Threading
• A thread represents a system’s notion of executing a task concurrently with 

other tasks

• You can 
– start a task on a tread
– wait for a thread for a specified time 
– control access to some data by mutual exclusion 
– control access to some data using locks
– wait for an action of another task using a condition variable 
– return a value from a thread through a future
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Future and promise

• future+promise provides a simple way of passing a 
value from one thread to another
– No explicit synchronization
– Exceptions can be transmitted between threads
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future promise

result

get()
set_value()

set_exception()



Parallel algorithms
• algorithms giving the option of parallel and/or vectorised

execution of standard-library algorithms
– e.g, sort(par,b,e) and sort(unseq,b,e)

• All the traditional STL algorithms, e.g., find(seq,b,e,x),
– but no find_all(par,b,e,x) or find_any(unseq,b,e,x)

• parallel algorithms: 
– For_each
– Reduce // parallel accumulate
– Exclusive scan
– Inclusive scan
– Transform reduce
– Transform exclusive scan
– Transform inclusive scan
– …

Stroustrup - C++20 - Barcelona 2020 39



SIMD vector (in parallelism TS)

• simd is a data-parallel type. The width of a given simd is a constant expression
template<class T, class Abi> // Abi is size, simd is single dimentional
class simd {
public:

simd() noexcept = default
template<class U> simd(U&& value) noexcept;
template<class U> simd(const simd<U, simd_abi::fixed_size<size()>>&) noexcept;
// no copy constructor or copy assignment
template<class G> explicit simd(G&& gen) noexcept;
template<class U, class Flags> simd(const U* mem, Flags f);
template<class U, class Flags> copy_from(const U* mem, Flags f);
template<class U, class Flags> copy_to(U* mem, Flags f);
reference operator[](size_t);value_type operator[](size_t) const;
// unary @, binary @, and @= for all @ where it makes sense

};

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4796.pdf
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C++23 – we have a plan

• Top priorities: 
– Library support for coroutines
– A modular standard library
– Executors
– Networking

• Also make progress on
– Reflection
– Pattern matching
– Contracts

• After that
– Everything else
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C++

• C++20
– Competed February 15, 2020
– Most features shipping somewhere
– Expected: essentially all features shipping by all major vendors in 2020
– Is going to make a major difference to the way we think and program
– Compatible / stable

• Use C++ as a modern language
– Aim for complete type-safety and resource-safety
– Enforce coding guidelines
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Notable features in C++20
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• Modules.
• Coroutines.
• Concepts.
• Ranges.
• Compile-time programming support:

– constinit, consteval
– is_constant_evaluated
– constexpr allocation, vector, string, union, try and catch, dynamic_cast and typeid

• format("For C++{}", 20).
• operator<=>.
• Feature test macros.
• std::span.
• Synchronized output.
• source_location.
• atomic_ref.
• atomic::wait, atomic::notify, latch, barrier, counting_semaphore, etc.
• jthread and stop_*.

https://en.cppreference.com/w/cpp/language/modules
https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/ranges
https://wg21.link/P1143
https://wg21.link/P1073
https://wg21.link/P0595
https://wg21.link/P0784
https://wg21.link/P1004
https://wg21.link/P0980
https://wg21.link/P1330
https://wg21.link/P1002
https://wg21.link/P1327
https://wg21.link/P0645
https://en.cppreference.com/w/cpp/utility#Relational_operators_and_comparison
https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/io#Synchronized_output
https://wg21.link/P1208
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://wg21.link/P1135
https://wg21.link/P0660
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