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Extreme Events Issues
• Society has become more vulnerable to extreme 

events.
• Lack of long-term climate data suitable for analysis 

of extremes
• Did climate change contribute to a specific extreme 

event?
• Are there significant trends in the characteristics of 

(frequency, intensity, …) an extreme event? 
• How will climate change modify extreme events?



Typical IPCC view of extreme events
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Extreme events and climate change

Copyright © National Academy of Sciences. All rights reserved.

Attribution of Extreme Weather Events in the Context of Climate Change 

Summary 

FIGURE
for differe
level of un
right-mos
of scientif
climate ch
below the
capability
additional
is not pos
understan
overcomin
more deta
 

 S.4 Schemat
ent event type
nderstanding 
t column of T
fic confidence
hange for that
e 1:1 line indic
y through tech
l historical da
sible because

nding. In all ca
ng remaining
ail.  

P

tic depiction o
es. The horizo
of the effect 

Table S.1. The
e in current ca
t event type, a
cates an asses

hnical progres
ata), which wo
e this would in
ases, there is 

g challenges th

 

PREPUBLICA

of this report’
ontal position
of climate ch
e vertical pos
apabilities for
and draws upo
ssment that th
ss alone (such
ould move the
ndicate confid
potential to in
hat limit the c

CATION COP

’s assessment 
 of each even

hange on the e
sition of each 
r attribution o
on all three co
here is potenti
h as improved
e symbol upw
dent attributio
ncrease event
current level o

Y 

t of the state o
nt type reflect
event type, an
event type in

of specific eve
olumns of Ta
ial for improv

d modeling, o
ward. A positi
on in the abse
t attribution c
of understand

of attribution 
ts an assessme
nd correspond
ndicates an as
ents to anthro

able S.1. A po
vement in attr
r the recovery
ion above the
ence of adequ
confidence by
ding. See Box

 

 
science 
ent of the 
ds to the 
sessment 

opogenic 
osition 
ribution 
y of 
e 1:1 line 
uate 
y 
x 4.1 for 

7 

PNAS, 2015



Extremes and climate climate change II
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PREPUBLICATION COPY 

TABLE S.1 This table, along with Figure S.4, provides an overall assessment of the state of 
event attribution science for different event types. In each category of extreme event, the 
committee has provided an estimate of confidence (high, medium, and low) in the capabilities of 
climate models to simulate an event class, the quality and length of the observational record from 
a climate perspective, and understanding of the physical mechanisms that lead to changes in 
extremes as a result of climate change. The entries in the table, which are presented in 
approximate order of overall confidence as displayed in Figure S.3, are based on the available 
literature and are the product of committee deliberation and judgement. Additional supporting 
information for each category can be found in the text of Chapter 4. The assessments of climate 
models capabilities apply to models with spatial resolutions (100km or coarser) that are 
representative of the large majority of models participating in CMIP5 (i.e., Coupled Model 
Intercomparison Project Phase 5). Individual global and regional models operating at higher 
resolutions may have better capabilities for some event types, but in these cases, confidence may 
still be limited due to an inability to assess model-related uncertainty. The assessments of the 
observational record apply only to those parts of the world for which data are available and are 
freely exchanged for research. Most long records rely on in-situ observations, and these are not 
globally complete for any of the event types listed in this table, although coverage is generally 
reasonable for the more densely populated parts of North America and its adjacent ocean regions.   

z = high 
} = medium 
{ = low 

Capabilities of 
Climate Models to 

Simulate Event Class  

Quality/Length of the 
Observational Record 

Understanding of 
Physical Mechanisms 
that Lead to Changes 

in Extremes as a 
Result of Climate 

Change 

Extreme cold events z z z 

Extreme heat events  z z z 

Droughts } } } 

Extreme rainfall } } } 

Extreme snow and ice 
storms } { } 

Tropical cyclones { { } 

Extratropical cyclones } { { 

Wildfires { } { 

Severe convective 
storms { { { 

 
  PNAS, 2015



Katia Irma Jose



Issues – TCs Detection and Attribution 

• Large amplitude fluctuations of climate 
variability for TCs (frequency and intensity) –
trend attribution is difficult.

• Global historical records of TCs – availability 
and quality limited – large error bars

• Uncertainty: past changes in TC variability 
have exceeded what is expected from nature 
climate variability.

Knutson et al. 2010



We assess whether detectable changes in tropical cyclone activity have been identified in 
observations and whether any changes can be attributed to anthropogenic climate change.

TROPICAL CYCLONES 
AND CLIMATE CHANGE 

ASSESSMENT
Part I: Detection and Attribution

THOMAS KNUTSON, SUZANA J. CAMARGO, JOHNNY C. L. CHAN, KERRY EMANUEL, 
CHANG-HOI HO, JAMES KOSSIN, MRUTYUNJAY MOHAPATRA, MASAKI SATOH,  

MASATO SUGI, KEVIN WALSH, AND LIGUANG WU

T he question of whether anthropogenic influence  
 on tropical cyclone (TC) activity is detectable in  
 observations is important, particularly owing to 

the large societal impacts from TCs. Detection and 
attribution studies can also inform our confidence in 
future TC projections associated with anthropogenic 
warming. This report updates TC climate change as-
sessments by a World Meteorological Organization 
(WMO) expert team (Knutson et al. 2010) and by the 
Intergovernmental Panel on Climate Change Fifth 
Assessment Report (IPCC AR5; IPCC 2013; Bindoff 
et al. 2013). Part II of the assessment (Knutson et al. 
2019) focuses on future TC projections. Walsh et al. 
(2016) provides a recent extensive literature review of 
TCs and climate change studies.

The authors of this report include some former 
members of the expert team for the WMO 2010 
assessment (Knutson et al. 2010) along with cur-
rent membership of a WMO Task Team on Tropi-
cal Cyclones and Climate Change. The Task Team 
members were invited to membership by the WMO 
World Weather Research Program’s Working Group 
on Tropical Meteorology Research.

To conduct this assessment, we identified studies 
where claims were made about detection of long-term 
(multidecadal to century scale) changes in TC activi-
ty, or about attribution of past TC changes or events to 
anthropogenic forcing. We next developed potential 
detection/attribution statements for the author team 
to evaluate. In a few cases—for completeness—we 
developed and evaluated a potential detection and 
attribution statement for which no published claim 
has yet been made. We used an elicitation procedure 
whereby each author provided confidence levels or 
agree–disagree opinion on each potential statement. 
The summary assessment statements highlighted 
in the “Summary” section represent cases where a 
majority of authors either support the statement or 
support an even stronger version of the statement. 
A full list of opinions for each individual author 
and each potential statement is contained in the on-
line supplemental material (https://doi.org/10.1175 
/BAMS-D-18-0189.2).

Some related topics, such as long-term trends in 
TC damages (Pielke et al. 2008; Mendelsohn et al. 
2012; Estrada et al. 2015; Klotzbach et al. 2018) or 
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TCs trends

Knutson et al. BAMS 2019a
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Kossin 2018 
& responses



Error Types for Detection & Attribution

• Type I error: conclusion that anthropogenic 
forcing has contributed to an observed 
change/event when it has not done so.

• Type II error: NOT concluding that anthropogenic 
forcing has contributed to an observed 
change/event when it has done so.

• If only type I error is considered: miss 
anthropogenic influences that have not yet 
emerged or identified with high confidence

See Lloyd and Oreskes (2018) 



shorter homogenized satellite-based intensity data 
(Kossin et al. 2013). From the satellite-based data, they 
conclude that the proportion of hurricanes reaching 
category 4 or 5 intensity has increased by 25%–30% 
per 1°C of global warming in recent decades. A simi-
lar statistically significant signal was found in most 
individual TC basins.

They tested for anthropogenic influence during 
1975–2010 because the CMIP3 historical simula-
tions they analyzed suggested little net anthropo-
genic influence on global mean temperature before 
1975. Their analysis did not compare the observed 
changes over 1975–2010 to expected internal climate 
variability on 35-yr time scales from climate model 
control runs. Their linkage to anthropogenic forcing 
as a mechanism is statistical in nature as there is no 
explicit comparison between observed storm metrics 
and those derived from simulations using historical 
forcings. They inferred that the observed increase in 
proportion of category 4–5 storms (which by defini-
tion has an upper limit of 100%) may be reaching a 
saturation point soon and may not continue increas-
ing over the coming century, which could hinder its 
detectability using this particular metric.

From the type I error perspective, the author team 
did not conclude that there is confidence in detection 
of an anthropogenic climate change signal in his-
torical proportion of very intense TCs. Alternatively, 
from the perspective of reducing type II errors (where 
we, again, require less convincing levels of evidence), 
all authors concluded that the findings of Holland and 
Bruyère (2014), combined with other studies linking 

climate warming to increased TC intensity, provides 
a balance of evidence suggesting that the observed 
increase in category 4–5 proportion in recent decades 
represents a detectable change. Most authors (8 of 11) 
concluded that the balance of evidence suggests that 
the increase in proportion of category 4–5 storms 
resulted in part from anthropogenic forcing.

Case study: Global slowdown of TC translation speeds. 
Kossin (2018a) reported a significant decreasing 
trend in global TC translation speed—about 10% over 
1949–2016 (Fig. 1j). This decrease has been particu-
larly strong for TCs over land areas near the western 
North Pacific (−21%) and North Atlantic (−16%) ba-
sins and around Australia (−18%). Chu et al. (2012) 
had previously reported a statistically significant 
decrease in steering flows and in storm translation 
speeds over 1958–2009 in the western North Pacific 
and South China Sea regions.

Kossin (2018a) interprets the observed global 
slowdown as consistent with expected changes in 
atmospheric circulation due to anthropogenic forc-
ing. A few studies report future projections of TC 
propagation speeds under climate warming, and these 
contain examples of projected significant decreases 
in speeds (e.g., Knutson et al. 2013a; Gutmann et al. 
2018) and other examples where there is an increase 
or no significant change (Knutson et al. 2013a; Kim 
et al. 2014). Thus, there is no consensus in the studies 
on the sign or significance of projected late-twenty-
first-century change, nor do they provide direct 
guidance on expected historical forced changes. The 

TABLE 1. Distribution of author opinion on potential tropical cyclone detection and attribution statements 
elicitation. For the type II error avoidance, both detection and attribution substatements are prefaced by 
“The balance of evidence suggests…” and “Detectable” refers to “unusual compared to natural variability, 
e.g., p < 0.1.” Numbers in parentheses indicate the number of authors reporting this confidence level.

Perspective: Type I error avoidance

1) The estimated contribution of decreased anthropogenic aerosol forcing to the increased Atlantic TC frequency since the 
1970s is large and positive and is highly unusual (e.g., p < 0.05) compared to natural variability. Confidence: low (7); low 
to medium (2); medium (1); medium to high (1).

2) Observed poleward migration of latitude of maximum intensity in northwest Pacific basin is highly unusual (e.g., p < 0.05; 
statistically distinguishable) compared with expected natural variability. Confidence: low to medium (8); medium (1); 
medium to high (2).

3) Anthropogenic forcing has contributed to the observed poleward migration of the latitude of maximum intensity in the 
northwest Pacific basin. Confidence: low (6); low to medium (2); medium (3).

4) There has been a detectable decrease (highly unusual compared to natural variability; e.g., p < 0.05) in the global-scale 
propagation speed of TCs since 1949. Confidence: low (6); low to medium (4); medium (1).

5) Anthropogenic forcing has contributed to the observed decrease in the global-scale propagation speed of TCs since 
1949. Confidence: low (8); low to medium (3).

6) List any other observed multidecadal- to century-scale change in TC activity that is highly unusual (e.g., p < 0.05; statisti-
cally distinguishable) compared with expected natural variability (from a type I error avoidance perspective), and provide 
confidence level. None identified.

1998 | OCTOBER 2019
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Summary – Type I error

• Strongest cases: 

– Observed poleward migration of latitude of 

lifetime maximum intensity (LMI) in the Western 

North Pacific – Low to Medium confidence (8/11)

– Anthropogenic forcing contributed to the LMI

poleward shift - Low confidence (6/11)

• All other changes (detectable or attributable 

to CC): low confidence

Knutson et al. BAMS, 2019a



observed trends in Kossin (2018a) are thus examples 
of significant linear trends that are not yet quantita-
tively linked to past anthropogenic influence based 
on direct model simulations.

One possible implication of a TC propagation 
speed decrease would be an increase in TC-related 
rainfall amounts at fixed locations along the storms’ 
paths. Altman et al. (2013) reported very strong 
century-scale increases in typhoon-related rainfall 
rates over Korea during 1904–2008, although their 
study does not present enough methodology details 

for a careful assessment. Kim et al. (2006) had previ-
ously reported large increases in TC-related rainfall 
rates in Korea beginning around 1980, based on a 
shorter record extending back to 1954.

In summary, from a type I error avoidance per-
spective, a slight majority of the authors (6 of 11) had 
only low confidence that there has been a detectable 
decrease in global or western North Pacific TC trans-
lation speeds since 1949. For the other 5 authors, 4 
had low to medium confidence, and 1 had medium 
confidence. Most authors (8 of 11) concluded that 

TABLE 1. Continued.

Perspective: Type II error avoidance

7) Detectable increase in North Atlantic TC activity since the 1970s (9% agree); and anthropogenic forcing (reduced 
aerosol forcing) has contributed to this increase (45% agree).

8) Observed poleward migration of latitude of maximum intensity in northwest Pacific basin is detectable (all agree); and 
anthropogenic forcing has contributed to the observed poleward migration of the latitude of maximum intensity in the 
northwest Pacific basin (82% agree).

9) Detectable increase in TC intensity over the Arabian Sea (premonsoon) over 1979–2010 (none agree); and anthropo-
genic forcing has contributed to this increase (none agree).

10) Detectable increase in the frequency of extremely severe cyclonic storms over the Arabian Sea (postmonsoon) over 
1998–2015 (all agree); and anthropogenic forcing has contributed to this increase (73% agree).

11) Detectable increase in the global proportion of TCs reaching category 4 or 5 intensity in recent decades (all agree); 
and anthropogenic forcing has contributed to this increase (73% agree).

12) Detectable increase in the global average intensity of strongest (hurricane intensity) TCs since the early 1980s (91% 
agree); and anthropogenic forcing has contributed to this increase of global average intensity of strongest (hurricane 
intensity) TCs (73% agree).

13) Detectable multidecadal increase in TC occurrence near Hawaii (none agree); and anthropogenic forcing contributed 
to the recent unusually active TC season near Hawaii in 2014 (55% agree).

14) Detectable increase in TC occurrence activity in the western North Pacific in recent decades (none agree); and 
anthropogenic forcing contributed to the recent unusually active TC season, including the record-setting (1984–2015) TC 
intensity, in the western North Pacific in 2015 (73% agree).

15) Detectable increase in the intensity of Hurricane Sandy–like storms in the Atlantic in recent decades (none agree); 
and anthropogenic forcing contributed to the intensity of Hurricane (Superstorm) Sandy in 2012 (none agree).

16) Detectable increase in the intensity of Haiyan-like supertyphoons in the western North Pacific in recent decades (18% 
agree); and anthropogenic forcing contributed to the intensity of Supertyphoon Haiyan in 2013 (45% agree).

17) Detectable long-term increase in the occurrence of Hurricane Harvey–like extreme precipitation events in the Texas 
region (all agree); and anthropogenic forcing has contributed to increased frequency of Hurricane Harvey–like precipita-
tion events in the Texas region (all agree).

18) Detectable increase in the frequency of moderately large U.S. surge events since 1923 as documented by the index of 
Grinsted et al. (which strongly filters out sea level rise influences) (18% agree); and anthropogenic forcing has contributed 
to this increase (18% agree).

19) Detectable decrease in the global-scale propagation speed of TCs since 1949 (73% agree); and anthropogenic forcing 
has contributed to this decrease (9% agree).

20) Detectable decrease in severe landfalling TCs in eastern Australia since the late 1800s (82% agree); and balance of 
evidence suggests anthropogenic forcing has contributed to this decrease (none agree).

21) Detectable decrease in U.S. landfalling-hurricane frequency since the late 1800s (none agree); and anthropogenic 
forcing has contributed to this decrease (none agree).

22) Detectable increase in global major hurricane landfall frequency in recent decades (none agree); and anthropogenic 
forcing has contributed to this increase (none agree).

23) Detectable decrease in TC frequency in the southeastern part of the western North Pacific (1992–2011) (none 
agree); and anthropogenic forcing (changes in aerosol emissions) has contributed to this decrease (50% agree).

1999AMERICAN METEOROLOGICAL SOCIETY |OCTOBER 2019
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Summary – Type II Errors
(Chance for false alarm)

• Main detectable Anthropogenic contributions:
– LMI poleward migration in the Western North 

Pacific

– Increased global average intensity of strongest TCs

– Increase in proportion of cat 4 and cat 5 TCs

– Increase frequency of hurricane Harvey-like 
precipitation events in Texas

– Increased occurrence of intense Arabian Sea TCs

Knutson et al. BAMS, 2019a



Attribution of individual 
TC events
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tremes may have been major additional contributors 
to the likelihood of the event occurring. Each of these 
papers applied large model ensembles (CMIP5 for 
both the global heat and Alaska marine heat wave 
analyses and the atmospheric general circulation 
model MIROC5 for the Asia heat study) to determine 
the FAR for these events. 

As in past years, this sixth edition of Explaining 
Extreme Events from a Climate Perspective includes 
studies of extreme events from around the world that 
did not find a role for climate change in influencing 
the magnitude or frequency of an event. It is impor-
tant to note that papers are selected for consideration 
in this report by reviewing author proposals that do 
not indicate whether a role for climate change will or 
will not be found. Thus, there is no selection bias on 
the part of the editorial team toward one particular 
conclusion, and this publication prides itself as a 
venue that accepts papers without consideration for 
whether a role for climate change is found. This year 
there may be a slight bias toward events that do not 
find a signal relative to previous years because the 
editors have begun to limit the number of heat papers 
in the report which is the event type where a signal 
is most commonly found. Given that the majority of 
heat papers now use a widely established and accepted 

methodology, the scientific value of continuing to 
include a large number of heat studies began to seem 
limited. 

Extreme weather event types included in this 
year’s edition include ocean heat waves, forest fires, 
snow storms, and frost, as well as heavy precipitation, 
drought, and extreme heat and cold events over land. 
A number of papers also look at the impacts of ex-
tremes (Fig. 1.1). The Summary of Results Table (Table 
1.1) gives readers a general overview of the results.

Twenty-one of the 27 papers in this current edition 
identified climate change as a significant driver of an 
event, while six did not. Of the 131 papers now ex-
amined in this report over the last six years, approxi-
mately 65% have identified a role for climate change, 
while about 35% have not found an appreciable effect.

Nevertheless, over the past six years, researchers 
have identified the robust influence of climate change 
on temperature-related extremes, making such high-
temperature events quantifiably more intense and 
more frequent. The events studied by these 131 papers 
were not chosen randomly and may not be represen-
tative of all extreme events. They are concentrated 
mostly on the continents of North America, Europe, 
Asia, and Australia, so there remains an open ques-
tion of how human-caused climate change may be 

Fig. 1.1. Location and types of events analyzed in this publication.

Special Supplement to the
Bulleti n of the American Meteorological Society

Vol. 99, No. 1, January 2018
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Hurricane Harvey attribution studies  

• Risser & Wehner GRL, 
2017: Likely increase of 
~ 19%

• van Oldenborgh et al. 
ERL, 2017: Likely 
increase of ~ 15%

• S.-Y. Wang et al. ERL, 
2018: Likely increase of 
~ 20%

Emanuel PNAS, 2017

Likely increase of 6% in 2017
These large increases in probabilities are consistent with

expectations about what happened to tail risk as the distribu-
tion of events is shifted toward the tail (13). It would be of some
interest to evaluate how these increases are related to greater
water vapor concentration, stronger upward motion in storms,

longer duration of events, and greater frequency of events. This
is left to future work.
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Urbanization exacerbated the rainfall and flooding 
caused by hurricane Harvey in Houston
Wei Zhang1, Gabriele Villarini1*, Gabriel A. Vecchi2,3 & James A. Smith4

Category 4 landfalling hurricane Harvey poured more than a metre 
of rainfall across the heavily populated Houston area, leading to 
unprecedented flooding and damage. Although studies have focused 
on the contribution of anthropogenic climate change to this extreme 
rainfall event1–3, limited attention has been paid to the potential 
effects of urbanization on the hydrometeorology associated with 
hurricane Harvey. Here we find that urbanization exacerbated not 
only the flood response but also the storm total rainfall. Using the 
Weather Research and Forecast model—a numerical model for 
simulating weather and climate at regional scales—and statistical 
models, we quantify the contribution of urbanization to rainfall and 
flooding. Overall, we find that the probability of such extreme flood 
events across the studied basins increased on average by about 21 
times in the period 25–30 August 2017 because of urbanization. 
The effect of urbanization on storm-induced extreme precipitation 
and flooding should be more explicitly included in global climate 
models, and this study highlights its importance when assessing the 
future risk of such extreme events in highly urbanized coastal areas.

North Atlantic tropical cyclones are among the costliest natural haz-
ards both in terms of fatalities and economic impacts, with the devasta-
tion left by 2017 hurricanes Harvey, Irma and Maria typical of the havoc 
tropical cyclones can cause. There are multiple hazards associated with 
these events, including storm surge, strong winds, heavy rainfall and 
flooding. An analysis of 28 tropical cyclones over the 2001–2014 period 
found that around two-thirds of the residential flood insurance claims 
were caused by riverine flooding4, highlighting the major impact of 
these events for both coastal and inland communities.

The devastation caused by hurricane Harvey in Houston is a 
reminder of the rainfall and flooding that can be associated with these 
storms. Between 25 and 30 August 2017, hurricane Harvey dropped 
more than 1,300 mm of rain over and around Houston, leading to 
unprecedented flooding in large areas of the city1–3. In the aftermath of 
this storm, different studies estimated the return period of the rainfall 
associated with this event and quantified the human-induced climate 
change signal using a combination of observations and climate models. 
In ref. 1 it was found that the return period of Harvey’s rainfall was 
around 2,000 years in the late twentieth century, and predicted to drop 
to 100 years by the end of this century. In ref. 2 and ref. 3 it was found 
that human-induced climate change made this event between 1.5 and 
5 times, or at least 3.5 times, more likely, respectively.

Thus, the literature on the anthropogenic contribution to hurricane 
Harvey has focused on precipitation and on the part that human-induced 
climate change may have played. Here, we seek to answer a complemen-
tary question related to the anthropogenic contribution to Harvey’s 
flooding: to what extent did urbanization have a role in the heavy rain-
fall and flooding associated with hurricane Harvey? From a hydrologic 
perspective, increases in urbanization are expected to lead to faster runoff 
and larger peaks owing to the large reductions in infiltration (the amount 
of water the ground can absorb)5,6. Houston has had the largest urban 
growth and the fifth-largest population growth in the United States over 
the period 2001–20117. The increase in asphalt and concrete has led to 

an increasing runoff ratio (that is, the ratio between runoff and precipita-
tion) across many watersheds in the area, pointing to reduced infiltration 
and larger runoff for a given rainfall value8–12. This increase in population 
and urbanization, combined with the flat clay terrain that characterizes 
this area, represents a very problematic mix from a flood perspective, 
despite the flood mitigation measures that have been put in place.

In addition to having a substantial impact on the hydrologic response, 
urbanization has the potential to directly influence the magnitude of 
extreme precipitation. This is a topic that has received substantial atten-
tion, particularly regarding the influence of urbanization on mesoscale 
convective systems, as determined through field campaigns, analysis 

1IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, IA, USA. 2Department of Geosciences, Princeton University, Princeton, NJ, USA. 3Princeton Environmental Institute, Princeton 
University, Princeton, NJ, USA. 4Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA. *e-mail: gabriele-villarini@uiowa.edu
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Fig. 1 | Storm total rainfall by hurricane Harvey. a–c, Accumulated 
precipitation for 25–30 August 2017 in observations (a), and in the ‘Urban 
BEM’ (b) and ‘NoUrban’ (urban land-use types replaced by croplands; c) 
WRF experiments. The model results represent the average of the seven 
members.
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The difference between the ‘Urban BEM’ and ‘NoUrban’ simulations 
highlights the presence of a cyclonic flow pattern in the moisture flux, 
which is also favourable for precipitation (Fig. 2d–f). Such differences 
in convergence and updraft are probably caused by the drag of urban 
surface with large roughness, associated with stronger friction velocity 
and roughness length in the ‘Urban BEM’ experiments (Extended Data 
Fig. 3a–f). Specifically, the friction velocity in the ‘Urban BEM’ simula-
tion is markedly larger than the ‘NoUrban’ simulation (Extended Data 
Fig. 3a–c), indicating a stronger drag on the storm winds, associated 
with a larger surface roughness length (Extended Data Fig. 3d–f). The 
changes in sensible heat flux and Bowen ratio (Extended Data Fig. 3g–i) 
associated with urbanization and urban land-use change may lead to 
the destabilization of the atmosphere16–20, enhancing rainfall over the 
eastern side of Houston. The increased urban roughness and surface 
warming are also associated with elevated height of the bottom bound-
ary layer of the atmosphere, which tends to enhance precipitation 
(Extended Data Fig. 3j–l). These results point to the combined effects 
of surface drag and urban surface warming on rainfall enhancement 

on the eastern side of Houston. Moreover, anthropogenic heat may 
influence precipitation in urban areas21. The ‘Urban BEM’ experiments 
can explicitly resolve anthropogenic heat to a large extent by computing 
anthropogenic heat using a parameterization scheme21,22. Overall, rain-
fall over Houston in the ‘Urban BEM’ experiment is consistent with the 
results from the ‘Urban BULK’ experiments in which no urban canopy 
model is coupled with the Noah land surface model (Extended Data 
Fig. 4), suggesting that anthropogenic heat does not play a major part 
in rainfall related to hurricane Harvey.

Thus we have focused on the impacts of Houston on precipitation 
and provided a physical understanding of these results. However, 
urbanization also affects hydrologic processes, so we next quantify the 
role of urbanization following an approach used in ref. 23 (see Methods). 
Our modelling results suggest that the year-to-year variations in annual 
maximum peak discharge are well captured by parsimonious statistical 
models relating the maximum peak discharge to precipitation and/or  
population (used as proxy for urbanization, see Methods) (Fig. 3). 
This is also supported by the goodness-of-fit diagnostics (Extended 
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The human influence on Hurricane Florence 

Kevin A. Reed, Stony Brook University 
Alyssa M. Stansfield, Stony Brook University 

Michael F. Wehner, Lawrence Berkeley National Laboratory 
Colin M. Zarzycki, National Center for Atmospheric Research 

 

For Hurricane Florence, we present the first advance forecasted attribution statements about the                         
human influence on a tropical cyclone. We find that rainfall will be significantly increased by over                               
50% in the heaviest precipitating parts of the storm. This increase is substantially larger than                             
expected from thermodynamic considerations alone. We further find that the storm will remain at a                             
high category on the Saffir­Simpson scale for a longer duration and that the storm is approximate ly                               
80 km in  diameter larger at landfall because of the human interference in the climate system.  
 

For additional information contact Kevin Reed ( kevin.a.reed@stonybrook.edu ) or Michael                 
Wehner ( mfwehner@lbl.gov ). 
 

 
 

These attribution statements are enabled by real­time ensemble forecasts of Hurricane Florence                       
performed using the Community Atmosphere Model (CAM) version 5. Two sets of ensembles                         
forecasts were completed ( Initialized Sept 11, 2018 at 00Z ): 
 

Standard Forecast: With observed initial atmospheric conditions and sea surface temperatures                     
(SST) adapted from NOAA’s operational Global Forecast System model. This                   
is the forecast of the actual Hurricane Florence. 

Modified Forecast:  With observed initial conditions modified to remove the estimated climate                       
change signal from the temperature, moisture, and SST fields to represent a                       
world without climate change. This is a counterfactual forecast of Hurricane                     
Florence if it were to occur in a world without human induced global warming. 

 

Through comparison of the standard and modified ensemble forecasts for Hurricane Florence, we                         
quantify the impact of climate change on the storm’s size, rainfall, and intensity. 
 

 
 

Intensity:  Hurricane Florence is slightly more intense for a longer portion of the forecast period                           

due to climate change according to the forecasted minimum surface pressure. 

 

 
Left:  Individual ensemble forecasts (dashed) and ensemble mean (solid) of Hurricane Florence.  
Right:  Time evolution of the ensemble average central minimum surface pressure. 
Red :  Florence in the world that is .  Blue :  Florence in the world that might have been without climate change . 
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Rainfall:  The forecasted Hurricane Florence rainfall amounts over the Carolinas are increased                     

by over 50% due to climate change and are linked to warmer sea surface                           

temperatures and available moisture in the atmosphere. 

 

Storm Size:  The forecasted size of Hurricane Florence is about 80 km larger due the effect of                             

climate change on the large­scale environment around the storm. 

 

 
Left:  Ensemble average accumulated rainfall Hurricane Florence forecasts.  
Right:  Evolution of the ensemble average outer storm size (radius at peak wind speed of approximately 18 mph). 
Red :  Florence in the world that is .  Blue :  Florence in the world that might have been without climate change . 
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Future Projections – TCs
• Based on theory and models
• Increase in storm surge due to sea level rise (SRL)
• Globally averaged intensity of TCs shift towards 

stronger storms – 2-11% by 2100
• Globally averaged frequency of TCs: decrease 6-

34% 
• Increases of ~ 20% of the precipitation rate within 

100km of the storm center (mean and peak)
• Projected changes for individual basins –

uncertain.
• Regions with hurricane occurrence is NOT 

expected to change.
Knutson et al. 2010



Tropical Cyclones and Climate Change Assessment: Part II. Projected 
Response to Anthropogenic Warming
Thomas Knutson1, Suzana J. Camargo2, Johnny C. L. Chan3, Kerry Emanuel4, Chang-Hoi Ho5, James Kossin6, Mrutyunjay Mohapatra7, Masaki 
Satoh8, Masato Sugi9, Kevin Walsh10, and Liguang Wu11

BAMS, in press

• Highest confidence: SLR + warming: lead to 
higher storm inundation levels.

• Medium to high confidence:
– Increase of TC precipitation rates (~ 14%)
– Global average intensity increase (~ 5%)
– Increase of proportion of cat 4-5 TCs (13%)

• Mixed confidence:
– Poleward shift
– Frequency of intense TCs 
– Slowdown in TC translation speed
– Decrease in global TC frequency 

Knutson et al. BAMS, 2019b
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TC frequency projections –
increase in uncertainty

3× 1011m3s−2, which can be compared with our six-model mean
of 1:2× 1011m3s−2.
Knutson et al. (14) used regional and local models to down-

scale both CMIP3 and CMIP5 global simulations in the North
Atlantic region. For the CMIP5 models, they examined simu-
lations using the RCP4.5 emission scenario, which is roughly
half the radiative forcing used in our study. They downscaled an
ensemble average over 18 CMIP5 models using the 18-km-res-
olution Zetac models, and an ensemble average over 13 CMIP5
models using the 50-km-resolution HiRAM model. They find
a modest (∼20%) decrease in the projected frequency of North
Atlantic tropical cyclones, and although they also find some
increase in high-intensity events, this increase was not deemed
statistically significant. The projected decrease in the numbers
of Atlantic tropical cyclones may be contrasted with the results
of Villarini et al. (15) and Camargo (12), who shows essentially
no change, and with the current downscaling and application of
the GPI defined by Eq. 2 to the five GCMs used here, which
indicate a small increase in Atlantic tropical cyclone frequency.
In comparing these results, it should be remembered that dif-
ferent models and/or emission scenarios have been used, so the
comparison is not uniform.
Among all of the CMIP5-related techniques and results, ours

appears to be the only one that projects a significant increase in
global tropical cyclone frequency (although tropical cyclones
modeled explicitly by the MRI model also appear to increase)
(12). It is not surprising to see differences with the statistical
downscaling of Villarini et al. (15, 16), who used only sea surface

temperatures as predictors; nor is it surprising to see differences
with storms modeled explicitly by GCMs (12) given that, with the
exception of the MRI model, the models significantly under-
predict real storm counts in the current climate. It is more sur-
prising, on the other hand, that our results differ qualitatively
from the application of dynamical downscaling (14) to GCMs,
given that these are based on high-resolution physical models.
[An important caveat here is that the models used in that dy-
namical downscaling constitute a different (but overlapping) set,
and the RCP4.5 emissions scenario was used, rather than the
RCP8.5 scenario we used. Also, those results are only for the
North Atlantic, where the current downscaling shows only
a small, although still statistically significant, increase.] There
are, of course, limitations and areas of concern for both the
dynamical downscaling used by Knutson et al. (14) and the
technique used here. Focusing on the latter, and making use of
the observation that the GPI given by Eq. 2 predicts well the
number of downscaled events, one area of concern is the some-
what arbitrary choice of 600 hPa as the level at which to estimate
the midtropospheric moist static energy used in Eq. 1 and also by
the downscaling model. Emanuel et al. (9) showed that down-
scaled tropical cyclone activity is sensitive to χ, so the choice of
level is important.
As a preliminary step to address this, we calculated χ using the

moist static energy at 500 and 700 hPa, rather than at 600 hPa,
for the RCP8.5 simulation using the MOHC model, which shows
a robust increase in downscaled tropical cyclone activity over the
21st century. The increases over the 21st century in the value of χ
calculated using the moist static energies at 500 and 700 hPa
were noticeably less than that using 600 hPa, so had we chosen
either of these two alternative levels, we would have obtained an
even larger increase in tropical cyclone frequency. It may be true,
on the other hand, that our simple intensity model is less sen-
sitive to midlevel moisture than is, e.g., the GFDL hurricane
model used Knutson et al.’s (14) dynamical downscaling.
Experiments aimed at quantifying the sensitivity of the GFDL
hurricane model to midlevel moisture and comparing it to the
sensitivity of our model may prove enlightening on this issue.

Summary
Application of a tropical cyclone downscaling technique to six
CMIP5-generation global climate models run under historical
conditions and under the RCP8.5 emissions projection indicates
an increase in global tropical cyclone activity, most evident in the
North Pacific region but also noticeable in the North Atlantic
and South Indian Oceans. In these regions, both the frequency
and intensity of tropical cyclones are projected to increase. This
result contrasts with the result of applying the same downscaling
technique to CMIP3-generation models, which generally predict
a small decrease of global tropical cyclone frequency, and with
recent CMIP5-based projections that show little consistent
change in frequency. The few CMIP5-based projections of storm
intensity published to date pertain strictly to the North Atlantic

Table 2. Comparison between CMIP3 and CMIP5 changes in downscaled tropical cyclone frequency and power dissipation

Institute ID CMIP3 model CMIP5 model
CMIP3 change in global

frequency, %
CMIP5 change in global

frequency, %
CMIP3 change in global
power dissipation, %

CMIP5 change in global
power dissipation, %

NCAR CCSM3 CCSM4 −3 +11 +5 +8
GFDL CM2.0 CM3 −13 +41 +2 +72
MOHC HADGEM2-ES +22 +31
MPI ECHAM5 MPI-ESM-MR −11 +29 +4 +57
MIROC MIROC3.2 MIROC5 −12 +38 +8 +80
MRI MRI-CGCM2.3.2a MRI-CGCM3 +2 +13 +22 +26

For CMIP3 models, the listed numbers are percentage changes from the 20-y period 1981–2000 to the 20-y period 2181–2200 under emissions scenario A1b.
For the CMIP5 models, the listed numbers represent percentage changes from 1981–2000 to 2081–2100 under radiative forcing scenario RCP8.5.
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frequency of TCs and major hurricanes, the percentage
of TCs that become major hurricanes, LMI, the spatial
distribution of TCs and major hurricanes, the probabil-
ity density of 6- and 24-h wind speed changes, and the
spatial distribution of RI rates. The storm selection cri-
teria outlined in section 2 as well as the warm-core cri-
teria discussed in Murakami et al. (2015) is applied to
the data before analysis.

a. TC intensity projections

In response to projected twenty-first-century radiative
forcing and SST warming, HiFLOR projects the annual
global frequency of TCs and major hurricanes to in-
crease. Figure 9 contains histograms for each basin that
show the annualmean TC andmajor hurricane count for
the three HiFLOR simulations. As in Fig. 1, unpaired
t tests are calculated to determine statistical significance,
and a p value of 0.05 is the threshold for significance.
Table 1 shows the percent difference between the cli-
mate change simulations and the CTL simulation for
different TC intensity and intensification metrics. Ex-
cluding the north and south Indian Ocean, the global-
and basin-average TC count increases as the twenty-first
century progresses. Though the projected changes are
larger at the end of the century, the period 2016–35
shows a significant global mean increase of 2.5 TCs per
year (12.4%) compared to the period 1986–2005. For
the last 20 years of the twenty-first century, HiFLOR

projects 9.5 more TCs per year (19.1%) than the annual
TC count during the period 1986–2005. This result is con-
sistent with the HiFLOR response to idealized carbon di-
oxide doubling (G.Vecchi et al. 2018,manuscript submitted
to Climate Dyn.), suggesting that increasing greenhouse
gases are the main driver of the additional TCs.
Although HiFLOR indicates that the future climate

will likely have more TCs, the more robust signal in-
volves the trend in major hurricanes. Both globally and
in individual basins, there are significantly more major
hurricanes in the HiFLOR late simulation than the
HiFLOR CTL simulation. HiFLOR even suggests that
there will be a significant increase inmajor hurricanes by
the early part of the twenty-first century, and only the
north Indian and Australian basin do not show a sig-
nificant increase between the 1986–2005 run and the
2016–35 run. Globally, the early and late climate change
experiments have 11.1% and 20.3% more major hurri-
canes than the CTL experiment, respectively. Individual
basins log substantially higher percent increases. For
example, HiFLOR projects the east Pacific and South
Pacific basins respectively to have 23.4% and 33.1%
more TCs and 69.6% and 60.6% more major hurricanes
at the end of the twenty-first century compared to the
end of the twentieth century.
The upward trend in major hurricanes observed in

HiFLOR is in agreement with a majority of published
research on climate change projections and TCs (Knutson
et al. 2010; Walsh et al. 2016; Camargo and Wing 2016;
Bacmeister et al. 2018). The model’s projected major
hurricane response is comparable to its response to ide-
alized carbon dioxide doubling (G. Vecchi et al. 2018,
manuscript submitted to Climate Dyn.), suggesting a
consistent relationship with increasing greenhouse gases
and a property of this model. Additionally, in the con-
text of other GCM and dynamical downscaling studies,
HiFLOR’s prediction of more TCs in response to cli-
mate change is very unique. According to the recent
review articles by Walsh et al. (2015) and Camargo and
Wing (2016), AGCMs, CGCMs, and dynamical down-
scaling consistently forecast a reduction in global TCs
due to changes in radiative forcing and SST warming.
However, there is no accepted theory that explains why
changes to the climate system should favor increased
intensification but not more TC genesis.
The emergence of HiFLOR as a contrarian model is

not completely surprising, because it is the first CGCM
with atmospheric resolution as fine as 0.258 3 0.258 that
has produced multidecadal climate change projections
of TCs. Additionally, recent studies (Emanuel et al.
2008, 2013; Korty et al. 2017; Zhang et al. 2017) using a
statistical–downscaling scheme have predicted an in-
crease in TC global frequency in response to SST

FIG. 9. The annual frequency of TCs and major hurricanes in the
1986–2005, 2016–35, and 2081–2100 HiFLOR simulations. Histo-
grams are plotted for global frequency as well as each basin. The
basin identifier on the x axis of the histograms is respectively un-
derlined in green or blue if the annual TC count for the 2081–2100
or 2016–35 simulation is significantly greater than the annual TC
count for the 1986–2005 simulation. A magenta or red asterisk on
the top-right corner of the basin identifier respectively indicates the
2081–2100 or 2016–35 HiFLOR simulations has significantly more
major hurricanes than the HiFLOR control simulation.
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3. Results
3.1. TC Genesis Frequency

Figure 1 shows relative probabilities of annual TC genesis frequency from observations and current and
future climate simulations over the global ocean (see Figure S2 for each ocean basin). Even a single-member
simulation can represent both the observed climatological mean and interannual variability as well as the
all-member results. However, the frequency distribution of the single-member simulation is not smooth
due to the small sample size, similar to the observations, whereas the all-member simulations have a smooth
frequency distribution, similar to a normal distribution. Mean TC genesis frequency in the future climate
decreases by 33% from the climatological mean value of current simulations (83.2 counts/year).
Uncertainty ranges of probability distributions for a three-member case, corresponding to a typical ensemble
size, and for a 30-member case are also shown as intermediates between the single-member and all-member
cases. These uncertainty ranges indicate that as the number of ensemble members increases, the ranges
apparently shrink. Additionally, the uncertainty ranges of normal distributions estimated by the three-
member set are larger than the uncertainty ranges of directly estimated distributions for the 30-member case
and are not adequate for assessing the probability in detail. Unlike the results in the global ocean, the actual
probability distributions in individual ocean basins tend to be out of range of estimated normal distributions,
especially the NIO, ENP, and NAT (Figure S2). It should be emphasized that these directly estimated probabil-
ity distributions are the outcomes of explicit global model simulations, not a statistical estimation. Thus, even
extremely low probability events—that were not observed so far in a short term but could be observed if
sufficient sample of observations is available—may be simulated.

3.2. Geographical Distribution of TC Occurrence

Geographical distributions of TC occurrence frequency, so-called TC days, for all tropical cyclones and for
those in category 4 and 5 of the Saffir-Simpson Hurricane wind scale (maximum surface wind speed greater
than 59 m/s; CAT45, hereafter) are shown in Figure 2. The current climate simulations reproduce the spatial
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Figure 1. Relative probability distribution of annual tropical cyclone (TC) genesis frequency [counts/year] over the global ocean. Black line is for observations, light
blue and blue lines are for a single-member and 100-member of the current climate simulations, respectively, and orange and red lines area single-member (with
CCSM4 warming pattern) and 90-member of the future climate simulations, respectively. Shading shows 95% confidence intervals of uncertainty ranges for 3 (light
green or light yellow) and 30 (dark green or dark yellow) members of the current and future simulations, respectively. Dotted curves show 95% confidence intervals
of normal distributions estimated by three member of the current and future simulations. Each confidence interval is calculated from 1000 sets of ensembles
chosen by the bootstrap method. Vertical dotted lines show climatological mean values of TC genesis frequency for the current (blue) and future (red) simulations.
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Lee et al. 2018, JAMES

Columbia HAZard model (CHAZ): 

MONTHLY PI, vorticity, humidity, shear, 
large-scale circulation
DAILY winds

A generator of 
synthetic TCs genesis, 

track, intensity, and 

winds are functions of 
the environment

Genesis (TCGI, Tippett et al. 2011)

Track (Emanuel et al. 2006)

Intensity (Lee et al. 2015,2016b)

Real world - observations

Model world (one realization)

Chavas et al. 2015, JAS

Lee, Tippett, Sobel & Camargo, JAMES 2018

Figures by Chia-Ying Lee
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CHAZ simulations for 1981 to 2012 env.

Historical tracks

1 out of 33 storms
turned left after 
recurving.

1 out of 
34 
storms

Sandy-like tracks

Figures by Chia-Ying Lee



TC Risk for Mumbai

FIG. 1. Historical best tracks, 1979-2016, color coded by intensity using the US Saffir-Simpson scale.

25

Observations

FIG. 5. Tracks of the 30 most intense storms to come within 150 km of Mumbai in the Columbia (a) and MIT

(b) models.
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Models
Synthetic storms

Sobel, Lee, Camargo et al. MWR, 2019
FIG. 6. (a) Annual frequency of exceedance for intensities of storms passing within 150 km of Mumbai from

observations (black) CHAZ (red) and the MIT model (blue). (b) return period (year) of storm intensity within

150 km of Mumbai (solid lines) and actual wind speed experienced at Mumbai (dashed lines). The red thin

dashed lines are the estimated return period curves of actual wind speed using constant RMW values varying

from 30 km to 110 km in 20 km increments.
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Historical period 2006-2040

2041-2070 2071-2100

CHAZ climate change simulations 

Example: one ensemble member
Forced by CMIP5 models 

Figures by Chia-Ying Lee



CHAZ Climate change simulations

Lee, Camargo, Sobel & Tippett, J. Climate, 2019, in review



CHAZ Climate change simulations

Relative
Humidity

Saturation
Deficit

Lee et al. J. Climate, 2019, in review



Genesis Indices and climate change

Camargo, 
J. Climate 2013



Tropical Cyclone Genesis Index - TCGI 
Poisson regression:

Tippett et al. J. Climate, 2011

Vorticity

Humidity: RH/SD

relative SST/PI

Vertical Shear



HiRAM – perfect model experiment
Column Integrated Relative Humidity Saturation Deficit

Camargo et al. J. Climate, 2014

CRH = CIWV/CIWVs SD = CIWV - CIWVs

CIWV = column integrated water vapor
CIWVs = saturated column integrated water vapor



CHAZ climate change simulations -
Frequency changes

FIG. 2. Time series of (a) the CHAZ simulated the annual global TC frequency, (b) the TCGI estimated

seeding rate, and (c) the survival rate of the synthetic storms. Thin lines show downscaling results from each of

the CMIP5 models, indicated by color. The box and whisker diagram in (a) shows the medium (orange), and 5,

25, 75, and 95 percentiles. The thick blue and red lines show the ensemble mean from TCGI CRH (blue) and

TCGI SD (red) experiments, respectively.
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CHAZ climate change simulations -
Frequency changes

Lee et al. 
J. Climate, 
2019, in 
review



CHAZ climate change simulations 
Intensity changes

Lee et al. J. Climate, 2019, in review



CHAZ climate change simulations
Intensity + frequency changes

Lee et al. J. Climate, 2019, in review



CHAZ climate change simulations
poleward shift

Lee et al. J. Climate, 2019, in review

TABLE 2. Changes in the multi-model, annual mean LMI latitude (in degree per 100 years) with 95% confi-

dence intervals.

688

689

global atl enp wnp ni sin aus spc

TCGI CRH 0.31±0.06 0.63±0.23 0.87±0.10 0.73±0.11 -0.02±0.24 0.57±0.14 -0.07±0.12 -0.14±0.18

TCGI SD 0.10±0.08 0.79±0.32 0.72±0.13 0.49±0.15 -0.35±0.47 0.08±0.19 0.08±0.15 -0.14±0.19

34

Annual mean LMI latitude changes (degrees per 100 years)

Kossin, Emanuel & Camargo, J. Climate, 2016

CMIP5 modelsObservations

Western North Pacific poleward shift

Reanalysis CMIP5
MIT downscaling



CHAZ climate change simulations
Translation speed 

Lee et al. J. Climate, 2019, in review



Summary

• Lack of a clear emergence of the signal of 
anthropogenic changes of TC characteristics 
due to: large variability, data quality, length of 
data record. 

• Projections of TC frequency have become 
more uncertainty in the last few years.

• CHAZ results show that TC frequency is 
sensitivity to type of humidity variable used 
when downscaling projections. 


