


Outline

1. Introduction — extreme events & climate
change

2. Hurricanes and Climate Change overview:

— Detection and Attribution
— Projections

3. CHAZ (Columbia Hazard model)

— Model description
— Example
— Climate change results



Extreme Events Issues

Society has become more vulnerable to extreme
events.

Lack of long-term climate data suitable for analysis
of extremes

Did climate change contribute to a specific extreme
event?

Are there significant trends in the characteristics of
(frequency, intensity, ...) an extreme event?

How will climate change modify extreme events?



Typical IPCC view of extreme events
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Extreme events and climate change

—3

HIGH

Confidence in capabilities for attribution of
specific events to anthropogenicclimate change

LOW

storms

Understanding of effect of climate change on event type

PNAS, 2015



Extremes and climate climate change |

Understanding of
Physical Mechanisms
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Issues — TCs Detection and Attribution

* Large amplitude fluctuations of climate
variability for TCs (frequency and intensity) —
trend attribution is difficult.

* Global historical records of TCs — availability
and quality limited — large error bars

* Uncertainty: past changes in TC variability
have exceeded what is expected from nature
climate variability.

Knutson et al. 2010
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TROPICAL CYCLONES
AND CLIMATE CHANGE
ASSESSMENT

Part |: Detection and Attribution

THoMAs KNUTSON, SuzaNA J. CAMARGO, JoHNNY C. L. CHAN, KERRY EMANUEL,
CHANG-Hol Ho, JaMEs KossIN, MRUTYUNJAY MOHAPATRA, MASAKI SATOH,
Masato Sual, KeviN WALSH, AND LiIGUANG WU

We assess whether detectable changes in tropical cyclone activity have been identified in

observations and whether any changes can be attributed to anthropogenic climate change.
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f) TC maximum intensities by quantile (Global and individual basin)
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Error Types for Detection & Attribution

* Type |l error: conclusion that anthropogenic
forcing has contributed to an observed
change/event when it has not done so.

* Type ll error: NOT concluding that anthropogenic
forcing has contributed to an observed
change/event when it has done so.

* If only type | error is considered: miss
anthropogenic influences that have not yet
emerged or identified with high confidence

See Lloyd and Oreskes (2018)



TasLE |. Distribution of author opinion on potential tropical cyclone detection and attribution statements
elicitation. For the type Il error avoidance, both detection and attribution substatements are prefaced by
“The balance of evidence suggests...” and “Detectable” refers to “unusual compared to natural variability,
e.g., p <0.1.” Numbers in parentheses indicate the number of authors reporting this confidence level.

Perspective: Type | error avoidance

|) The estimated contribution of decreased anthropogenic aerosol forcing to the increased Atlantic TC frequency since the
1970s is large and positive and is highly unusual (e.g., p < 0.05) compared to natural variability[Confidence: Tow (7); Jow
to medium (2); medium (I); medium to high (1).

2) Observed poleward migration of latitude of maximum intensity in northwest Pacific basin is highly unusual (e.g., p < 0.05;
statistically distinguishable) compared with expected natural variability.JConfidence: low to medium (8)I medium (1);
medium to high (2).

3) Anthropogenic forcing has contributed to the observed poleward migration of the latitude of maximum intensity in the
northwest Pacific basinIConfidence: low (6);|low to medium (2); medium (3).

4) There has been a detectable decrease (highly unusual compared to natural variability; e.g., p < 0.05) in the global-scale
propagation speed of TCs since 1949 Confidence: low (6)i low to medium (4); medium (1).

5) Anthropogenic forcing has contributed to the observed decrease in the global-scale propagation speed of TCs since
1949] Confidence: low (8);|low to medium (3).

6) List any other observed multidecadal- to century-scale change in TC activity that is highly unusual (e.g., p < 0.05; statisti-
cally distinguishable) compared with expected natural variability (from a type | error avoidance perspective), and provide
confidence level|None identified.

Knutson et al. BAMS 2019a



Summary — Type | error

* Strongest cases:

— Observed poleward migration of latitude of
lifetime maximum intensity (LMI) in the Western
North Pacific

— Anthropogenic forcing contributed to the LMI
poleward shift

e All other changes (detectable or attributable
to CC):

Knutson et al. BAMS, 2019a



TABLE |I. Continued. Knutson et da

Perspective: Type Il error avoidance

7) Detectable increase in North Atlantic TC actis i 970s (9% agree); and anthropogenic forcing (reduced
aerosol forcing) has contributed to this increase| (45% agree).

8) Observed poleward mlgratlon of latitude of maximum intensity in northwest Pacific basin is detectable (all agree); and
anthropogenic forcing hee sibeeeq to the observed poleward migration of the latitude of maximum intensity in the
northwest Pacific basi
9) Detectable increase in TC intensity over the Arabian Sea (premonsoon) over 1979-2010 (none agree); and anthropo-

genic forcing has contributed to this increase (hone agree).
10) Detectah

I1) Detectable increase in the global proportion of TCs re 4 or 5 intensity in recent decades
and anthropogenic forcing has contributed to this increasel(73% agree).

12) Detectable increase in the global average intensity of stronges arricane intensity) TCs since the early I9801 921%
agree); and a qrcing has contributed to this increase of global average intensity of strongest (hurri

intensity) TCs (73% agree)

13) Detectable multidecadal increase in TC occurrence near,
to the recent unusually active TC season near Hawaii in 201

e.increase in the frequency of extremely severe cyclonic storms over, i a (postmonsoon) over
1998-20153 (all agree);land anthropogenic forcing has contributed to this increasq (73% agree).
i |(a|| agree)

(55% agree)

14) Detectable increase in TC occurrence activity in the western North Pacific in recent decades (none agree); and
anthropogenic forcing contributed to the recent unusually active TC season, including the record-setting (1984—-2015) TC
intensity, in the western North Pacific in 201§ (73% agree)

agree); and anthropogenic forcing contributed

15) Detectable increase in the intensity of Hu ike storms in the Atlantic in recent decades (none agree);
and anthropogenic forcing contributed to the intensity of Hurricane (Superstorm) Sandy in 2012 (none agree).

16) Detectable increase in the intensity of Haiyan-like supertyphoons in the western North Pacific.in recent decades (18%
agree); and anthropogenic forcing contributed to the intensity of Supertyphoon Haiyan in 2013 (45% agree).

17) Detectable long-term increase in the occurrence of Hurricane Harvey—like extreme precipitation evencs m the Texas
region (all agree); and anthropogenic forcing has contributed to increased frequency of Hurricane Harvey—like precipita-
tion events in the Texas region (all agree).

18) Detectable increase in the frequency of moderately large U.S. surge events since 1923 as documented by the index of
Grinsted et al. (which strongly filters out sea level rise influences) (18% agree); and anthropogenic forcing has contributed
to this increase (18% agree).
19) Detectable decrease in the global-scale propagation speed of TCs since 1949 (73% agree);land anthropogenic forcing
has contributed to this decrease (9% agree).
20) Detectable decrease in severe landfalling TCs in eastern Australia since the late ISOOsI (82% agree); Iand balance of
evidence suggests anthropogenic forcing has contributed to this decrease (nhone agree).

21) Detectable decrease in U.S. landfalling-hurricane frequency since the late 1800s (none agree); and anthropogenic
forcing has contributed to this decrease (none agree).

22) Detectable increase in global major hurricane landfall frequency in recent decades (none agree); and anthropogenic
forcing has contributed to this increase (none agree).

23) Detectable decrease in TC frequency in the southeastern part of the western North Pacific ( = ne
agree); and anthropogenic forcing (changes in aerosol emissions) has contributed to this decreasp (50% agree
| |

l. 2019a



Summary — Type Il Errors
(Chance for false alarm)

* Main detectable Anthropogenic contributions:
— LMI poleward migration in the Western North
Pacific
— Increased global average intensity of strongest TCs
— Increase in proportion of cat 4 and cat 5 TCs

— Increase frequency of hurricane Harvey-like
precipitation events in Texas

— Increased occurrence of intense Arabian Sea TCs

Knutson et al. BAMS, 2019a



Attribution of individual
TC events



EXPLAINING
EXTREME EVENTS
OF 2016

From A Climate Perspective
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Hurricane Harvey attribution studies

e Risser & Wehner GRL,
N A oneeert] 2017: Likely increase of
g  van Oldenborgh et al.
ERL, 2017: Likely
increase of ~ 15%

Emanuel PNAS, 2017 * S.-Y. Wang et al. ERL,

Likely increase of 6% in 2017 2018: leely increase of
~20%
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Urbanization exacerbated the rainfall and flooding
caused by hurricane Harvey in Houston

Wei Zhang!, Gabriele Villarini'*, Gabriel A. Vecchi®3 & James A. Smith* Natu re, 2019
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The human influence on Hurricane Florence

Kevin A. Reed, Stony Brook University
Alyssa M. Stansfield, Stony Brook University
Michael F. Wehner, Lawrence Berkeley National Laboratory
Colin M. Zarzycki, National Center for Atmospheric Research

Intensity: Hurricane Florence is slightly more intense for a longer portion of the forecast period
due to climate change according to the forecasted minimum surface pressure.

Storm Intensity
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Left: Individual ensemble forecasts (dashed) and ensemble mean (solid) of Hurricane Florence.
Right: Time evolution of the ensemble average central minimum surface pressure.
Red: Florence in the world that is. Blue: Florence in the world that might have been without climate change.

Rainfall: The forecasted Hurricane Florence rainfall amounts over the Carolinas are increased
by over 50% due to climate change and are linked to warmer sea surface
temperatures and available moisture in the atmosphere.

Storm Size: The forecasted size of Hurricane Florence is about 80 km larger due the effect of
climate change on the large-scale environment around the storm.
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Left: Ensemble average accumulated rainfall Hurricane Florence forecasts.
Right: Evolution of the ensemble average outer storm size (radius at peak wind speed of approximately 18 mph).
Red: Florence in the world that is. Blue: Florence in the world that might have been without climate change.




Future Projections — TCs

Based on theory and models
Increase in storm surge due to sea level rise (SRL)

Globally averaged intensity of TCs shift towards
stronger storms — 2-11% by 2100

Globally averaged frequency of TCs: decrease 6-
34%

Increases of ~ 20% of the precipitation rate within
100km of the storm center (mean and peak)

Projected changes for individual basins —
uncertain.

Regions with hurricane occurrence is NOT
expected to change.

Knutson et al. 2010



Tropical Cyclones and Climate Change Assessment: Part Il. Projected
Response to Anthropogenic Warming

Thomas Knutson?, Suzana J. Camargo? Johnny C. L. Chan3 Kerry Emanuel?, Chang-Hoi Ho® James Kossin®, Mrutyunjay Mohapatra?, Masaki
Satoh® Masato Sugi’, Kevin Walsh?®, and Liguang Wu?!?

BAMS, in press

* Highest confidence: SLR + warming: lead to
higher storm inundation levels.

 Medium to high confidence:

— Increase of TC precipitation rates (~ 14%)

— Global average intensity increase (~ 5%)

— Increase of proportion of cat 4-5 TCs (13%)
* Mixed confidence:

— Poleward shift

— Frequency of intense TCs

— Slowdown in TC translation speed
—|Decrease in global TC frequency

Knutson et al. BAMS, 2019b
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Columbia HAZard model (CHAZ):

A generator of
synthetic TCs genesis,
track, intensity, and
winds are functions of
= the environment
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Chavas et al. 2015, JAS
Lee, Tippett, Sobel & Camargo, JAMES 2018

Figures by Chia-Ying Lee
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CHAZ climate change simulations

Example: one ensemble member
Forced by CMIP5 models

Figures by Chia-Ying Lee



CHAZ Climate change simulations
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annual TC number

CHAZ Climate change simulations
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Tropical Cyclone Genesis Index - TCGI

Poisson regression:

Humidity: RH/SD

Vertical Shear
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HiIRAM — perfect model experiment

Column Integrated Relative Humidity

(b) CCCMA
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CRH = CIWV/CIWVs

CIWV = column integrated water vapor

CIWVs = saturated column integrated water vapor

SD = CIWV - CIWVs

Camargo et al. J. Climate, 2014



annual TC number

CHAZ climate change simulations -

Frequency changes
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CHAZ climate change simulations -
Frequency changes
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CHAZ climate change simulations
Intensity changes
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CHAZ climate change simulations
Intensity + frequency changes
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CHAZ climate change simulations
poleward shift

global atl enp wnp ni sin aus spc
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Annual mean LMI latitude changes (degrees per 100 years) Lee et al. J. Climate, 2019, in review

Western North Pacific poleward shift
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Kossin, Emanuel & Camargo, J. Climate, 2016
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CHAZ climate change simulations
Translation speed
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Summary

* Lack of a clear emergence of the signal of
anthropogenic changes of TC characteristics
due to: large variability, data quality, length of
data record.

* Projections of TC frequency have become
more uncertainty in the last few years.

 CHAZ results show that TC frequency is
sensitivity to type of humidity variable used

when downscaling projections.



