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Research Interests
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● Address software challenges of emerging architectures

● Develop tools in collaboration with computational scientists
○ Programming models and runtime systems

■ Data locality is at the center

■ Focus on homogeneous and heterogeneous large-scale systems

■ Embrace asynchrony to scale on thousands of processors

○ Tools for performance monitoring and modeling
■ Design and develop tools for performance modeling and optimization on 

multicore and heterogeneous architectures

TiDA Perilla ExaSAT TaskSanitizer ComDetective



Modern HPC Applications
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● Employ multi-socket, multicore, many-core CPUs within a node

● Use MPI+Threads

○ MPI for communication among nodes

○ OpenMP or other threading models for intra-node communication

● Do explicit inter-process communication

○ Managed via message passing (e.g., MPI) Send/Recv primitives

● Do implicit inter-thread communication 

○ Hidden by standard load/store CPU instructions

Regardless of communication type,  data transfer is dominant in 

performance and energy consumption. 



Need Communication Detection Tools
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MPI communication matrix for LULESH via EZTrace Inter-thread communication matrix

?



Need Communication Detection Tools
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MPI communication matrix for LULESH via EZTrace Our Contribution: ComDetective nearest 
neighbors

distant 
neighbors

All-to-one
(master)
communication



● Identify possible sources of performance bottlenecks
● Help explain why one threading library is better than another

○ e.g. Intel OpenMP vs GNU OpenMP
● Guide performance optimizations such as

○ thread binding
○ data structure modification
○ false sharing elimination

● Hardware design: on-chip network design, cache coherence protocol 

Why Detect Inter-Thread Communication?

Local cache Local cache Local cache Local cache
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Challenges
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● Inter-process communication detection in MPI is relatively straightforward

● Exact inter-thread communication detection poses some challenges
○ requires interception of load and store operations
○ incurs huge space and time overheads if all load and store operations 

are intercepted
○ dilates execution and changes program behavior
○ scales poorly with increasing number of threads

MPI_Send(&a, 1, MPI_INT, 1, 0,
            MPI_COMM_WORLD);

Process 0 Process 1

MPI_Recv(&a, 1, MPI_INT, 0, 0,
            MPI_COMM_WORLD, &status);

There is 4 bytes data transfer from process 0 to process 1



ComDetective: Salient Features

● Accurate

○ Validated against several benchmarks and HPC applications

● Lightweight

○ Space overhead (1.3x) and time (1.3x) overhead

● Sampling-based

○ Uses hardware performance monitoring units

● Differentiates the kind of communication 

○ True sharing (necessary) vs. false sharing (unnecessary)

● Data objects 

○ Attributes communication to program data objects

● Open source: https://github.com/comdetective-tools

https://github.com/comdetective-tools
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Cache

Cache line

C

Inter-Thread Communication

Cache

CPU 0 CPU 1

Cache line

● Occurs in multi-threaded programs or hybrid programs (e.g. MPI+OpenMP hybrid) 
● Occurs at CPU cache line granularities

Thread 0 Thread 1

10



C

Cache
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Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● Memory access by CPU 0
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Inter-Thread Communication
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Inter-Thread Communication

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● Memory access by CPU 1
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C

Cache

Cache line

C

Inter-Thread Communication: Necessary

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● This type of communication is called true sharing 
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C

Cache

Cache line

C

Inter-Thread Communication: Unnecessary

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● Another possible type is false sharing
● Threads 0 and 1 access different memory regions in the same cache line
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An Example Output from LULESH
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● In addition to communication matrix, ComDetective also produces true 
sharing and false sharing matrices

● It took only 1.28x performance and 1.11x memory footprint overhead to 
generate these matrices with ComDetective 

communication matrix true sharing matrix false sharing matrixMPI communication matrix



Existing Tools

● Prior works on identifying inter-thread communication employed hardware 

simulators or binary instrumentation 
○ Suffered from inaccuracy or high overhead 

● Simulator-based tools [Barrow-Williams, et al, IISWC 2009] [Molina da Cruz, et al, IPDPSW 

2011] [Diener, et al, PDP 2016]  

○ Incurring huge memory footprints and very slow

○ Requires offline profiling  
○ Not running on real hardware, so execution behavior can change. 

● Performance monitoring units (PMUs)-based tools [Azimi, et al. ACM SIGOPS 

Operating Systems Review 2009][ Tam, et al. EuroSys 2007].

○ Can be intrusive as it requires modification of kernel source code

16



Existing Tools

● Code instrumentation: binary [Diener, et al. Performance Evaluation 2015][Diener, et al, 

PDP 2016]  (Numalize) and compiler-assisted [Mazaheri, et al. ICPP 2015][Mazaheri, et al. 

ICPP 2018]  
○ Can suffer from large slowdown and memory overhead

○ We have found that Numalize is not accurate. 17



Existing Tools

● Code instrumentation: binary [Diener, et al. Performance Evaluation 2015][Diener, et al, 

PDP 2016]  (Numalize) and compiler-assisted [Mazaheri, et al. ICPP 2015][Mazaheri, et al. 

ICPP 2018]  
○ Can suffer from large slowdown and memory overhead

○ We have found that Numalize is not accurate.

Numalize

ComDetective

Ground Truth
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ComDetective

● We develop a tool to detect inter-thread communication called ComDetective

● ComDetective  is
○ Fast -- uses  available hardware features; PMUs and debug registers

○ Accurate -- has been validated in terms of correctness of total communication 

volume and correctness of point-to-point communication ratio

● ComDetective  also

○ Differentiates true sharing and false sharing communications  -- by 
detecting if memory regions accessed by communicating threads  overlap  or not

○ Associates communication matrices not only to the whole program but to 

program objects  -- for global, stack, and heap objects
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Outline

● Background Information on Inter-Thread Communication

● Motivation for Detecting Inter-Thread Communication

● Prior Arts

● Introduction to ComDetective

● Design Components

● Workflow

● Detailed Evaluation

20



• Inter-thread communication occurs between two threads if, 

Two threads access an address residing on the same cache 
line in a short interval

• Question: How to detect cache line communication?
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Big Picture



• Inter-thread communication occurs between two threads if, 

Two threads access an address residing on the same cache 
line in a short interval

• Question: How to detect cache line communication?
• A thread can sample its memory accesses via hardware 

performance counters (address sampling)
• No load/store instrumentation ⇒ super low overhead
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Big Picture



Big Picture

• Question: how can another thread know if it is accessing the same 
address without instrumenting its loads and stores?
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Big Picture

• Question: how can another thread know if it is accessing the same 
address without instrumenting its loads and stores?

• Answer: 
• The first thread 

• publishes its sampled address to a globally visible location
• The second thread 

• compares its sampled address with the globally published 
addresses and if there is a match ⇒  inter-thread communication, or 

• uses hardware-debug registers (aka watchpoints) to monitor a 
globally published address

• Watchpoint traps when the second thread accesses the same address ⇒ 
inter-thread communication 
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PMUs

core 0

PMUs

core 1

Design Components: PMU

  PMU: Special registers that 

count low-level events, such 

as loads or stores .

25

 

Sampling: PMUs can be 

configured to trigger 

interrupt for every N events.



Debug Registers: Filled with a 

memory address and length. 

Sends a trap when the 

memory region specified by 

the address and length is 

accessed .
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Design Components: Debug Registers

PMUs

core 0

PMUs

core 1

Debug registers Debug registers
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Design Components: perf_event

perf_event: Allows user 

applications to configure and 

access PMUs and debug registers  

PMUs

core 0

PMUs

core 1

Debug registers

perf_event perf_event

Debug registers
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Design Components: perf_event

PMUs

core 0

PMUs

core 1

perf_event perf_event

Debug registers Debug registers

perf_event: Allows user 

applications to configure and 

access PMUs and debug registers  



A function that runs when 

sampling happens
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Design Components: ComDetective

PMUs

core 0

PMUs

core 1

perf_event sample_handler perf_eventsample_handler

Debug registersDebug registers



Bulletin Board: A hash 

table that publishes some 

of the sampled data
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Design Components: ComDetective

PMUs

core 0

PMUs

core 1

perf_event sample_handler perf_event

key attributes

sample_handler

Debug registersDebug registers



trap_handler

A function that runs 

when debug register 

trap happens
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Design Components: ComDetective

PMUs

core 0

PMUs

core 1

perf_event sample_handler perf_event

key attributes

sample_handlertrap_handler

Debug registersDebug registers



32

key attributes

Design Components

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_eventsample_handlertrap_handler

Thread T0 Thread T1

Debug registersDebug registers



perf_event is configured 
so that loads and stores 
to be sampled for every 
N events.

An Example Workflow

33

Thread T0 Thread T1

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

key attributes

-1

-1

-1

sample_handlertrap_handler

Debug registersDebug registers



Workflow

Interrupt happens in core 0 
after N events. 
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

-1

-1

sample_handlertrap_handler

Debug registersDebug registers



Workflow

If it is a store event, 
published it on bulletin 
board.
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Debug registersDebug registers



Workflow

Interrupt happens in core 1. 
The triggering event is  a 
store to memory address 
M1.
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Debug registersDebug registers



Workflow
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Debug registers

Check whether cache 

lines match!

Debug registers



PMUs

Workflow

Communication matrices 
are updated

If C0’s entry is ‘recent’, 
communication is 
detected between T0 
and T1.
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Check hash table entry 

whether there is  the 

entry is ‘recent’.

Debug registers Debug registers



Workflow

If C0’s entry is not 
‘recent’, replace the 
entry with M1.
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C1 M1, L1, timestamp, T1

-1

sample_handlertrap_handler

Debug registers Debug registers



Workflow

No matching cache line and 

all entries are ‘recent’, so 

none can be replaced. 

Another store sample 
happens on address M3.
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

... …..

... …...

… …...

sample_handlertrap_handler

Debug registers Debug registers



Workflow

Set up debug register 
from a randomly selected 
entry in the hash.
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

sample_handlertrap_handler

Debug registers Debug registers



Workflow

When trap in a debug register 

happens, communication 

matrices are updated. 
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PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

sample_handlertrap_handler

Debug registers Debug registers



Evaluation

● Accuracy verification with micro-benchmarks 

○ Communication volume

○ True/false sharing ratio (reported only in our paper)

○ Point-to-point communication ratio

○ Read/write communication volume (reported only in our paper)

● Communication matrices of large benchmarks

○ 12 PARSEC and 6 CORAL applications

● Use cases: code refactoring 

● Sensitivity Analysis (reported only in our paper)

○ Sampling interval impact

○ Debug register count

○ Hash table size 
43



● Communication volume verification microbenchmark

○ Each thread performs only store operations to either 
shared data or private data depending on sharing 
fraction parameter.  

If (rNum < SHARING_FRACTION)

Communication Volume Verification
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Communication Volume Verification

● ComDetective count vs RFO (request for ownership) count when 
2-16 threads are mapped to 2 sockets.

● Each thread only performs store operations to shared data.
○ Real total communication count (ground truth) is RFO count
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Point-to-point Communication Ratio Verification

● Point-to-point communication 
microbenchmark
○ Enables selection of threads which 

communicate in pairs.
○ In all cases, thread 0 

communicates with thread 1 and 
thread 2 communicates with 
thread 3.

ComDetective Expected 
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Snapshot of PARSEC Matrices (only 6 shown)
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(a) Blackscholes (b) Bodytrack (c) Canneal

 (d) Dedup  (e) Facesim  (f) Ferret



Snapshot of PARSEC Matrices (only 6 shown)
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(a) Blackscholes (b) Bodytrack (c) Canneal

 (d) Dedup  (e) Facesim  (f) Ferret

Barrow-Williams et. al IISWC’09

● Blacksholes, financial analysis benchmark
● Splits the price options among threads where 

each thread can process the options 

independently from each other



CORAL Benchmarks
MPI All True False 

AMG

MiniFE

PENNANT

QuickSilver

VPIC
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Use Cases: Code Refactoring

● False sharing in streamcluster happens on pthread_mutex_t typed variables

○ 6% improvement is achieved after we put paddings among attributes in 

pthread_mutex_t struct

● False sharing in fluidanimate happens on a pthread_cond_t typed variable

○ 13% improvement is achieved  after we put paddings among attributes 

in pthread_cond_t struct 
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__g1_orig_size __wrefs __g_signals before modification

__g1_orig_size padding1 __wrefs padding2 __g_signals after 
modification



Summary

A practical tool for capturing inter-thread communication 

● Low overhead: 1.27x runtime and 1.3x memory 

● High accuracy

● Ability to quantify communication

● Ability to distinguish true vs. false sharing

● Attribute communication to program objects

[Available for download: https://github.com/comdetective-tools]
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ParCoreLab@ Koç 
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