
ComDetective: A Lightweight Tool for Detecting
Inter-Thread Communication

Muhammad Aditya Sasongko (Koç University), Milind Chabbi (Scalable Machines)

Palwisha Akhtar (Koç University), Didem Unat (Koç University)

1

parcorelab.com

Best Paper and Best Student
Paper Nominee at SC19

http://parcorelab.ku.edu.tr

Sasongko et al. ComDetective: A Lightweight Communication Detection Tool for Threads, to appear at SC’19 2

About me?

Research Interests

3

● Address software challenges of emerging architectures

● Develop tools in collaboration with computational scientists
○ Programming models and runtime systems

■ Data locality is at the center

■ Focus on homogeneous and heterogeneous large-scale systems

■ Embrace asynchrony to scale on thousands of processors

○ Tools for performance monitoring and modeling
■ Design and develop tools for performance modeling and optimization on

multicore and heterogeneous architectures

TiDA Perilla ExaSAT TaskSanitizer ComDetective

Modern HPC Applications

4

● Employ multi-socket, multicore, many-core CPUs within a node

● Use MPI+Threads

○ MPI for communication among nodes

○ OpenMP or other threading models for intra-node communication

● Do explicit inter-process communication

○ Managed via message passing (e.g., MPI) Send/Recv primitives

● Do implicit inter-thread communication

○ Hidden by standard load/store CPU instructions

Regardless of communication type, data transfer is dominant in

performance and energy consumption.

Need Communication Detection Tools

5

MPI communication matrix for LULESH via EZTrace Inter-thread communication matrix

?

Need Communication Detection Tools

6

MPI communication matrix for LULESH via EZTrace Our Contribution: ComDetective nearest
neighbors

distant
neighbors

All-to-one
(master)
communication

● Identify possible sources of performance bottlenecks
● Help explain why one threading library is better than another

○ e.g. Intel OpenMP vs GNU OpenMP
● Guide performance optimizations such as

○ thread binding
○ data structure modification
○ false sharing elimination

● Hardware design: on-chip network design, cache coherence protocol

Why Detect Inter-Thread Communication?

Local cache Local cache Local cache Local cache

7

Challenges

8

● Inter-process communication detection in MPI is relatively straightforward

● Exact inter-thread communication detection poses some challenges
○ requires interception of load and store operations
○ incurs huge space and time overheads if all load and store operations

are intercepted
○ dilates execution and changes program behavior
○ scales poorly with increasing number of threads

MPI_Send(&a, 1, MPI_INT, 1, 0,
 MPI_COMM_WORLD);

Process 0 Process 1

MPI_Recv(&a, 1, MPI_INT, 0, 0,
 MPI_COMM_WORLD, &status);

There is 4 bytes data transfer from process 0 to process 1

ComDetective: Salient Features

● Accurate

○ Validated against several benchmarks and HPC applications

● Lightweight

○ Space overhead (1.3x) and time (1.3x) overhead

● Sampling-based

○ Uses hardware performance monitoring units

● Differentiates the kind of communication

○ True sharing (necessary) vs. false sharing (unnecessary)

● Data objects

○ Attributes communication to program data objects

● Open source: https://github.com/comdetective-tools

https://github.com/comdetective-tools

C

Cache

Cache line

C

Inter-Thread Communication

Cache

CPU 0 CPU 1

Cache line

● Occurs in multi-threaded programs or hybrid programs (e.g. MPI+OpenMP hybrid)
● Occurs at CPU cache line granularities

Thread 0 Thread 1

10

C

Cache

C

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● Memory access by CPU 0

11

Inter-Thread Communication

C

Cache

Cache line

C

Inter-Thread Communication

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● Memory access by CPU 1

12

C

Cache

Cache line

C

Inter-Thread Communication: Necessary

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● This type of communication is called true sharing

13

C

Cache

Cache line

C

Inter-Thread Communication: Unnecessary

Cache

CPU 0 CPU 1

Thread 0 Thread 1

Cache line

● Another possible type is false sharing
● Threads 0 and 1 access different memory regions in the same cache line

14

An Example Output from LULESH

15

● In addition to communication matrix, ComDetective also produces true
sharing and false sharing matrices

● It took only 1.28x performance and 1.11x memory footprint overhead to
generate these matrices with ComDetective

communication matrix true sharing matrix false sharing matrixMPI communication matrix

Existing Tools

● Prior works on identifying inter-thread communication employed hardware

simulators or binary instrumentation
○ Suffered from inaccuracy or high overhead

● Simulator-based tools [Barrow-Williams, et al, IISWC 2009] [Molina da Cruz, et al, IPDPSW

2011] [Diener, et al, PDP 2016]

○ Incurring huge memory footprints and very slow

○ Requires offline profiling
○ Not running on real hardware, so execution behavior can change.

● Performance monitoring units (PMUs)-based tools [Azimi, et al. ACM SIGOPS

Operating Systems Review 2009][Tam, et al. EuroSys 2007].

○ Can be intrusive as it requires modification of kernel source code

16

Existing Tools

● Code instrumentation: binary [Diener, et al. Performance Evaluation 2015][Diener, et al,

PDP 2016] (Numalize) and compiler-assisted [Mazaheri, et al. ICPP 2015][Mazaheri, et al.

ICPP 2018]
○ Can suffer from large slowdown and memory overhead

○ We have found that Numalize is not accurate. 17

Existing Tools

● Code instrumentation: binary [Diener, et al. Performance Evaluation 2015][Diener, et al,

PDP 2016] (Numalize) and compiler-assisted [Mazaheri, et al. ICPP 2015][Mazaheri, et al.

ICPP 2018]
○ Can suffer from large slowdown and memory overhead

○ We have found that Numalize is not accurate.

Numalize

ComDetective

Ground Truth

18

ComDetective

● We develop a tool to detect inter-thread communication called ComDetective

● ComDetective is
○ Fast -- uses available hardware features; PMUs and debug registers

○ Accurate -- has been validated in terms of correctness of total communication

volume and correctness of point-to-point communication ratio

● ComDetective also

○ Differentiates true sharing and false sharing communications -- by
detecting if memory regions accessed by communicating threads overlap or not

○ Associates communication matrices not only to the whole program but to

program objects -- for global, stack, and heap objects

19

Outline

● Background Information on Inter-Thread Communication

● Motivation for Detecting Inter-Thread Communication

● Prior Arts

● Introduction to ComDetective

● Design Components

● Workflow

● Detailed Evaluation

20

• Inter-thread communication occurs between two threads if,

Two threads access an address residing on the same cache
line in a short interval

• Question: How to detect cache line communication?

21

Big Picture

• Inter-thread communication occurs between two threads if,

Two threads access an address residing on the same cache
line in a short interval

• Question: How to detect cache line communication?
• A thread can sample its memory accesses via hardware

performance counters (address sampling)
• No load/store instrumentation ⇒ super low overhead

22

Big Picture

Big Picture

• Question: how can another thread know if it is accessing the same
address without instrumenting its loads and stores?

23

Big Picture

• Question: how can another thread know if it is accessing the same
address without instrumenting its loads and stores?

• Answer:
• The first thread

• publishes its sampled address to a globally visible location
• The second thread

• compares its sampled address with the globally published
addresses and if there is a match ⇒ inter-thread communication, or

• uses hardware-debug registers (aka watchpoints) to monitor a
globally published address

• Watchpoint traps when the second thread accesses the same address ⇒
inter-thread communication

24

PMUs

core 0

PMUs

core 1

Design Components: PMU

 PMU: Special registers that

count low-level events, such

as loads or stores .

25

Sampling: PMUs can be

configured to trigger

interrupt for every N events.

Debug Registers: Filled with a

memory address and length.

Sends a trap when the

memory region specified by

the address and length is

accessed .

26

Design Components: Debug Registers

PMUs

core 0

PMUs

core 1

Debug registers Debug registers

27

Design Components: perf_event

perf_event: Allows user

applications to configure and

access PMUs and debug registers

PMUs

core 0

PMUs

core 1

Debug registers

perf_event perf_event

Debug registers

28

Design Components: perf_event

PMUs

core 0

PMUs

core 1

perf_event perf_event

Debug registers Debug registers

perf_event: Allows user

applications to configure and

access PMUs and debug registers

A function that runs when

sampling happens

29

Design Components: ComDetective

PMUs

core 0

PMUs

core 1

perf_event sample_handler perf_eventsample_handler

Debug registersDebug registers

Bulletin Board: A hash

table that publishes some

of the sampled data

30

Design Components: ComDetective

PMUs

core 0

PMUs

core 1

perf_event sample_handler perf_event

key attributes

sample_handler

Debug registersDebug registers

trap_handler

A function that runs

when debug register

trap happens

31

Design Components: ComDetective

PMUs

core 0

PMUs

core 1

perf_event sample_handler perf_event

key attributes

sample_handlertrap_handler

Debug registersDebug registers

32

key attributes

Design Components

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_eventsample_handlertrap_handler

Thread T0 Thread T1

Debug registersDebug registers

perf_event is configured
so that loads and stores
to be sampled for every
N events.

An Example Workflow

33

Thread T0 Thread T1

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

key attributes

-1

-1

-1

sample_handlertrap_handler

Debug registersDebug registers

Workflow

Interrupt happens in core 0
after N events.

34

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

-1

-1

sample_handlertrap_handler

Debug registersDebug registers

Workflow

If it is a store event,
published it on bulletin
board.

35

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Debug registersDebug registers

Workflow

Interrupt happens in core 1.
The triggering event is a
store to memory address
M1.

36

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Debug registersDebug registers

Workflow

37

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Debug registers

Check whether cache

lines match!

Debug registers

PMUs

Workflow

Communication matrices
are updated

If C0’s entry is ‘recent’,
communication is
detected between T0
and T1.

38

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C0 M0, L0, timestamp, T0

-1

sample_handlertrap_handler

Check hash table entry

whether there is the

entry is ‘recent’.

Debug registers Debug registers

Workflow

If C0’s entry is not
‘recent’, replace the
entry with M1.

39

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

-1

C1 M1, L1, timestamp, T1

-1

sample_handlertrap_handler

Debug registers Debug registers

Workflow

No matching cache line and

all entries are ‘recent’, so

none can be replaced.

Another store sample
happens on address M3.

40

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

... …..

... …...

… …...

sample_handlertrap_handler

Debug registers Debug registers

Workflow

Set up debug register
from a randomly selected
entry in the hash.

41

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

sample_handlertrap_handler

Debug registers Debug registers

Workflow

When trap in a debug register

happens, communication

matrices are updated.

42

PMUs

core 0

PMUs

core 1

trap_handlerperf_event sample_handler perf_event

Thread T0 Thread T1

key attributes

sample_handlertrap_handler

Debug registers Debug registers

Evaluation

● Accuracy verification with micro-benchmarks

○ Communication volume

○ True/false sharing ratio (reported only in our paper)

○ Point-to-point communication ratio

○ Read/write communication volume (reported only in our paper)

● Communication matrices of large benchmarks

○ 12 PARSEC and 6 CORAL applications

● Use cases: code refactoring

● Sensitivity Analysis (reported only in our paper)

○ Sampling interval impact

○ Debug register count

○ Hash table size
43

● Communication volume verification microbenchmark

○ Each thread performs only store operations to either
shared data or private data depending on sharing
fraction parameter.

If (rNum < SHARING_FRACTION)

Communication Volume Verification

44

Communication Volume Verification

● ComDetective count vs RFO (request for ownership) count when
2-16 threads are mapped to 2 sockets.

● Each thread only performs store operations to shared data.
○ Real total communication count (ground truth) is RFO count

45

Point-to-point Communication Ratio Verification

● Point-to-point communication
microbenchmark
○ Enables selection of threads which

communicate in pairs.
○ In all cases, thread 0

communicates with thread 1 and
thread 2 communicates with
thread 3.

ComDetective Expected

46

Snapshot of PARSEC Matrices (only 6 shown)

47

(a) Blackscholes (b) Bodytrack (c) Canneal

 (d) Dedup (e) Facesim (f) Ferret

Snapshot of PARSEC Matrices (only 6 shown)

48

(a) Blackscholes (b) Bodytrack (c) Canneal

 (d) Dedup (e) Facesim (f) Ferret

Barrow-Williams et. al IISWC’09

● Blacksholes, financial analysis benchmark
● Splits the price options among threads where

each thread can process the options

independently from each other

CORAL Benchmarks
MPI All True False

AMG

MiniFE

PENNANT

QuickSilver

VPIC

49

Use Cases: Code Refactoring

● False sharing in streamcluster happens on pthread_mutex_t typed variables

○ 6% improvement is achieved after we put paddings among attributes in

pthread_mutex_t struct

● False sharing in fluidanimate happens on a pthread_cond_t typed variable

○ 13% improvement is achieved after we put paddings among attributes

in pthread_cond_t struct

50

__g1_orig_size __wrefs __g_signals before modification

__g1_orig_size padding1 __wrefs padding2 __g_signals after
modification

Summary

A practical tool for capturing inter-thread communication

● Low overhead: 1.27x runtime and 1.3x memory

● High accuracy

● Ability to quantify communication

● Ability to distinguish true vs. false sharing

● Attribute communication to program objects

[Available for download: https://github.com/comdetective-tools]

51

ParCoreLab@ Koç

52

http://parcorelab.com

Optimization of Sparse Solvers Detecting thread communication

GPU Communication OptimizationQuantum computing Accelerated Deep Learning

http://parcorelab.com

53

References
[1] Nick Barrow-Williams, et al. 2009. A communication characterisation of Splash-2 and Parsec. In IEEE International Symposium
on Workload Characterization, 2009. IISWC 2009.

[2] Eduardo Henrique Molina da Cruz, et al. 2011. Using Memory Access Traces to Map Threads and Data on Hierarchical
Multi-core Platforms. In 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW).

[3] Matthias Diener, et al. 2016. Communication in Shared Memory: Concepts, Definitions, and Efficient Detection. In 2016 24th
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing.

[4] Reza Azimi, et al. 2009. Enhancing operating system support for multicore processors by using hardware performance
monitoring. ACM SIGOPS Operating Systems Review 43, 2 (2009), 56–65.

[5] David Tam, et al. 2007. Thread clustering: sharing-aware scheduling on SMP-CMP-SMT multiprocessors. In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007. 47–58.

[6] Eduardo H.M. Cruz, et al. 2012. Using the Translation Lookaside Buffer to Map Threads in Parallel Applications Based on
Shared Memory. In 2012 IEEE 26th International Parallel and Distributed Processing Symposium (IPDPS).

[7] Matthias Diener, et al. 2015. Characterizing communication and page usage of parallel applications for thread and data
mapping. Performance Evaluation 88-89 (2015), 18–36.

[8] Matthias Diener, et al. 2016. Communication in Shared Memory: Concepts, Definitions, and Efficient Detection. In 2016 24th
Euromicro International Conference on Parallel, Distributed, and Network-Based Processing. 54

References
[9] Arya Mazaheri, Felix Wolf, and Ali Jannesari. 2015. Characterizing Loop-Level Communication Patterns in Shared Memory
Applications. In Proceedings of the 2015 44th International Conference on Parallel Processing (ICPP 2015).
https://doi.org/10.1109/ICPP.2015.85

[10] Arya Mazaheri, Felix Wolf, and Ali Jannesari. 2018. Unveiling Thread Communication Bottlenecks Using
Hardware-Independent Metrics. In Proceedings of the 47th International Conference on Parallel Processing (ICPP 2018). ACM,
New York, NY, USA, Article 6, 10 pages. https://doi.org/10.1145/3225058.3225142

https://doi.org/10.1109/ICPP.2015.85

