Beehive: A Modular Flexible Network
Stack for Direct Attached Accelerators

Katie Lim, Pratyush Patel, Jacob Nelson, Irene Zhang,
Tom Anderson




Accelerators in the datacenter

Ranganathan, Parthasarathyetal., “Warehouse-scale
video acceleration:co-design and deployment in the
wild”, ASPLOS ‘21

Cloud TPU. https://cloud.google.com/tpu

Datacenters increasingly moving computation
into dedicated hardware leading to better

energy efficiency

Applications:
o Videoencoding: Google
o ML: Google, Facebook, Microsoft

Infrastructure
o Network virtualization: AWS, Microsoft

o Storage:AWS



Accelerator Efficiency

e \Various research has shown
accelerators on FPGA to have energy
efficiency benefits across a range of
applications

Efficiency doesn’t account for
surrounding infrastructure required to
iIntegrate these accelerators into a

system

Application Efficiency Speedup
CNN Inference [103] dx—34dx 1%=7.7x%
RNN Inference [77] 4x-9x 0.7x—4.1x
Web Search [87] Ix—1.95x 1x—1.23x
Image Processing [89] 1.2x-22.3x N/A
Intrusion Detection [137] 5x-52x 3x—10x
Document Filtering [17] 5.25x 0.85x
Video Compression [16] 5.2x 8.4x
Decision Trees [2] 23x-72x 2x-30x
Bzip2 Compression [90] N/A 1.6x-2.3x
Key-value Stores [62] 2.29x 1.02x
Databases [52] 1.42x Ix-2x




Network-attached accelerators

e Some accelerators may be directly
attached to a network, so they can
communicate without CPU intervention

o Ex: Microsoft, IBM both have deployments of

FPGAs attached to their general purpose
datacenter networks

e Energy efficiency benefits both for
application and for infrastructure

e \What should a hardware network stack
look like?

Figmee 1 () The disaggrepored FIGE amd (8) the carvier doand

Abel, Francois.etal., “An FPGA Platform for
Hyperscalers”, HOTI 17

40G QSFP Ports
(NIC and TOR)

Caulfield, Adrian M. et al., “A cloud-scale
acceleration architecture”, MICRO’16



Software network stacks

e Recent work in network stacks (e.g.
Google Snap, eBPF) prioritizes
modaularity, customizability

e Variety of protocols that can be
changed

Control plane manager
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Network: Network Stack

e Custom network functions
o E.g.load balancing, network virtualization

e Complex interconnections in the stack

e Potentially all layers need control plane
access
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Example software network stack overview



Beehive

e Our proposal: Beehive, a network-on-chip TCP 1P ETH
(NoC) based network stack
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e Each protocol or network functionsis a tile.
Tiles communicate via message passing
and can be composed

L4 Load
Balance

uDP
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e Scale up processing capacity by duplicating Uop
tiles within the architecture App

e Focus on providing support for both flexible

packet operations and reliable protocols Proposed designwith a mesh
. topology
o Previous work focuseson one or the other



Beehive Tile

e Processing logic modules are wrapped in y
a tile /

e Processing logic can be anything: Processing
protocol, network function, application Logic

logic

e NoC message handlingincludes
message construction/deconstruction

and network packet level routing NoC message handler

e Router handles NoC message level
routing




How do we process a packet?
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How do we process a packet?

IF header
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How do we process a packet?

IP header
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Prototype & Evaluation

e Prototyped on Xilinx Alveo U200 running at 250 MHz
o Mesh topology, 512 bit NoC width
o Protocols: Ethernet, IP, TCP, UDP
o Network functions: NAT or IP encapsulation

e Testbed
o Switch: Edgecore Wedge 100BF-32X 100G, jumbo frames enabled
o 3 CPU clients: 2 have Intel Xeon Gold 6226R CPUs, one has Intel XeonGold 5218 CPU. All
have Mellanox ConnectX-5NICs

e [FPGA and CPU clients all connected to the same switch
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Overhead from message passing/routing

Beehive
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e Compare Beehive versus
a fixed pipeline design

e Fixed pipeline uses same
processing components,
but no NoC infrastructure

e Integrated logs used for
measuring statistics
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Overhead from message passing/routing

e Fixed pipeline better in
simulation

e NOoC has small
overhead

e Beehive slightly better
than fixed pipeline on
FPGA due to jitter and
increased buffering
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TCP migration experiment

e Migrate established TCP connection between two CPU clients using the

Demikernel TCP stack without restarting the connection.
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TCP migration experiment

e Migrate established TCP connection between two CPU clients running the
Demikernel TCP stack without restarting the connection
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TCP migration experiment
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TCP migration experiment
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Ongoing Work

Internal load balancing across duplicated components to support multiple

instances of tiles
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Allows scaling up of processing capacity

Requires flow-based steering to keep packets in order
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Ex: Viewstamped Replication Witness

e Consensus algorithms allow agreement
on an order of operations and are
important for building replicated, Client
distributed systems

Request Prepare |, PrepareQK , Commit

Leader
e Each consensus round requires leaders :
collect responses from a majority of Witness :
witnesses \E \
Witness

e Can we accelerate the witnesses in I . '

hardware? Normal operation of the VR protocol
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Why withesses?

e In a typical, only CPU case, one node can be either leader or withess

e \What are withesses responsible for?
o During typical processing: verifying that proposals carry the correctview number, a valid

operation number
o During failures: can initiate recovery, but also can just respond appropriately to view change

messages

e Advantageous for hardware:
o Theydo not need to execute application logic
o Lowlatency good for achieving quick quorums
o Messages are typically small packets
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Preliminary Results

e Latency: 64ns per consensus round
e Bandwidth: 15.6 Mrounds/sec, ~2Gbps

e Implemented on Xilinx Alveo U200 with Vivado 2021.2
at 250 MHz

e Ultilization promising that we can replicate tile to scale
up processing bandwidth

Utilization of 1 VR Witness Tile

LUTs 1918

URAMs | 4
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Conclusion

e Built Beehive, a NoC-based network stack designed to be modular and
support complex network functionality

e Demonstrated that Beehive has a small overhead on bandwidth (~5%) versus
a fixed pipeline design while enabling complex functionality like TCP
connection migration

e \Working on leveraging tile-based design to scale up processing with VR
witness example application
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