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R apid Mar ket Gr OWth . (based on Allied Market Research estimates)
The autonomous vehicle market will grow from
$54.23 billion in 2019 to $556.67 billion in 2026.

Data Security & Privacy Concerns Growth:

»Remotely hacking modern cars
= Jeep digital systems hacked remotely to control the
brakes and steering wheels [2014]
» hackers tricked Tesla’s Autopilot into suddenly
changing lanes [2019]
» Distributed Denial of Service (DDoS) attacks
=  Mirai malware [2016]: creates botnet to launch
Distributed Denial of Service (DDoS) attacks
Another version of it [Jan. 2018] targeted ARC
processors based devices running Linux
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Autonomous Driving Systems (ADS) Requirements

» High Level of Accuracy (i.e. robust
and reliable object detection for

different environment conditions)
. Human driver monitors the
Hard Real-Time Guarantees

Emphasis on Very High Level of

Safety and Reliability

Emphasis on Very High Level of

Security . . .
Addressing other marketing on A Avamaion. Ao Ao

issues ( cost reduction, less energy Source: Society of Automotive Engineers (SAE)
consumption, reducing CO, emission ...)

Cars with level 3 autonomy
o Cadillac CT6, Mercedes Benz E Class, Volvo S90
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ADAS Typical Tasks: Active Sensors: The sensor emits a signal
> Pedestrian Detection and then measures its reflection.

> Vehicle Detection > LIDAR, SONAR

Microsoft Kinect uses an IR transmitter and an IR
camera.

» Adaptive Cruise Control

» Lane Departure

. Passive Sensors: The sensor detects the
Detection

radiation that is emitted, reflected or
» Traffic Sign Detection scattered by the object.
» Camera is the most commonly used
passive sensor.

» Parking Assistance

o Active sensors are usually very expensive. (for example, LIDAR in Google autonomous car costs about
$75000), while passive sensors (i.e. Camera) are cheaper and more environment friendly.
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Pedestrian Detection

Pedestrian detection is considered as one of the most challenging
tasks in several domains such as surveillance, robotics, and driver

assistance systems, autonomous driving systems, ...
» Due to the variation of appearance and human poses

Source: Www.elirocarews con Source: www.pedestrian-detection.com
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High computational complexity of real-time pedestrian detection:

> PRT (Perception-brake Reaction Occurrence Braking Vehicle stops

Time): between0.7Sto1.5$ of hazard  Activation

» Braking distance: 14.84 m (50 l
km/h) to 29.16 m (70 km/h)
considering 6.5 m/S? deceleration

PRT Time related to
braking distance

» Stopping distance = perception-reaction distance + braking distance = 35.68 m (50
km/h ) to 58.23 m (70 km/h ) assuming PRTis 1.5S

= Consequently less than a second time is left for all the processing required.
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Input > Feature Output
high resolution Extraction

e \

! CIGSSIf Ication | 3 (pedestrian or not)

(1920x1080) 60 fps

The basic idea for using Histogram of Oriented Gradients (HoG) is that
the local appearance of an object can be described by its local intensity
gradient distribution.
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Histogram of Oriented Gradients (HOG)

Input Image

> Gradients are computed within the cell ik
> Gradients generate an orientation £ el EE% /
histogram 2x2ca)/E
» Generated histograms are normalized /Bl
within the blocks to suppress the Asxaca

effect of local brightness and contrast

Wi

Support Vector Machin (SVM)

» Sliding window of 128x64 pixels
» Features are compared with the trained
model through their dot product
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Pedestrian Classifier

HOGDescriptor = SVMClassifier

Gradient i S Butter L
ImageMem !} | ymage . Calculation& I Block | Werssses . Object
| mevaes Histogram - @t#=ses HOGMem == Normalization | ' y ) Classification

S Generation

o i 4x HogWidth Bin

» Hardware accelerator capable of detecting pedestrian at 60 fps for an HDTV
(1920x1080) frame
o Special memory hierarchy to address the memory access bottleneck for
Pipelined and parallel architecture.
o HOG feature descriptor for HDTV (1080x1920) at 60fps generated in 16.6ms
(using ZYNQ 7000 EPP at 125 MHz)
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| Dection Result

HOGNormalizer

ImageMem ' 01 , Calculation& . i Block y Object
[escep) P Vs Histogram < @iisssn HOGMem @ Normalization | | N-HOGMem L ) Classification
H Generation ’ PR
i x HogWidthx Bin

ImageWldth
ImageHelzht

Gradient Calculation:

fx(x,}’) = f(x + 1'}’) _f(x - 1!}’)
Gy =fl,y+1)—fl,y—1)

mGey) = (fi * Gy +fy “G6)

-1 fy(xy)
fx(xy)

> > > > > > > >
W 0 0|0 0 0w w

0(x,y) = tan
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ImageMem

Gradient
Calculation &
Histogram
Generation
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Calculation & 4 )

N-HOGMem
Nonlullud G4

Normalized G3

Multi-Scale Pedestrian Detection:

Multi-scale detection is required to cover different object sizes and distances to the

vehicle.

(a)

(b)

/,,/,,«

HOG
==l Feature

Extractor

//

HOG
Feature
Down
Sampling

Feature Data

Trained Model

Feature Data

Trained Model

SVM
Classifier

Detection Result

Detection Result

To reduce the computational complexity, in our new approach the normalized
HOG features are down-sampled to detect different sizes of the pedestrian.
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» Our modified approach outperforms for the scales up to 1.4
» Real-time multi-scale pedestrian detection is achieved for an HDTV
(1920x1080) at the rate of 60 fps.

Bilinear Bilinear Scale 2 Feature . Ve . "
0! eature Memory eature Memory
Downscaler Downzscaler (Scale 2) (Scale n)

Scale n HOG Feature >
Original SVM Scale 1 L Scale n

Classifier SVM Classifier SVM Classifier
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Vehicle Detection

Vehicle detection approaches are considered for different environmental
conditions:

» Detection in day
» Detection at night

Daytime detection methods focus on:
o The visual appearance of the vehicle
o Features such as symmetry and shadow under the car

Most of the detection during night time relies on the information
of taillights.
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Vehicle itself is not a static object and its appearance may change in
different lighting conditions.

Robust detection requires using the features that:
» Minimize the lighting and luminance variance
» are less affected by the change of environmental conditions

We developed an adaptive vehicle detection approach for day,
dusk and dark.
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Vehicle Detection- Day and Dusk:

HOG Feature Extraction

Input Image Gradient Histogram Detection Resuit
—_— S e _. Femincdos -3

Different training datasets are used _—

for Day and Dusk: ‘
o Two different models (separate o ‘o |

datasets) for SVM classification e \\i mum o
o Combined Model: Third model ==

o o ‘Irl:u: HOG ‘
generated by training the o Emzm‘_. - .
classifier with both of the Day hT’ S e—

o

o
and Dusk datasets together. s .
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TP+TN
TP+TN+FP+FN

Detection Accuracy:
Detection Accuracy

100.00%

> Detection accuracy is higher 90.00%
during the day compared to o
dusk as expected. 60.00%
o Dusk model is not suitable for o

detection during the day. 20.00%

» Combined Model outperforms 2000%

10.00%

the detection during the dusk. 0.00%

o Including day images during the et et s pataset
lea rning phase has positive Day SVM Model ~ m Dusk SYM Model ~ ® Combined SVM Model
impact on the results.
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Vehicle Detection- Dark:

Deep Belief Networks (DBN):

Generative class of deep learning
architectures

The layers are separately trained Restricted
Boltzmann Machines (RBM)

RBMs are stacked on top of each other

DBN for 9x9 window:

o 8lyvisible channels

2 hidden layers

20 and 8 hidden nodes

Trained in MATLAB

Cropped images of taillights from SYSU
dataset used for training

o Sliding over the image with stride of 2

o
o
o
o

5 March 2020 Morteza Biglari-Abhari




Summary of our Vehicle Detection approach:

Trained
Y % Model

Input HOG HOG HOG " | Normalized SVM |Detection
Image |Descriptor Memory Normalizer HOG Classifier| Result
1920x1080 Memory

Detection rate of 60 fps for an HDTV frame in Day, and Dusk

@ A v
Split Threshold Closing | . . \

Input Chroma Resize to (Dilate 1 1 ®'8€ Detection " B

AND DBN DBN

v B Image & 640x360 & L 1 L 2 C Result
*.+.+.11920x1080 Luminance Threshold Erode) ayer ayer ompare

Detection rate of 50 fps for an HDTV frame in Dark
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Dynamic Partial Reconfiquration:

Partial reconfiguration (PR) is an advanced feature of FPGAs for run-time
resource management:

» Time-multiplexing hardware resources
» Flexibility of SW with performance of HW
» Reconfiguration time and overhead is the concern

Partial reconfiguration throughput in ZYNQ SoC:
» Theoretical value of 400MB/sec at working frequency of 100MHz
» Limited to only 19MB/sec for ICAP
> Bitstreams transfer through general purpose ports of PS to AXI_HWICAP
> Limited to 145MB/sec for PCAP
» Affected by Zynq central interconnect delays
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Delays in Partial Reconfiguration are related to the connection ports
(PS through GP ports, DMA core to PL DDR, availability of AXI HP ports)

We improved the reconfiguration throughput to 390MB/sec:
» Measured in PS by ARM performance event counters
» Measured in PL by Vivado integrated logic analyzer (ILA)

Processing System (PS) T Axi ) Prograriimiable

PLDDRS lgammmd  Logic (PL)

ul O
q (Memory) Controller DDR3 Modules

ARM ARM
Cortex A9 Cortex AS
Core 0 Core 1

PR Controller

AXI DMA
(MM_S) ICAPE2 To
AXI = _J Reconfigurak

Module

«mm=)| PS DDR3 Controller
jInterconnect
High-Performance Ports (Peripheral)

AXI Interface AXI-Stream Interface AXI-Lite Interface

|

General-Purpose Ports

PS DDR3 Modules

IRQ PL to PS - Configuration bitsream

Block diagram of the connection between PL DDR3, PR controller, and Zynqg PS
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Summary: Adaptive Vehicle/Pedestrian Detection for ADS

Programmable PLDDR3 A
Logic (PL) ) ok i AXIDMA
1T Memory) 7| mm_sy

» Static Region Ak

ICAPE2

o Pedestrian Detection e e

o PLto PS Connections =
Core 0 Core 1

o PR Controller

» Reconfigurable Region b3 0 oncone
o Vehicle Detection (waneeromancepors| g

o Two different configurations e g Detection z
» Transition between dusk and e = |
—

dark requires the reconfiguration ' 1 ’
o Does not happen frequently e e
o  Tunnel environment is well lighted and is i) —

L

PS DDR3 Mod ules

Vehicle

categorized as dusk. -

AX Interface

Scenarios such as entering the tunnel is Bl lnt_errupes ]
handled by the switching between day and Atne etz I (e |

lﬁQ?LWDS

dusk Configuration bitsream
ey
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Security Vulnerabilities

Security issues are related to:

Confidentiality: to prevent information access or leakage to unauthorized

parties
(e.g. using cryptographic algorithms such as AES)

Integrity: to ensure that the information has not been tampered with
(e.g. using cryptographic hashing such as SHA-2)

Authentication: to ensure that the information can be available only to

identified parties and whenever they need
(e.g using a combination of encryption and hashing (based on public keys or shared keys)

o We are concerned with the security vulnerabilities of MPSoC.
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Examples of Security Threats

Physical Hardware attacks:
> Invasive: Physical manipulation of hardware devices (the so-called "shack attacks")
» Non-Invasive:

o Tampering with the device functionality (through debug interfaces e. g. JTAG or USB ports)

o Side-channel attacks to extract secret information (usually cryptographic keys,
other private or valuable information) through a covert side-channel

Hardware Trojan: a malicious hardware component or IP embedded in
the system to expose secret information.

IP Stealing: mitigated by using Physically Unclonable Function (PUF) technology
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Software related attacks through exploiting software bugs:

P Lower
rogram |  sddresses Bufl0
Code L

Old
] pointer

local

> Code Injection attack: affects the | Literal | variables ) [Buln-1]

Pool Localvar#2 |z

code integrity through injecting and Local var #1 g_

Stack

|
. . . FP Previous FP | ¢ _7
executing malicious code Heap FPl—sPovon P __ aronth

-
°

b

Return Address %

U Arg #1 ]
function

> Return-Oriented Programming: argumem{—mn Y] e
exploits buffer overflow
vulnerabilities [shacham 2007]

'7 ttack Code

Higher
addresses

Stack smashing attack [Milemkovic et al 2005]
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Side Channel Attacks

Side-channel attack: used to leak information by exploiting the system implementation
(not necessarily the software bugs) such as: power consumption, electromagnetic radiation,
temperature variations, or timing information.

Processor
Microarchitecture

Processor
Microarchitecture

s

P L1 L1 L1 L1
(I-Cache) (D-Cache) (I-Cache) (D-Cache)
exposed to ~
side-channel ¢ t

ttacks =~ _
attacis L2 Cache
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Cache Side-Channel attacks:

Caches are shared by all the software running on a core (or multi-cores).

Attackers exploit the variations of cache timing and access patterns:
o timing difference between a cache hit and a cache miss
o fixed mapping of memory addresses to cache lines

Contention-based Re-use based Attacks
Attacks

Access — Driven Attacks Prime-Probe attacks Flush-Reload attacks
Timing — Driven Attacks Evict-Time attacks Cache Collision attacks

Classification of Cache Side-Channel Attacks: [Liu & Lee - 2014]
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Spectre and Meltdown

Modern processors use speculative and out-of-order execution to
increase the performance by exploiting Instruction Level Parallelism.

Spectre attacks make the victim to perform speculative operations
(which should not be needed for its correct program execution) to leak
confidential information through a side channel. [Kocher et al 2018]

Example of simplified C code [Hill et al, 2019]:
if (untrusted_offset < array_length) {
val = private_memory[untrusted_offset];

Through cache side-

channel analysis, the
attacker can find the
affected cache line to

X = accessible_memory[(val & 1)*cache_line_size]; . )
leak the information.

}
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»Meltdown attack exploits out-of-order execution to leak the contents
of part of the physical memory.

» Meltdown exploits a privilege escalation vulnerability which is
specific to Intel processors (so memory protection can be bypassed by
speculatively executed instructions) [Lipp et al - 2018].

o Forshadow attacks (reported a few months after Spectre and Meltdown) dl'é specificly
target Intel Processors.

o Initial versions targeted SGX enclave data. Newer versions target
kernel memory (in OS, Virtual Machines and Hypervisors). [kan 2018]
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Addressing Security Vulnerabilities

Layered Security Support

Advanced protection Tamper detection;
reverse engineering/IP
Secure platform theft protection;
and memory side-channel protection

Secure bus/
peripherals

Provide protected
access to core, SoC
bus, peripherals

Other loT

Foundation - devices,
Torctions Secure loT interfaces and protocols / gateways and

the cloud

< * Cryptography
. Random numbers
4 Identification

Key storage

Secure boot and
platform security;
memory protection

Overview of loT Security Solutions (source: white paper (March 2016) - synopsys.com)
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Overview of our Approach

Applications may have different tasks, each with their own timing and
security requirements. (task: a unit of software with its own code and I/O, or a HW IP block)

We propose:
> A system-level security approach to provide isolation of tasks without
the need to trust a central authority at run-time.

Our goal is:

»to mitigate the security vulnerability by preventing unauthorized access
to security sensitive resources for heterogeneous multiprocessors
systems on chip (MPSoCs).

»to reduce the extent at which a compromised task can disrupt the rest of
the system using run-time Isolation and the Principle of Least Privilege.
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To support run-time isolation of critical tasks resources, we consider
two different cases:

O Application tasks are explicitly security-aware and can manage the
required access to shared resources.

O Application tasks are not explicitly security-aware
(the system is consisted of possibly not security-enabled components or tasks).
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Application Example: (Integrated Home Automation Hub)

Design ﬁ Deployment

et 4— — 9

Interconnect

: } . L l
"@@u Actuation and
*— k Sensing
Designers

Design

T

Malicious
Actors

Various Sensors and Actuators (different levels of criticality)

Security threats may affect correct functionality and information flow in the
system.
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Collection of tasks in an Integrated Home Automation Hub:

i -~
~
& # _ Environmental Control ™ «

rs Lights

/

' O A 1 E:tertainmenl =
Tasks . \\ O Sensors
.

¥ ~ Environment _» 4
o run concurrently S~ O <~

e —

Media Decoder

-———

o are grouped based on their < TreDetecton :
functionality ( A':Hf:u;d
o may interact with other
tasks in the same group or
tasks in other groups

.- -~
Remote Management

Remote Interface

Update

-

——— -
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Tasks allocation:

The Integrated Home Auromation Hub — Hub Task Groups

Application
232 o o e o sl | %
o E|2|E| 2 Sl ElE ke
[ a
Platform
| P
1
’ Interconnect ‘

[ 1

I

v [ |

nd Descriptions

Task Group (processor) Tasks Functional Description “Criticality” Remarks
EOQ Light Controls the lights Physical control with human impact
Envir 1 El AC Controls the heating for each room Physical control with human impact
Control (Pys) E2 Sensor Receives and processes sensor data Physical sensing,_real-time requirements
E3 Environment Uses sensor data to manage environment Physical control. real-time requirements
. ) S0 Security camera Controls security cameras. processes footage Sensitive information, real-time requirements
Home Security = = < = > o
Par) ? §l D.(’Ol access Controls flom lm?ks thslt‘.al comm-], sensitive
o s2 Biometric access Manage fingerprint entry system Real-time reqp nts. sensitive data
Fire detection (Pz) Fo Fire r Detects fires. raises alarm. and extinguishes Real I i nts, must always be active
NO Speaker Controls multi-room speaker svstem Physical control. less-critical
Enter (Pxo) N1 Media decoder Manages media files. and processes audio Potentially vulnerable. non-sensitive data
N2 Local interface Manages local control panel for UHAH User interface. potentially vulnerable
= — at RO Remote interface Web interface for remote management User il_\rert'ace. polelm‘?l-ly vulnerable, exposed
(Px1) R1 Update — Manaze_s remote update of controller software Potentially accesses critical data
R2 Authentication remote users (checks passwords) | Accesses sensitive data
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Example (Interaction among task groups):

-
» ° Fire Detection
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How to reduce the attack surface?
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AN

Sensor_data

E3_Environment

/

Environment_Data_log

'

Environmeni_config

Simple T/R Graph: Diamonds: physical resources
Rectangles: memory




Threat Model

MPSoCs typically have two main risks:

» Shared resources, accessible between different task groups
» Shared interconnect, which typically offer all-to-all access

We assume that an attacker can compromise a task in its entirety so a compromised
task:

—> can attempt to generate a memory access to any part of the platform

— can configure a DMA-capable IP to access a part of memory on its behalf
— that runs over an OS, which can escalate its privileges, and disable any
existing Memory Protection Unit.

(Or potentially, reconfigure the MPU to disrupt other tasks running on that processor)
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Security rules should specify how shared data, shared code and IP blocks should be
managed.

O Tasks manage their own accessible resources.
0 To reduce the impact of a compromised task, memory accesses are
regulated through dynamic access permission setup.

How can we implement access control in our system?

- Mandatory Access Control (MAC)' a centralized and privileged administrator manages all [l

access permissions e

— Discretiona ry Access Control (DAC)' entities grant and revoke access to objects they own to S

eachother
- Role-based Access Control (RAC)' access permissions are attached not to tasks, but to "jobs"

or "functions" that a task may be performing
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Isolation Mechanism

Each task may have up to three different types of permission:

> Base Permissions:
statically allocated, cannot be

transferred Task A Task B DMA - IP
> Owner Perm Issions: | Base Permission | | Base Permission | ; Shared Permission i
statically allocated, givesa | ———— | | ——————— | | T > :
task authority to share I Owner Permission | ‘ Base Permission l
|1

» Shared Permissions:
a dynamically allocated
permission, provided when
an owner has granted access

Parts of the Address Space

The access management is distributed among different tasks when needed.

5 March 2020 Morteza Biglari-Abhari

Shared

o Tasks that don’t
need to interact
with each other are
isolated.

Task B Permissions

Task A Permissions
o Interacting tasks
introduce temporal

access through
dynamic (shared)
permissions.
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Isolation Unit (1U):

1 1 P
oo T o X1
X ¥ __Y¥ ’—'—L| m
(Static) Base || (Static) Service Cond. Senvice 1 Remote
| Permissions §| Permissi | Pemission -

Ll TE  rra

Interconnect

-y i
el id

*" Config. Sequgnoe disable i v

I . Monitor ./ | Jonitor, ) Expi;alion ;i ~

H ~
| Timer ¢ ﬂ‘

: i
e =TI

permission status permission

» IUs check memory transactions at each processor/IP block

» Each IU is memory-mapped into the address space of the local processor

» IUs can be interconnected using point-to-point connections, or a separate
dedicated interconnect structure.
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However, the tasks may not be security-aware as IP may be provided from
different sources (e.g. shared libraries, third party IPs etc). So, the previous
approach extended to:

» Providing a mechanism for designer to specify the required security
rules

» Providing architecture level support to reduce the impact of the

compromised component(s) on other parts of the system
o Automatically isolate the critical parts of the systems
o Use a proper interfacing between the critical and non-critical parts
o Generate a new (security optimized) system architecture
o Analyze the overhead (performance, power/energy) of the security-enhanced
architecture
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Security-aware System Design Flow

Security C (initial) System Architecture System Level Description of )
Constraints Description Application

P

Analysis of Security =
Vulnerabilities
Reconfigured Architecture
Generation

v

Design Space Exploration
(power/energy, performance overhead
analysis)

Extending the system architecture
— (hardware & software components)to
mitigate security vulnerabilities

System level analysis based on design
constraints & formal verification

Final configured architecture &
Execution Model
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—I Global Controller |

= based on TDMA-MIN NoC 0] 0]
platform with 8 nodes '

= TDMA scheme establishes N\ / >
temporal isolation
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pre-platform Options Impact Rile violationg Canﬂgurah})n - .
i Platform . X X A ion Partially :
/R Architecture K J/R matrices | Analysis Checking ! REVEGAT/R Revised T/R
Matrix Configs. i dl'i' (Solutions) evised T/1 matrix for
T/R Matrices fen Configuration

Platform
Node Content f
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> Type 1 (Impact restriction): to specify that a task asset is not “impacted” by another task

> Type 2 (Resource class access restriction): to specify when a task should not have access
to resource assets with specific attributes

> Type 3 (Specific resource restriction): same as Type 2, except for a specific resource asset
> Type 4 (Untrusted task): to specify that a specific task may not be trustworthy
> Type 5 (Resource exclusivity): complement of Type 3, to ensure that only one task can write

to a resource
\\

”

‘? ,
Rules
| FArchitecture r - Solution Final Solution List

Configuration Impact List for Configuration

Pre-platform T | Options Impact | Profiles | gyle violations AConfigm;atLivon P—— - S -
Architecture _T/R matrices Analysis Checking el artlally F Revised T/R

Configs it (Solutions) Revised T/R T for
it [JEON] N,  satorn f L _Configuration_|

Node Content
I List Final Task Impact

TR e | . ) . Profile for
Enfrgumnon Refinement | Configuration__

Configuration Results:
Config Nodes Cluster Contents Total Total MPU Resource

1 29 All resources nodes are network nodes _

cd4: light data temp data,display data, port permISSIonS Overhead
request

23 ¢5: light cfg,temp cfg checks
¢7: photos,media data 0,
c9: password 4 +10.7%
c4: light datatemp data,request 0,
c5: light cfg,temp cfg +7.3 A’
c7: media data

o
26 €9: password 4 +6.5%

ce9: password 5
ce4: display data +12.2%

ce7: photos
Cluster (c8) with all memory resources

| Architecture Solution Final Solution .List
Configuration Impact o - List for Configuration
Pre-platform Options impact | Profiles | pyje violations Configy \ - S —

/R Architecture P'a‘ﬁ:m T/R matrices Abdysie Chetking Augmentation Pa.rtislly ) Revised TIR
Matrix Configs. . d'.s . | (solutions) Revised T/R matrix for
T/R Matrices| | Addition Platform f A Configuration
Node Content | T Miascss iy
| Final Task Impact
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Some Related Works

» Attack detection using hardware monitors [patel et al - 2011]
» Creating on-chip sandboxes [Bathen & Dutt - 2010]
» Security-aware on-chip interconnection network:

= NoC firewalls [Fiorin et al - 2008, LeMay & Gunter - 2014, Grammatikakis et al - 2015]
Typically rely on OS or a central authority for managing rules at run-time. Also rules are
not changed dynamically.

» TrustLite: Extension of MPU as Execution-Aware Memory
Protection Unit (EA-MPU), where tasks memory access
permissions are stored in Centralized Tables [koeberi et al. - 2014]

» TyTAN: An extension of TrustLite for tiny embedded devices by
run-time task loading using a secure RTOS grasser et al. - 2015]
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ARM TrustZone [2004]:

» The processor core is divided into two parts secure world and normal world

Secure World

= Since it only offers two "worlds",
cannot easily be used in multi-core
systems

= |nteraction between the two worlds
are managed differently in ARMv7
and ARMvS (for Cortex-M processors).

Secure Secure

Application || Application [«:- Service Service

GP TEE Client API

Secure 0S

l
[ TrustZone Driver

1
sMC

¥
Monitor

» ARM TrustZone has been extended for Cortex-M processors in ARMv8-M.

» Unlike Cortex-A processors, the division of Secure and Normal worlds is memory map
based (transitions takes place automatically in exception handling code, and multiple
secure entry points are supported.
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onniik RISC-V MultiZone [Si-Five: 2019]: e T O
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Source: Cesar Garlati: (Hex5 Security), 2019
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Conclusions

» We developed hardware accelerator for an adaptive vehicle and pedestrian detection
using dynamic partial reconfiguration on FPGAs where, different detection algorithms
may be used for different environment conditions.

»We proposed a System-Level design flow for security enhanced MPSoC for

Cyber-Physical systems:
= To specify the required security rules
= Automatically isolate the critical parts of the systems
= Use a proper interfacing between the critical and non-critical parts
= Generate a new (security optimized) system architecture

Our future works are related to: Analyzing the overhead (performance, power/energy, time

''''''''''''''''''' predictability) of the security-enhanced architecture (with design space exploration), RISC-V

-------- microarchitecture.
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