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» Background on GPU

* Load balancing
* Near data processing
* Processing cores
* Memory controllers
 Interconnection networks

* Conclusion
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« Each processing core (SM) is equipped with its own private L1 cache.

e L2 or Last level cache (LLC) and main memory are shared among all SMs, and they are
accessible through an interconnection network.

SM1 oo SMn
L1 L1
Interconnection Network
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Cache miss rate %

- High L1and LLC Miss Rate (Avg. L1 Miss: 82%; Avg. LLC Miss: 53%)
- A clear difference between L1 and LLC miss rates in some applications
- Relatively high L1 miss rate and low LLC miss rate in applications such as SRA, HIS,

SCP, and HS

2023-12-05
H. Bitalebi, V. Geraeinejad, and M. Ebrahimi, “Near LLC versus near main memory processing”, In Proc. of GPGPU, 2022.
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ixiy Distribute cores to different memory hierarchy levels
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H. Bitalebi, V. Geraeinejad, and M. Ebrahimi, “Near LLC versus near main memory processing”, In Proc. of GPGPU, 2022.
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2} Near Data Processing (NDP)

* GPU is a popular platform for compute-intensive applications due to their massive degree of
parallel processing

* How about memory-intensive applications such as DNNs?

« Near data processing (NDP) is usually referred to near main memory processing (NMP)
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network traffic on GPU memory
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« Class 1and 4: the L1 miss rate is low, and data is likely to be hit
« More suitable for processing in SM cores (SM)

« Class 2: high LLC miss rate means a high number of accesses to the main memory
« More suitable for near main memory processing (NMP)

* Class 3: low LLC miss rate, and data is likely to be hit here

* More suitable for near LLC processing, thus eliminating the long service time of the main memory
and shortening the data path (NLP)

2023-12-05
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Baseline

Parameter

Value

Total cores

56 Streaming Multiprocessors (SM)

Per core

48 warps, 32 warp width,
8 CTAs, 1536 threads, 32768 registers,
48 KB scratchpad memory

NMP
Parameter Value
Total cores 56
Main cores 48 SMs
Near main memory cores | 8

L1 data cache

32 KB, 4-way, 128B block size

Memory stack
Configuration

8 memory stacks, 16 vaults/stack,
16 banks/vault, 64 TSVs/vault

LLC (L2) cache

8 x 128K, 16-way

Intra-stack BW

160 GB/s per stack

Memory

FR-FCEFS scheduler, DDR3-1333H,
8 memory channel

Inter-stack BW

40 GB/s per link, fully connected

Core, L2 clock

700 MHz, 700 MHz

Interconnect

2D mesh, XY routing, 1 core/node,
4 VCs, 4 routing latency,
1 channel latency

GPU to memory BW 80 GB/s per link
NLP
Parameter Value
Total cores 56
Main cores 48 SMs
Near LLC cores | 8
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%”i ?} Near data processing architecture
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Joint architecture
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(b) Application
* If the eX?CUtlon Of a Warp Sta”S due tO Kernel 1 Kernel 2 Kernel 3 Kernel 4 (XX Kernel K
the L1 miss, the processing core
proceeds with the execution of the next Thread Bocks . (2) GPU Platform
TB 1 TB2 |eee| TBi f
warp. I TB Scheduler
|
Warp Scheduler . |/ " W W w =
* In case all warps stall, waiting for their Wapl|[Wap2] === [WaRI|| > MC SM 2 SM 2 SM 2 _
c L lavale ~f i e = — S
data from the higher levels of the ety | o = T R | B
memory hierarchy, the entire core goes < A T SM 2 SM 2 MC < sM 3 £
to the stall state. > Ml o) it )E
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SM: Streaming Multiprocessor ™ i o Wt W W w2
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TB: Thread Block - [E—— MSHR
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MC: Memory Controller

An overall scheme (a) GPU platform; (b) Application
running on GPU

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.
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* Different processing cores within a GPU do not follow the same execution
time.

« Awaiting cores while busy: usually spend a considerable number of stall cycles waiting

for a response from the main memory associated with their irregular memory requests
(busy but stalled).

» Relaxed cores: perform their duties normally without facing any specific pipeline stalls.
These cores have to remain idle until busy cores complete their tasks (relax and idle).

* Root of the issue;

« Conventional TB scheduling methods rely on compile-time information, trying to equally
distribute TBs among SMs.
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{xm: The challange of cores’ stall cycles
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Core's Average Stall Cycles%

Average processing cores’ stall cycles during the application execution

The stall rate ranges from 25% in LIB and RAY to around 75% in BFS.
On average, 40% of cores are stalled, waiting for their memory requests to be responded to.
LATOA aims to reduce the number of stall cycles through load balancing.
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LATOA moves from static to dynamic task scheduling based on run-time information
obtained from MSHR.

It offloads warps from critical cores to relaxed ones.

« Candidate cores for offloading

* The numberof not responded memory requestsin a processing core is directly linked to the state of the
core.

« The number of filled entries in the MSHR table is a reliable indicator that a core is close to go to the
stall or idle state.

» Candidate warps for offloading

« Random warp offloading may hurt the overall performance by imposing extra overhead. It may disturb
locality properties.

* We need to determine the warps that generate irregular memory accessesand offload them into the
relaxed cores.

» Candidate core for warp adoption
* Choose amongthe neighboring cores to reduce traffic

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.
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Cache Misses:

1) Primary miss: the existing cache lines do
not contain the newly requested address,
and thus a new entry must be assigned to
the new request.

2)Secondary miss: the newly requested
address shares the same cache line as the
previous miss(es). Thereby a new slot in
the matching entry will be allocated to the
request.

| Requester ID | Format bits |

Offset bits

I Data buffer |

Entry n Block Addr == Slot 1

% 08, .
& .
Entry 8 L— Block Addr = Slot 1

Entry 7 Block Addr == Slot 1

Entry 3 Block Addr == Slot 1

Entry 2 Block Addr == Slot 1

Entry 1 Block Addr == Slot 1

Slot 2 | Slot3 |eee| Slot m
Slot2 | Slot3 |eee| Slot m
Siotzlsional - - - IENE - Otffload
entry
[ ] &(
v oY
Slot 2 | Slot3 | ee«| Slot m M
Slot2 | Slot3 |eee| Slotm '
Memory
Slot2 | Slot3 |eee| Slot m } request

Miss Status Holding Register (MSHR)

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.
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* We tag the cores with three states as
Critical, Neutral, and Relaxed by dividing
the number of MSHR entries into one of the
three states:

Relaxed core (blue) may enter an idle
state. The cores with the filled entries
between zero and 1/3 of the total
number of MSHR entries.

« Neutral core (gray) is neither critical nor
relaxed. The cores with filled entries
between 1/3 to 2/3.

- Critical core (red) is likely to switch to
the stall state. The cores with filled
entries of more than 2/3.

2023-12-05

(b) Application
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H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.
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* Regular instructions

« Memory requests are synchronized with most existing requests (i.e., high locality rate
among different memory requests), and thus reusing data blocks.

« Consequently, MSHR slots are filled up rather than entries.

* |rregular instructions

* The cache fails to work efficiently with irreqular parts of the application, and the rate of
cache misses dramatically increases.

« Consequently, MSHR entries are quickly filled up rather than slots.

[ Requester ID | Formatbits | Offsetbits | Databuffer |

Entry n Block Addr == Slot 1 | Slot 2

L6 o

Slot 3 e« | Slotm |

Ly o

Entry 8 Block Addr Slotl. H Slot 2 “ Slot 3 ]’ Slot m ‘
Entry 7 Block Addr = Sloti [ stot2 [ siot3 e[ Stotm Oefrtl'lt?;d

(39

o

Entry 3 Block Addr H Slot; “ Slot 2 | Slot 3 I"" Slot m
Entry 2 Block Addr H Slot 1 M Slot 2 “ Slot 3 \] Slot m

Entry 1 Block Addr H Slot1 | Slot2 | Slot3 e Slotm '} “f;ﬂ:;y
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« Offloading a warp without considering the core’s position in the network may lead to
additional network traffic.

* To minimize the offloading overhead to the interconnection network, relaxed cores will only
be selected among the neighboring cores.

« Each core is equipped with a 4-bit register to hold the state of its neighbors. 1-bit is
allocated to each neighbor to indicate the core is relax or not.
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Average processing cores' stall cycles during the application execution
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Performance evaluation (IPC)

» Applications like FWT, KMN, MUM, NN, and SCN are memory intensive. Also they show unbalanced
behavior where some cores are relaxed while others are critical.

* RAY is heavily sensitive to locality property. LATOA improves the locality property of processing cores,
thus leaving more space to hold in-use data blocks.

« STO is severely process intensive, and most of its requested data is provided by the shared memory.
So, LATOA is unable to improve its performance.

2023-12-05
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Power evaluation (Ins/J)

« LATOA succeeds to reduce the power consumption, on average, by 7%.

» Thisis mainly due to increased data block reusability in critical cores and lower static and leakage
power consumption because of the reduced stalled and idle cycles.

2023-12-05 27
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* Moving from deterministic routing
algorithm to adaptive routing
algorithms?

 How to map SMs and MCs on the grid?

 How to allocate memory partitions to
MCs?

Hotspot
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Load balancing in
interconnection network

As all SM cores communicate with several shared MC
nodes, hotspot is usually formed around the MC nodes.

Many-Few-Many
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Thank you!
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