gy

Ak
FKTH

VETENSKAP
28 OCH KONST 2%

Boatt

Load Balancing in GPU

Masoumeh (Azin) Ebrahimi
Associate Professor

KTH Royal Institute of Technology, Sweden

ff%% -
%ﬁﬂgmﬁf O ut I iIne

TR

» Background on GPU

* Load balancing
* Near data processing
* Processing cores
* Memory controllers
 Interconnection networks

* Conclusion

o,
@fKTH?; Background on GPU

dr %me

(b) Application

Kernel 1 Kernel 2 Kernel 3 Kernel 4 (XX Kernel K

Warp 1 || Warp 2 ceco Warp j

Thread Blocks n
I (a) GPU Platform
TB 1 TB2 |eee| TBi ;
| TB Scheduler
|
Warp Scheduler | e " w W +“ N\
|
|

s 7 R

—+— SP
e 2 SM 2 SM 2 MC < SM
: Reﬁizter *T ‘f) *f ‘?
TSMSM2&SM & SM

r —N;ral_ - SM: Streaming Multiprocessor
Critical 12 ‘ il # # i SP: Streaming Processor
i DRAM =) — 2 MC 2 SM 2 SM 2 MC 2 TB: Thread Block

‘ Memory Controller ** +* ** ** MC Memory COhtI’O“eI’

NN
Task offloading/adoption

An overall scheme (a) GPU platform; (b) Application running on GPU

2023-12-05

=
o %
= k>
&£ KTH ¢
% VETENSKAP ﬁ'}
o8

OCH KONST 2%

vt vt vt

£ '\%TC
¥SM & SM 2 24

i I\%Tc i
¥ISM & SM &SM2

v ¢
L MC

Ty e SM2sSMe
v v v

Load balancing through
near memory processing

2023-12-05

Load balancing

v
¥ MC
*TSM
it

L

#ﬁ’[ﬂz SMJ:: SM ‘2 MC

vt v v

Load balancing
among SMs

Register File

P

:

P

:

P

gl

| unsaospeoy |

E

SPx

Shared Memory/
L1 Cache

2

Task offloading/adoption

Interconnection Network

-

R = R | eee
It :
< R & R
i

A4

i

2SM = SM 2 SM 2

vt

R R

[Mstig| |

L

\4 \&

IR)

<

G

SM & SM

B)

vt vt

Load balancing
among MCs

SM & SM %

SM %

AW W W
SIIE I A

) W 1) W
+» R — R - R
sMm € sm < sm o«
N R
» R - R 5 R
* sv < sM sm «
W)) W
+»f(ROA R _, R >
*(SM * SM *+ sy «

vt vt vt vt

Load balancing in
interconnection network

EEEEEEEEE

Load balancing
through near
memory processing

B,

(X123 Memory hierarchy

ag%xﬁm

« Each processing core (SM) is equipped with its own private L1 cache.

e L2 or Last level cache (LLC) and main memory are shared among all SMs, and they are
accessible through an interconnection network.

SM1 oo SMn
L1 L1
Interconnection Network

2023-12-05

LLC1

I

Memory

Ch.1

LLCm

!

Memory
Ch.m

Register File

SPo
SFU0

SFU_ll

SP1

SP2

- §§

| sa0is/peoT |

SFUy

SPx

Shared Memory/
L1 Cache

Conventional GPU structure

Interconnection Network

R = R
i
R = R
. b

oeo R

H. Bitalebi, V. Geraeinejad, and M. Ebrahimi, “Near LLC versus near main memory processing”, In Proc. of GPGPU, 2022.

DRAM‘

frer

ofF T o o . °
(Xt Characterizing applications
S

DS

ML1-Miss M LLC-Miss
100

90 -
80 -
70
60 -
50
40
30+
201

10~

0 = | d
AES CP RED NN KMN SRA MST HIS MUM WP STN CVP SCP BFS SCN FWT HS

Cache miss rate %

- High L1and LLC Miss Rate (Avg. L1 Miss: 82%; Avg. LLC Miss: 53%)
- A clear difference between L1 and LLC miss rates in some applications
- Relatively high L1 miss rate and low LLC miss rate in applications such as SRA, HIS,

SCP, and HS

2023-12-05
H. Bitalebi, V. Geraeinejad, and M. Ebrahimi, “Near LLC versus near main memory processing”, In Proc. of GPGPU, 2022.

egqa’iﬁ-

ixiy Distribute cores to different memory hierarchy levels

SM 1 - SM n SMI o SMn—m SMI - SMn—m
Interconnection Network %’W ; Interconnection Network I
! ! I I

L2 Ll G NLP;: #LLC1| s [LLCu NLPa

LLC1 eee LLCm

I I . Stacks - Stackn ! i
Memory |,., Memory = — Memory |~ Memory
Ch. Ch.m DD Ch. 1 Ch. m
Conventional Near Memory Processing Near LLC Processing

(NMP) (NLP)

H. Bitalebi, V. Geraeinejad, and M. Ebrahimi, “Near LLC versus near main memory processing”, In Proc. of GPGPU, 2022.

o)

£
X
% VET
38 OCH
e
@

Pes ey

Memory response time

80
70
60
50
40
30
20
10

2} Near Data Processing (NDP)

* GPU is a popular platform for compute-intensive applications due to their massive degree of
parallel processing

* How about memory-intensive applications such as DNNs?

« Near data processing (NDP) is usually referred to near main memory processing (NMP)

SMI _— SMn—m
L1 L1

— — —

30 40 50 60 70
Network traffic

/

/

80

90 100

Impact of interconnection
network traffic on GPU memory

2023-12-05

response time

SMI o SMn—m
L L:

I Interconnection Network I
A

I !

Interconnection Network

|

!
!

NLP1 = LLC1| ¢ [LLCnm

= NLPm

LLC: oo LLCm
4 A
v v
Stack: Stackm
[eooe [
| L
[L
Logic Layer Logic Layer
ontro “ontro
Taie

Near Memory Processing
(NMP)

I

| Memory
Ch.1

Memory
Ch. m

!

Near LLC Processing

(NLP)

9

@D,
(52t Classification based on cache access pattern

e

ML1-Miss MLLC-Miss
Miss Access rate | L1 LLC o N i N =
@ gl e
Class 1 Low Low % 70/ .
Class 2 High High 8 ol
Class 3 High Low g
Class 4 Low High =g
Class 5 Moderate | Moderate lji B

-~]
AES CP RED NN KMN SRA MST HIS MUM WP SIN CVP SCP BFS SCN FWT HS

« Class 1and 4: the L1 miss rate is low, and data is likely to be hit
« More suitable for processing in SM cores (SM)

« Class 2: high LLC miss rate means a high number of accesses to the main memory
« More suitable for near main memory processing (NMP)

* Class 3: low LLC miss rate, and data is likely to be hit here

* More suitable for near LLC processing, thus eliminating the long service time of the main memory
and shortening the data path (NLP)

2023-12-05

ixit Configuration setup
& 23

Baseline

Parameter

Value

Total cores

56 Streaming Multiprocessors (SM)

Per core

48 warps, 32 warp width,
8 CTAs, 1536 threads, 32768 registers,
48 KB scratchpad memory

NMP
Parameter Value
Total cores 56
Main cores 48 SMs
Near main memory cores | 8

L1 data cache

32 KB, 4-way, 128B block size

Memory stack
Configuration

8 memory stacks, 16 vaults/stack,
16 banks/vault, 64 TSVs/vault

LLC (L2) cache

8 x 128K, 16-way

Intra-stack BW

160 GB/s per stack

Memory

FR-FCEFS scheduler, DDR3-1333H,
8 memory channel

Inter-stack BW

40 GB/s per link, fully connected

Core, L2 clock

700 MHz, 700 MHz

Interconnect

2D mesh, XY routing, 1 core/node,
4 VCs, 4 routing latency,
1 channel latency

GPU to memory BW 80 GB/s per link
NLP
Parameter Value
Total cores 56
Main cores 48 SMs
Near LLC cores | 8

e
ﬁ
m
e

ixiy Performance and power analysis

sl

2023-12-05

Normalized Performance

120
115
110
105
100

3

Power efficiency (Ins/J)

160
140
120
100

D
(=

S

KMN WP MST SCP BFS HIS MUM SRA HS A\}g.
Performance evaluation

M Baseline ONLP ENMP

KMN WP MST SCP BFS HIS SRA HS
Power evaluation

%”i ?} Near data processing architecture

SMI o SMn—m
L. L.

I Interconnection Network I

Logic Layer

NMP

SMI p— SMn—m
L1 L1

Interconnection Network I

! !

NLP: =LLCi| e+ LLCm® NLPm

! !

I Memory | . Memory ‘

Ch. 1 Ch. m

2023-12-05

NLP:1 = LLC1| ee¢ | LLCm= NLPm

Logic Layer

Logic Layer
Units 2 Units

Joint architecture

Instruction offload Instruction offload
(f
SMs) NLPs Y NMPs
Data movement Data movement 13

EEEEEEEEE

Load balancing
among the cores

ahs

T By
$KTH% i
‘5% Load balancing
ag%%%ﬁm
oty oty M Wooowow oW
> — —> >
Fgy TSME=SM= _ 2 SMESM 2 SM 2
S
A g £ Ao
<.SM<—SM<_SM<- §,, ISM&SM < SM 2
4w : O
ISM2Z & SME = T SM 28I SM 2 SM
woonu >
R E 2B /SR N 7

Ty @ SM2sMz
w oo ow

2SM 2 SM 2 SM 2
wooow W

Load balancing in

Near memory processing

2023-12-05

Load balancing
among SMs

Load balancing
among MCs

interconnection network

=

b,
{1y The impact of core’s load unbalance

%}@2’1?"
(b) Application
* If the eX?CUtlon Of a Warp Sta”S due tO Kernel 1 Kernel 2 Kernel 3 Kernel 4 (XX Kernel K
the L1 miss, the processing core
proceeds with the execution of the next Thread Bocks . (2) GPU Platform
TB 1 TB2 |eee| TBi f
warp. I TB Scheduler
|
Warp Scheduler . |/ " W W w =
* In case all warps stall, waiting for their Wapl|[Wap2] === [WaRI|| > MC SM 2 SM 2 SM 2 _
c L lavale ~f i e = — S
data from the higher levels of the ety | o = T R | B
memory hierarchy, the entire core goes < A T SM 2 SM 2 MC < sM 3 £
to the stall state. > Ml o) it)E
L) e ZSML’SMZSM«SM1§
SM: Streaming Multiprocessor ™ i o Wt W W w2
SP: Streaming Processor - DRAM () +MC 2 SM 2 SM2MCz2
TB: Thread Block - [E—— MSHR
— " v v v

MC: Memory Controller

An overall scheme (a) GPU platform; (b) Application
running on GPU

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.

@,
(52} The impact of core’s load unbalance

e

* Different processing cores within a GPU do not follow the same execution
time.

« Awaiting cores while busy: usually spend a considerable number of stall cycles waiting

for a response from the main memory associated with their irregular memory requests
(busy but stalled).

» Relaxed cores: perform their duties normally without facing any specific pipeline stalls.
These cores have to remain idle until busy cores complete their tasks (relax and idle).

* Root of the issue;

« Conventional TB scheduling methods rely on compile-time information, trying to equally
distribute TBs among SMs.

ahs

DS

2023-12-05

{xm: The challange of cores’ stall cycles

80
il Baseline HELATOA

nimme

BFS FWT HS KMN LIB MUM NN RAY RED SCN SRA WP STO Avg.

70
60 -
50

Core's Average Stall Cycles%

Average processing cores’ stall cycles during the application execution

The stall rate ranges from 25% in LIB and RAY to around 75% in BFS.
On average, 40% of cores are stalled, waiting for their memory requests to be responded to.
LATOA aims to reduce the number of stall cycles through load balancing.

—_

i<y Dynamic load balancing

%}g@%@"

o,

LATOA moves from static to dynamic task scheduling based on run-time information
obtained from MSHR.

It offloads warps from critical cores to relaxed ones.

« Candidate cores for offloading

* The numberof not responded memory requestsin a processing core is directly linked to the state of the
core.

« The number of filled entries in the MSHR table is a reliable indicator that a core is close to go to the
stall or idle state.

» Candidate warps for offloading

« Random warp offloading may hurt the overall performance by imposing extra overhead. It may disturb
locality properties.

* We need to determine the warps that generate irregular memory accessesand offload them into the
relaxed cores.

» Candidate core for warp adoption
* Choose amongthe neighboring cores to reduce traffic

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.

e

i KTHE% Candidate cores for offloading by using MSHR

%’%}@2‘1@"

Cache Misses:

1) Primary miss: the existing cache lines do
not contain the newly requested address,
and thus a new entry must be assigned to
the new request.

2)Secondary miss: the newly requested
address shares the same cache line as the
previous miss(es). Thereby a new slot in
the matching entry will be allocated to the
request.

| Requester ID | Format bits |

Offset bits

I Data buffer |

Entry n Block Addr == Slot 1

% 08, .
& .
Entry 8 L— Block Addr = Slot 1

Entry 7 Block Addr == Slot 1

Entry 3 Block Addr == Slot 1

Entry 2 Block Addr == Slot 1

Entry 1 Block Addr == Slot 1

Slot 2 | Slot3 |eee| Slot m
Slot2 | Slot3 |eee| Slot m
Siotzlsional - - - IENE - Otffload
entry
[] &(
v oY
Slot 2 | Slot3 | ee«| Slot m M
Slot2 | Slot3 |eee| Slotm '
Memory
Slot2 | Slot3 |eee| Slot m } request

Miss Status Holding Register (MSHR)

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.

—_

o,

{1y Taging cores based on MSHR information

%%x(%?"

* We tag the cores with three states as
Critical, Neutral, and Relaxed by dividing
the number of MSHR entries into one of the
three states:

Relaxed core (blue) may enter an idle
state. The cores with the filled entries
between zero and 1/3 of the total
number of MSHR entries.

« Neutral core (gray) is neither critical nor
relaxed. The cores with filled entries
between 1/3 to 2/3.

- Critical core (red) is likely to switch to
the stall state. The cores with filled
entries of more than 2/3.

2023-12-05

(b) Application

Kernel 1 Kernel 2 Kernel 3 Kernel 4

" Thread Blocks Dg e e e st

(a) GPU Platform

W

|
‘ TB 1 ’ TB2 |eee TBi ‘ }
= I TB Scheduler |
y il Warp Scheduler :
v [s3] |
|
Thread S
+—» SP SP b
e Assign to
i e\ st
\ Register L1 ‘ P
- . file / vt
/ | MSHR
| Neutral

| I e
Critical L2
DRAM ¢} 2MC 2 SM 2 SM 2 MC =
Memory Controller ‘MSHR it " “" “" "
[Rq lll)[Format bits | Offset bits [nabuﬂerl
Entry o - —{ Slot 1 \smz [Si3)] -- | Stotm |
LNy T
Entry 8 “——{ Block Addr)_ Slot 1 | Slot2 | Slot3 ++- Slotm |

Entry 7 Tp-{ Block Addr)— Slot 1 | Slot 2 | Slot3
\

Entry 3 [TC 7= Block Addr = Slot 1 [Slot 2 [Slot3 | eee

Offload
L o ‘} entry

Slot m ‘ Q‘(h

Entry2 [TC = Block Addr s Slot 1 | Slot2 | Slot3 eee

Slot m]é

Entry 1 [)—| Block Addr)— Slot 1 | Slot 2 | Slot3 | ese

H. Bitalebi, V. Geraeinejad, F. Safaei, and M. Ebrahimi, “LATOA: Load-Aware Task Offloading and Adoption in GPU", In Proc. of GPGPU, 2023.

Slot m D- qucst

21

b,
ix: Candidate warps for offloading

e

* Regular instructions

« Memory requests are synchronized with most existing requests (i.e., high locality rate
among different memory requests), and thus reusing data blocks.

« Consequently, MSHR slots are filled up rather than entries.

* |rregular instructions

* The cache fails to work efficiently with irreqular parts of the application, and the rate of
cache misses dramatically increases.

« Consequently, MSHR entries are quickly filled up rather than slots.

[Requester ID | Formatbits | Offsetbits | Databuffer |

Entry n Block Addr == Slot 1 | Slot 2

L6 o

Slot 3 e« | Slotm |

Ly o

Entry 8 Block Addr Slotl. H Slot 2 “ Slot 3]’ Slot m ‘
Entry 7 Block Addr = Sloti [stot2 [siot3 e[Stotm Oefrtl'lt?;d

(39

o

Entry 3 Block Addr H Slot; “ Slot 2 | Slot 3 I"" Slot m
Entry 2 Block Addr H Slot 1 M Slot 2 “ Slot 3 \] Slot m

Entry 1 Block Addr H Slot1 | Slot2 | Slot3 e Slotm '} “f;ﬂ:;y

A,
ixtiy Candidate core for warp adoption
%X, 92

ag%:%%‘*gm

« Offloading a warp without considering the core’s position in the network may lead to
additional network traffic.

* To minimize the offloading overhead to the interconnection network, relaxed cores will only
be selected among the neighboring cores.

« Each core is equipped with a 4-bit register to hold the state of its neighbors. 1-bit is
allocated to each neighbor to indicate the core is relax or not.

v4 vt

SM

) +*
% MC z SM &

10N

- 2
T2SM 2 —>MC<- %
i
& SM & '4’. é

(=]

" ¢ R ;5

Av
N

MC 2 SM|:_> SM::MC
" " w oo

2023-12-05

ahs

Ly
ZKTH

.52} Cores’ states during execution

Bt

2023-12-05

Average Processing
core's State %

Average Processing
core's State %

10

(=]

o]
(=]

=2
=]

=
=

o
=]

100

8

<

0

® Relax Neutral B Critical

BFS FWT HS KMN LIB MUM NN RAY RED SCN SRA WP STO Avg.
(a) Basline

® Relax Neutral m Critical

BFS FWT HS KMN LIB MUM NN RAY RED SCN SRA WP STO Avg.
(b) LATOA

24

S

EEKTHZ% Cores’ stall cycles

d‘%x‘%)b

2023-12-05

Core's Average Stall Cycles%

80 -
Baseline HELATOA

nimme

BFS FWT HS KMN LIB MUM NN RAY RED SCN SRA WP STO Avg.

70
60 -

40
30 -
20
10 -

Average processing cores' stall cycles during the application execution

25

S,
3 Performance evaluation

TR

16 & [dBaseline O CLAMS HLATOA

14
1.2 |

0.8 |
0.6 |
0.4
0.2

Normalized Performance %
[—]

BFS FWT HS KMN LIB MUM NN RAY RED SCN SRA WP STO

Performance evaluation (IPC)

» Applications like FWT, KMN, MUM, NN, and SCN are memory intensive. Also they show unbalanced
behavior where some cores are relaxed while others are critical.

* RAY is heavily sensitive to locality property. LATOA improves the locality property of processing cores,
thus leaving more space to hold in-use data blocks.

« STO is severely process intensive, and most of its requested data is provided by the shared memory.
So, LATOA is unable to improve its performance.

2023-12-05

£ '
§ i d Power evaluation

1 Baseline O CLAMS HLATOA

[a—y -
.

— (39]
| |

[
I
|
|
I
|
I
|
I
I
|

Power Efficiency %
=
]

O L= Nl . e o ’ . P e e -e e 2N » - N " N o N o e
BFS FWT HS KMN LIB MUM NN RAY RED SCN SRA WP STO

Power evaluation (Ins/J)

« LATOA succeeds to reduce the power consumption, on average, by 7%.

» Thisis mainly due to increased data block reusability in critical cores and lower static and leakage
power consumption because of the reduced stalled and idle cycles.

2023-12-05 27

EEEEEEEEE

Load balancing In
Interconnection
hetwork

ahs

T By
$KTH% i
‘5% Load balancing
ag%%%ﬁm
oty oty M Wooowow oW
> — —> >
Fgy TSME=SM= _ 2 SMESM 2 SM 2
S
A g £ Ao
<.SM<—SM<_SM<- §,, ISM&SM < SM 2
4w : O
ISM2Z & SME = T SM 28I SM 2 SM
woonu >
R E 2B /SR N 7

Ty @ SM2sMz
w oo ow

2SM 2 SM 2 SM 2
wooow W

Load balancing in

Near memory processing

2023-12-05

Load balancing
among SMs

Load balancing
among MCs

interconnection network

29

o)

B,

{5113 Load balancing in interconnection

ag%:%%‘*gm

* Moving from deterministic routing
algorithm to adaptive routing
algorithms?

 How to map SMs and MCs on the grid?

 How to allocate memory partitions to
MCs?

Hotspot

‘ SMo path

~ [\>|‘"/ pua
FELUTE —— o, 5 L

- SMa2 lk/"+ : 4“1" :

* s T

e |
- SM 'k”t

nhetwork
vt 4
R /R,
SM *sm <«
W
G
SM +
) W W W
» R - R 5 R
+ sm < sM € sMm *
W) W W
» R R _, R _ -
<+ SM * SM * sm +

vt vt vt vt

Load balancing in
interconnection network

As all SM cores communicate with several shared MC
nodes, hotspot is usually formed around the MC nodes.

Many-Few-Many

2023-12-05

30

ks

Ak
ZKTHS

EEEEEEEEE

Thank you!

2023-12-05 31

